Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
a6bde7c0
Unverified
Commit
a6bde7c0
authored
Nov 10, 2023
by
Manupa Karunaratne
Committed by
GitHub
Nov 10, 2023
Browse files
Merge branch 'develop' into mlir-attention
parents
fe36d210
35e5298e
Changes
101
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
664 additions
and
257 deletions
+664
-257
src/include/migraphx/op/nearbyint.hpp
src/include/migraphx/op/nearbyint.hpp
+11
-7
src/include/migraphx/op/normalize_attribute.hpp
src/include/migraphx/op/normalize_attribute.hpp
+2
-0
src/include/migraphx/op/prefix_scan_op.hpp
src/include/migraphx/op/prefix_scan_op.hpp
+6
-0
src/include/migraphx/op/quantizelinear.hpp
src/include/migraphx/op/quantizelinear.hpp
+5
-5
src/include/migraphx/op/random_uniform.hpp
src/include/migraphx/op/random_uniform.hpp
+2
-3
src/include/migraphx/op/slice.hpp
src/include/migraphx/op/slice.hpp
+322
-136
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+1
-1
src/normalize_attributes.cpp
src/normalize_attributes.cpp
+8
-8
src/onnx/include/migraphx/onnx/onnx_parser.hpp
src/onnx/include/migraphx/onnx/onnx_parser.hpp
+5
-4
src/onnx/onnx.cpp
src/onnx/onnx.cpp
+1
-0
src/onnx/parse_clip.cpp
src/onnx/parse_clip.cpp
+1
-1
src/onnx/parse_generic_op.cpp
src/onnx/parse_generic_op.cpp
+1
-1
src/onnx/parse_isinf.cpp
src/onnx/parse_isinf.cpp
+87
-0
src/onnx/parse_loop.cpp
src/onnx/parse_loop.cpp
+10
-0
src/onnx/parse_multinomial.cpp
src/onnx/parse_multinomial.cpp
+74
-16
src/onnx/parse_resize.cpp
src/onnx/parse_resize.cpp
+90
-63
src/onnx/parse_slice.cpp
src/onnx/parse_slice.cpp
+6
-4
src/onnx/parse_split.cpp
src/onnx/parse_split.cpp
+26
-5
src/py/migraphx_py.cpp
src/py/migraphx_py.cpp
+5
-2
src/rewrite_quantization.cpp
src/rewrite_quantization.cpp
+1
-1
No files found.
src/include/migraphx/op/
round
.hpp
→
src/include/migraphx/op/
nearbyint
.hpp
View file @
a6bde7c0
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -21,24 +21,28 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_
ROUND
_HPP
#define MIGRAPHX_GUARD_OPERATORS_
ROUND
_HPP
#ifndef MIGRAPHX_GUARD_OPERATORS_
NEARBYINT
_HPP
#define MIGRAPHX_GUARD_OPERATORS_
NEARBYINT
_HPP
#include <migraphx/op/unary.hpp>
#include <migraphx/config.hpp>
#include <fenv.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
round
:
unary
<
round
>
struct
nearbyint
:
unary
<
nearbyint
>
{
auto
apply
()
const
{
return
[](
auto
x
)
{
return
std
::
round
(
x
);
};
return
[](
auto
x
)
{
auto
rounding_mode
=
fegetround
();
fesetround
(
FE_TONEAREST
);
return
std
::
nearbyint
(
x
);
fesetround
(
rounding_mode
);
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/include/migraphx/op/normalize_attribute.hpp
View file @
a6bde7c0
...
...
@@ -40,6 +40,8 @@ namespace op {
* 2. use_rank (default) vs use_len:
* `use_rank` sets the max value/index of the attribute as the rank of lens.
* `use_lens` sets the max value/index as the corresponding value in lens at the axes index.
* Uses the dynamic_dimension.max value for dynamic shapes. Returns the original vector
* (no normalization) if any of dynamic_dimension[axes] are not fixed.
* 3. `clip_min` vs. `not_clip_min` (default):
* Clip values less than the minimum to the minimum or not.
* 4. `include_min` vs. `exclude_min` (default):
...
...
src/include/migraphx/op/prefix_scan_op.hpp
View file @
a6bde7c0
...
...
@@ -22,6 +22,12 @@
* THE SOFTWARE.
*/
/**
* Parent struct for prefix scan ops. A prefix scan is a mathematical entity useful
* in parallelizing various computations. Given a list of numbers, a prefix scan
* op returns an equal size list of running totals of the values. Other operations
* besides addition can be supported by child ops.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP
#define MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP
...
...
src/include/migraphx/op/quantizelinear.hpp
View file @
a6bde7c0
...
...
@@ -30,11 +30,11 @@
#include <migraphx/par_for.hpp>
#include <migraphx/value.hpp>
#include <cmath>
#include <fenv.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
quantizelinear
{
std
::
string
name
()
const
{
return
"quantizelinear"
;
}
...
...
@@ -71,26 +71,26 @@ struct quantizelinear
{
y_zero_point
=
args
.
at
(
2
);
}
argument
result
{
output_shape
};
auto
rounding_mode
=
fegetround
();
fesetround
(
FE_TONEAREST
);
visit_all
(
result
,
y_zero_point
)([
&
](
auto
output
,
auto
zero_pts
)
{
visit_all
(
x
,
y_scale
)([
&
](
auto
input
,
auto
scales
)
{
using
quant_type
=
typename
decltype
(
output
)
::
value_type
;
auto
min_value
=
std
::
numeric_limits
<
quant_type
>::
min
();
auto
max_value
=
std
::
numeric_limits
<
quant_type
>::
max
();
par_for
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
int64_t
quantized
=
static_cast
<
int64_t
>
(
std
::
round
(
input
[
i
]
/
scales
[
i
]))
+
int64_t
quantized
=
static_cast
<
int64_t
>
(
std
::
nearbyint
(
input
[
i
]
/
scales
[
i
]))
+
static_cast
<
int64_t
>
(
zero_pts
[
i
]);
output
[
i
]
=
std
::
max
(
static_cast
<
int64_t
>
(
min_value
),
std
::
min
(
static_cast
<
int64_t
>
(
max_value
),
quantized
));
});
});
});
fesetround
(
rounding_mode
);
return
result
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/include/migraphx/op/random_uniform.hpp
View file @
a6bde7c0
...
...
@@ -65,11 +65,10 @@ struct random_uniform
return
inputs
.
at
(
1
);
}
argument
compute
(
const
shape
&
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
// Output goes into the passed buffer, not the shape output.
auto
result
=
args
[
1
];
argument
result
{
dyn_out
.
computed_shape
};
uint64_t
local_seed
=
args
[
0
].
at
<
uint64_t
>
(
0
);
std
::
mt19937
gen
(
local_seed
);
...
...
src/include/migraphx/op/slice.hpp
View file @
a6bde7c0
...
...
@@ -38,6 +38,18 @@ namespace op {
/**
* Slice operator that accepts variable axes, starts and ends.
* All of `starts`, `ends`, and `axes` must be supplied by either
* their attribute or an input (but not both).
*
* Valid calls:
* slice(input); axes, starts, ends set
* slice(input, starts); axes, ends set
* slice(input, ends); starts, axes set
* slice(input, axes); starts, ends set
* slice(input, starts, ends); axes set
* slice(input, starts, axes); ends set
* slice(input, ends, axes); starts set
* slice(input, start, ends, axes); none set
*
* Attributes:
* axes: constant axes to slice over (optional)
...
...
@@ -46,8 +58,8 @@ namespace op {
*
* Parameters:
* data: the input tensor to slice (dynamic or static shape)
* input_starts: starting indic
i
es of slice (optional, static shape)
* input_ends: ending indic
i
es of slice (optional, static shape)
* input_starts: starting indices of slice (optional, static shape)
* input_ends: ending indices of slice (optional, static shape)
* input_axes: axes to slice over (optional, static shape)
*/
struct
slice
...
...
@@ -56,6 +68,18 @@ struct slice
std
::
vector
<
int64_t
>
starts
{};
std
::
vector
<
int64_t
>
ends
{};
/**
* Named arrays for the set attribute possibilities.
*/
static
constexpr
std
::
array
<
bool
,
3
>
all_set
=
{
true
,
true
,
true
};
static
constexpr
std
::
array
<
bool
,
3
>
ends_axes
=
{
false
,
true
,
true
};
static
constexpr
std
::
array
<
bool
,
3
>
starts_axes
=
{
true
,
false
,
true
};
static
constexpr
std
::
array
<
bool
,
3
>
starts_ends
=
{
true
,
true
,
false
};
static
constexpr
std
::
array
<
bool
,
3
>
axes_only
=
{
false
,
false
,
true
};
static
constexpr
std
::
array
<
bool
,
3
>
ends_only
=
{
false
,
true
,
false
};
static
constexpr
std
::
array
<
bool
,
3
>
starts_only
=
{
true
,
false
,
false
};
static
constexpr
std
::
array
<
bool
,
3
>
none_set
=
{
false
,
false
,
false
};
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
...
...
@@ -63,24 +87,26 @@ struct slice
}
/**
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are
* within limits.
* Ensure that attribute axes is within limits.
* Will attempt to normalize starts and ends; but will use the dynamic_dimension.max
* values for dynamic shapes. This makes it so you have to renormalize for
* non-fixed dynamic_dimensions.
*/
value
attributes
()
const
{
value
normalize
=
value
::
object
{};
normalize
[
"axes"
]
=
value
::
array
{
normalize_attribute
::
include_min
};
normalize
[
"starts"
]
=
value
::
array
{
normalize_attribute
::
clip_max
,
normalize_attribute
::
clip_min
,
normalize_attribute
::
include_max
,
normalize_attribute
::
use_len
,
normalize_attribute
::
include_min
};
normalize
[
"ends"
]
=
value
::
array
{
normalize_attribute
::
clip_max
,
normalize_attribute
::
clip_min
,
normalize_attribute
::
include_max
,
normalize_attribute
::
use_len
,
normalize_attribute
::
include_min
};
return
{{
"normalize_axes"
,
normalize
}};
value
normalize
_axes
=
value
::
object
{};
normalize
_axes
[
"axes"
]
=
value
::
array
{
normalize_attribute
::
include_min
};
normalize
_axes
[
"starts"
]
=
value
::
array
{
normalize_attribute
::
clip_max
,
normalize_attribute
::
clip_min
,
normalize_attribute
::
include_max
,
normalize_attribute
::
use_len
,
normalize_attribute
::
include_min
};
normalize
_axes
[
"ends"
]
=
value
::
array
{
normalize_attribute
::
clip_max
,
normalize_attribute
::
clip_min
,
normalize_attribute
::
include_max
,
normalize_attribute
::
use_len
,
normalize_attribute
::
include_min
};
return
{{
"normalize_axes"
,
normalize
_axes
}};
}
std
::
string
name
()
const
{
return
"slice"
;
}
...
...
@@ -88,7 +114,7 @@ struct slice
/**
* Computes the slice output shape dimensions for given starts, ends,and axes.
* Templated to also handle tensor views.
* Possib
i
ly different type between [in_starts, in_ends] and [in_axes] if in_axes is this
* Possibly different type between [in_starts, in_ends] and [in_axes] if in_axes is this
* object's axes attribute. Assumes in_starts and in_ends are normalized; in_axes are valid.
*/
template
<
class
A
,
class
B
>
...
...
@@ -104,62 +130,160 @@ struct slice
return
new_lens
;
}
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
/// Get the attributes that are non-empty
std
::
array
<
bool
,
3
>
get_set_attributes
()
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
,
3
,
4
);
auto
input_shape
=
inputs
[
0
];
if
(
inputs
.
size
()
==
1
)
std
::
array
<
std
::
vector
<
int64_t
>
,
3
>
attrs
=
{
this
->
starts
,
this
->
ends
,
this
->
axes
};
std
::
array
<
bool
,
3
>
bool_vec
;
std
::
transform
(
attrs
.
cbegin
(),
attrs
.
cend
(),
bool_vec
.
begin
(),
[](
auto
a
)
{
return
not
a
.
empty
();
});
return
bool_vec
;
}
/// Helper function for normalize_compute_shape()
shape
compute_two_or_more
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input_shape
=
inputs
[
0
];
auto
set_attributes
=
get_set_attributes
();
// check that inputs [1, end) are all 1D, have the same
// dimension, and are static
check_shapes
{
inputs
.
begin
()
+
1
,
inputs
.
end
(),
std
::
string
(
"SLICE: inputs (starts, ends, and input_axes)"
),
false
}
.
only_dims
(
1
)
.
same_dims
();
auto
dds
=
input_shape
.
to_dynamic
().
dyn_dims
();
if
(
inputs
.
size
()
==
2
)
{
auto
t
=
input_shape
.
type
();
if
(
input_shape
.
dynamic
()
and
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
not
input_shape
.
dyn_dims
()[
axis
].
is_fixed
();
}))
if
(
set_attributes
==
ends_axes
)
{
MIGRAPHX_THROW
(
"SLICE: slicing is not allowed on non-fixed dynamic input axis "
);
// attr ends and axes set; inputs are (data, input_starts)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
axes
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: 2 input and attributes mismatch"
);
}
std
::
for_each
(
axes
.
cbegin
(),
axes
.
cend
(),
[
&
](
const
auto
&
axis
)
{
dds
.
at
(
axis
)
=
{
0
,
dds
.
at
(
axis
).
max
};
});
}
if
(
input_shape
.
dynamic
()
)
else
if
(
set_attributes
==
starts_axes
)
{
return
shape
{
t
,
lens_calc
(
input_shape
.
min_lens
(),
starts
,
ends
,
axes
),
lens_calc
(
input_shape
.
max_lens
(),
starts
,
ends
,
axes
),
{}};
// attr starts and axes set; inputs are (data, input_ends)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
axes
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: 2 input and attributes mismatch"
);
}
std
::
for_each
(
axes
.
cbegin
(),
axes
.
cend
(),
[
&
](
const
auto
&
axis
)
{
dds
.
at
(
axis
)
=
{
0
,
dds
.
at
(
axis
).
max
};
});
}
else
if
(
set_attributes
==
starts_ends
)
{
// attr starts and ends set; inputs are (data, input_axes)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
starts
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: 2 input and attributes mismatch"
);
}
std
::
transform
(
dds
.
begin
(),
dds
.
end
(),
dds
.
begin
(),
[](
auto
dd
)
{
return
shape
::
dynamic_dimension
{
0
,
dd
.
max
};
});
}
else
{
return
shape
{
t
,
lens_calc
(
input_shape
.
lens
(),
starts
,
ends
,
axes
),
input_shape
.
strides
()};
MIGRAPHX_THROW
(
"SLICE: Invalid 2 input and attributes configuration"
);
}
}
else
else
if
(
inputs
.
size
()
==
3
)
{
// check that starts, ends, and optionally input_axes are all 1D, have the same
// dimension, and are static
check_shapes
{
inputs
.
begin
()
+
1
,
inputs
.
end
(),
std
::
string
(
"SLICE: inputs (starts, ends, and input_axes)"
),
false
}
.
only_dims
(
1
)
.
same_dims
();
auto
dds
=
input_shape
.
to_dynamic
().
dyn_dims
();
if
(
inputs
.
size
()
==
3
)
if
(
set_attributes
==
axes_only
)
{
// attr axes set; inputs are (data, input_starts, input_ends)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
axes
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: inputs starts and ends do not have the same dimension "
"as the axes attribute"
);
MIGRAPHX_THROW
(
"SLICE: 3 input and attributes mismatch"
);
}
std
::
for_each
(
axes
.
cbegin
(),
axes
.
cend
(),
[
&
](
const
auto
&
axis
)
{
dds
.
at
(
axis
)
=
{
0
,
dds
.
at
(
axis
).
max
};
});
}
else
else
if
(
set_attributes
==
ends_only
)
{
// attr ends set; inputs are (data, input_starts, input_axes)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
ends
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: 3 input and attributes mismatch"
);
}
std
::
transform
(
dds
.
begin
(),
dds
.
end
(),
dds
.
begin
(),
[](
auto
dd
)
{
return
shape
::
dynamic_dimension
{
0
,
dd
.
max
};
});
}
else
if
(
set_attributes
==
starts_only
)
{
// if axes is an input, then all the output dimensions could be 0 to the max value
// attr starts set; inputs are (data, input_ends, input_axes)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
starts
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: 3 input and attributes mismatch"
);
}
std
::
transform
(
dds
.
begin
(),
dds
.
end
(),
dds
.
begin
(),
[](
auto
dd
)
{
return
shape
::
dynamic_dimension
{
0
,
dd
.
max
};
});
}
return
shape
{
input_shape
.
type
(),
dds
};
else
{
MIGRAPHX_THROW
(
"Invalid 3 input and attributes configuration"
);
}
}
else
{
// all 4 inputs (data, inputs_starts, input_ends, input_axes)
std
::
transform
(
dds
.
begin
(),
dds
.
end
(),
dds
.
begin
(),
[](
auto
dd
)
{
return
shape
::
dynamic_dimension
{
0
,
dd
.
max
};
});
}
return
shape
{
input_shape
.
type
(),
dds
};
}
// uses the normalize_axes flag to normalize axes, starts, and ends
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
,
2
,
3
,
4
);
if
(
inputs
.
size
()
==
1
)
{
auto
input_shape
=
inputs
[
0
];
auto
set_attributes
=
get_set_attributes
();
if
(
set_attributes
!=
all_set
)
{
MIGRAPHX_THROW
(
"SLICE 1_arg: Invalid 1 input and attributes configuration"
);
}
// NOTE: make sure to update how normalization works here if this type of slicing is
// changed to be allowed
if
(
input_shape
.
dynamic
()
and
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
not
input_shape
.
dyn_dims
()[
axis
].
is_fixed
();
}))
{
MIGRAPHX_THROW
(
"SLICE 1_arg: slicing is not allowed on non-fixed dynamic input axis "
);
}
if
(
input_shape
.
dynamic
())
{
return
shape
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
min_lens
(),
this
->
starts
,
this
->
ends
,
this
->
axes
),
lens_calc
(
input_shape
.
max_lens
(),
this
->
starts
,
this
->
ends
,
this
->
axes
),
{}};
}
else
{
return
shape
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
lens
(),
this
->
starts
,
this
->
ends
,
this
->
axes
),
input_shape
.
strides
()};
}
}
else
{
return
compute_two_or_more
(
inputs
);
}
}
...
...
@@ -194,14 +318,14 @@ struct slice
/**
* Calculates the starting offset for the sliced tensor (for aliasing).
* Used
when the starts and/or the axes are inputs
.
* Used
for 2-4 inputs to `slice
.
*
* \param s static input shape
* \param input_starts starting indices of slice
* \param ax_vec axes to slice on
*/
template
<
class
IndView
,
class
Axes
>
auto
compute_offset
(
const
shape
&
s
,
const
IndView
&
input_starts
,
const
Axes
&
ax_vec
)
const
template
<
class
T
>
auto
compute_offset
(
const
shape
&
s
,
const
T
&
input_starts
,
const
T
&
ax_vec
)
const
{
auto
ret
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
ax_vec
.
size
();
++
i
)
...
...
@@ -212,106 +336,168 @@ struct slice
return
ret
*
s
.
type_size
();
}
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
normalize_inputs
(
const
shape
&
input_shape
,
const
std
::
vector
<
int64_t
>&
input_starts
,
const
std
::
vector
<
int64_t
>&
input_ends
)
const
{
auto
attrs
=
this
->
attributes
().
at
(
"normalize_axes"
);
return
{{
"input_starts"
,
normalize_indices
(
input_starts
,
this
->
axes
,
input_shape
,
attrs
.
at
(
"starts"
),
"Slice variable input_starts"
)},
{
"input_ends"
,
normalize_indices
(
input_ends
,
this
->
axes
,
input_shape
,
attrs
.
at
(
"ends"
),
"Slice variable input_ends"
)}};
}
/**
* Three input version of the normalize_inputs.
* This one also checks that the input_axes are valid.
* If given, normalize the inputs. Otherwise get from operator attributes.
* Return the values in a map.
*
* Parameters
* input_shape: static shape of the input
* input_starts: optional
* input_ends: optional
* input_ends: optional
*/
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
normalize_
input
s
(
shape
input_shape
,
const
std
::
vector
<
int64_t
>&
input_starts
,
const
std
::
vector
<
int64_t
>&
input_ends
,
const
std
::
vector
<
int64_t
>&
input_axes
)
const
normalize_
starts_ends_axe
s
(
shape
input_shape
,
const
optional
<
std
::
vector
<
int64_t
>
>
&
input_starts
,
const
optional
<
std
::
vector
<
int64_t
>
>
&
input_ends
,
const
optional
<
std
::
vector
<
int64_t
>
>
&
input_axes
)
const
{
auto
attrs
=
this
->
attributes
().
at
(
"normalize_axes"
);
auto
norm_axes
=
normalize_axes
(
input_axes
,
input_shape
,
attrs
.
at
(
"axes"
),
"Slice variable input_axes"
);
return
{{
"input_starts"
,
normalize_indices
(
input_starts
,
norm_axes
,
input_shape
,
attrs
.
at
(
"starts"
),
"Slice variable input_starts"
)},
{
"input_ends"
,
normalize_indices
(
input_ends
,
norm_axes
,
input_shape
,
attrs
.
at
(
"ends"
),
"Slice variable input ends"
)},
{
"input_axes"
,
norm_axes
}};
auto
axes_attrs
=
this
->
attributes
().
at
(
"normalize_axes"
);
std
::
vector
<
int64_t
>
norm_starts
;
std
::
vector
<
int64_t
>
norm_ends
;
std
::
vector
<
int64_t
>
norm_axes
;
if
(
input_axes
)
{
norm_axes
=
normalize_axes
(
input_axes
.
value
(),
input_shape
,
axes_attrs
.
at
(
"axes"
),
"Slice variable input_axes"
);
}
else
{
norm_axes
=
this
->
axes
;
}
if
(
input_starts
)
{
norm_starts
=
normalize_indices
(
input_starts
.
value
(),
norm_axes
,
input_shape
,
axes_attrs
.
at
(
"starts"
),
"Slice variable input_starts"
);
}
else
{
norm_starts
=
this
->
starts
;
}
if
(
input_ends
)
{
norm_ends
=
normalize_indices
(
input_ends
.
value
(),
norm_axes
,
input_shape
,
axes_attrs
.
at
(
"ends"
),
"Slice variable input ends"
);
}
else
{
norm_ends
=
this
->
ends
;
}
return
{{
"norm_starts"
,
norm_starts
},
{
"norm_ends"
,
norm_ends
},
{
"norm_axes"
,
norm_axes
}};
}
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
auto
input
=
args
[
0
];
auto
input_shape
=
input
.
get_shape
();
switch
(
args
.
size
())
if
(
args
.
size
()
==
1
)
{
case
1
:
{
std
::
size_t
offset
=
compute_offset
(
input_shape
);
return
{
dyn_out
.
computed_shape
,
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
case
3
:
{
shape
calc_shape
;
std
::
size_t
offset
=
0
;
visit_all
(
args
[
1
],
args
[
2
])([
&
](
auto
input_starts
,
auto
input_ends
)
{
auto
norm_inputs
=
normalize_inputs
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
input_ends
.
template
to_vector
<
int64_t
>());
offset
=
compute_offset
(
input_shape
,
norm_inputs
.
at
(
"input_starts"
),
this
->
axes
);
calc_shape
=
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
lens
(),
norm_inputs
.
at
(
"input_starts"
),
norm_inputs
.
at
(
"input_ends"
),
this
->
axes
),
input_shape
.
strides
()};
});
return
{
calc_shape
,
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
case
4
:
{
shape
calc_shape
;
std
::
size_t
offset
=
0
;
visit_all
(
args
[
1
],
args
[
2
],
args
[
3
])(
[
&
](
auto
input_starts
,
auto
input_ends
,
auto
input_axes
)
{
auto
norm_inputs
=
normalize_inputs
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
input_ends
.
template
to_vector
<
int64_t
>(),
input_axes
.
template
to_vector
<
int64_t
>());
offset
=
compute_offset
(
input_shape
,
norm_inputs
.
at
(
"input_starts"
),
norm_inputs
.
at
(
"input_axes"
));
calc_shape
=
shape
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
lens
(),
norm_inputs
.
at
(
"input_starts"
),
norm_inputs
.
at
(
"input_ends"
),
norm_inputs
.
at
(
"input_axes"
)),
input_shape
.
strides
()};
else
{
// Note that we re-normalize both the attributes and inputs because of the non-fixed
// dynamic input shape case. It's possible to only re-normalize if slicing over
// non-fixed dynamic_dimensions.
auto
set_attributes
=
get_set_attributes
();
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
norm_inputs
;
if
(
set_attributes
==
ends_axes
)
{
// attr ends and axes set; inputs are (data, input_starts)
args
[
1
].
visit
([
&
](
auto
input_starts
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
this
->
ends
,
this
->
axes
);
});
}
else
if
(
set_attributes
==
starts_axes
)
{
// attr starts and axes set; inputs are (data, input_ends)
args
[
1
].
visit
([
&
](
auto
input_ends
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
this
->
starts
,
input_ends
.
template
to_vector
<
int64_t
>(),
this
->
axes
);
});
}
else
if
(
set_attributes
==
starts_ends
)
{
// attr starts and ends set; inputs are (data, input_axes)
args
[
1
].
visit
([
&
](
auto
input_axes
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
this
->
starts
,
this
->
ends
,
input_axes
.
template
to_vector
<
int64_t
>());
});
}
else
if
(
set_attributes
==
axes_only
)
{
// attr axes set; inputs are (data, input_starts, input_ends)
visit_all
(
args
[
1
],
args
[
2
])([
&
](
auto
input_starts
,
auto
input_ends
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
input_ends
.
template
to_vector
<
int64_t
>(),
this
->
axes
);
});
}
else
if
(
set_attributes
==
ends_only
)
{
// attr ends set; inputs are (data, input_starts, input_axes)
visit_all
(
args
[
1
],
args
[
2
])([
&
](
auto
input_starts
,
auto
input_axes
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
this
->
ends
,
input_axes
.
template
to_vector
<
int64_t
>());
});
}
else
if
(
set_attributes
==
starts_only
)
{
// attr starts set; inputs are (data, input_ends, input_axes)
visit_all
(
args
[
1
],
args
[
2
])([
&
](
auto
input_ends
,
auto
input_axes
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
this
->
starts
,
input_ends
.
template
to_vector
<
int64_t
>(),
input_axes
.
template
to_vector
<
int64_t
>());
});
}
else
{
// no attr set, all inputs
visit_all
(
args
[
1
],
args
[
2
],
args
[
3
])(
[
&
](
auto
input_starts
,
auto
input_ends
,
auto
input_axes
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
input_ends
.
template
to_vector
<
int64_t
>(),
input_axes
.
template
to_vector
<
int64_t
>());
});
}
auto
offset
=
compute_offset
(
input_shape
,
norm_inputs
.
at
(
"norm_starts"
),
norm_inputs
.
at
(
"norm_axes"
));
shape
calc_shape
=
shape
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
lens
(),
norm_inputs
.
at
(
"norm_starts"
),
norm_inputs
.
at
(
"norm_ends"
),
norm_inputs
.
at
(
"norm_axes"
)),
input_shape
.
strides
()};
return
{
calc_shape
,
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
default:
{
// Should never get here; covering in case some code change occurs
MIGRAPHX_THROW
(
"SLICE: invalid number of inputs"
);
}
}
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
...
...
src/include/migraphx/operators.hpp
View file @
a6bde7c0
...
...
@@ -84,6 +84,7 @@
#include <migraphx/op/mod.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/op/nearbyint.hpp>
#include <migraphx/op/neg.hpp>
#include <migraphx/op/nonmaxsuppression.hpp>
#include <migraphx/op/nonzero.hpp>
...
...
@@ -110,7 +111,6 @@
#include <migraphx/op/rnn_variable_seq_lens.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/op/roialign.hpp>
#include <migraphx/op/round.hpp>
#include <migraphx/op/rsqrt.hpp>
#include <migraphx/op/scalar.hpp>
#include <migraphx/op/scatter_add.hpp>
...
...
src/normalize_attributes.cpp
View file @
a6bde7c0
...
...
@@ -66,15 +66,15 @@ auto tune_attribute(const std::vector<int64_t>& vec,
{
if
(
input_shape
.
dynamic
())
{
// return the unchanged `vec` if the dynamic_dimensions at `axes` are not fixed
if
(
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
ax
)
{
return
not
input_shape
.
dyn_dims
().
at
(
ax
).
is_fixed
();
}))
{
return
vec
;
}
std
::
transform
(
axes
.
begin
(),
axes
.
end
(),
max_vals
.
begin
(),
[
&
](
auto
i
)
{
const
auto
&
dd
=
input_shape
.
dyn_dims
().
at
(
i
);
if
(
not
dd
.
is_fixed
())
{
MIGRAPHX_THROW
(
"NORMALIZE_ATTR: 'use_lens' on a non-fixed dynamic dimension, axis="
+
std
::
to_string
(
i
));
}
return
dd
.
max
;
return
input_shape
.
dyn_dims
().
at
(
i
).
max
;
});
}
else
...
...
src/onnx/include/migraphx/onnx/onnx_parser.hpp
View file @
a6bde7c0
...
...
@@ -97,10 +97,11 @@ struct onnx_parser
shape
::
dynamic_dimension
default_dyn_dim_value
=
{
1
,
1
};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
size_t
>>
map_input_dims
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
shape
::
dynamic_dimension
>>
map_dyn_input_dims
;
bool
use_dyn_output
=
false
;
bool
skip_unknown_operators
=
false
;
int64_t
max_loop_iterations
=
10
;
int64_t
opset_version
=
13
;
bool
use_dyn_output
=
false
;
bool
skip_unknown_operators
=
false
;
int64_t
max_loop_iterations
=
10
;
int64_t
limit_max_iterations
=
std
::
numeric_limits
<
uint16_t
>::
max
();
int64_t
opset_version
=
13
;
std
::
unordered_map
<
std
::
string
,
op_func
>
ops
;
...
...
src/onnx/onnx.cpp
View file @
a6bde7c0
...
...
@@ -67,6 +67,7 @@ program parse_onnx_from(const onnx_options& options, Ts&&... xs)
}
parser
.
skip_unknown_operators
=
options
.
skip_unknown_operators
;
parser
.
max_loop_iterations
=
options
.
max_loop_iterations
;
parser
.
limit_max_iterations
=
options
.
limit_max_iterations
;
parser
.
use_dyn_output
=
options
.
use_dyn_output
;
if
(
options
.
print_program_on_error
)
...
...
src/onnx/parse_clip.cpp
View file @
a6bde7c0
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
src/onnx/parse_generic_op.cpp
View file @
a6bde7c0
...
...
@@ -60,7 +60,7 @@ struct parse_generic_op : op_parser<parse_generic_op>
{
"Neg"
,
"neg"
},
{
"Reciprocal"
,
"recip"
},
{
"Relu"
,
"relu"
},
{
"Round"
,
"
round
"
},
{
"Round"
,
"
nearbyint
"
},
{
"Sigmoid"
,
"sigmoid"
},
{
"Sign"
,
"sign"
},
{
"Sin"
,
"sin"
},
...
...
src/onnx/parse_isinf.cpp
0 → 100644
View file @
a6bde7c0
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
struct
parse_isinf
:
op_parser
<
parse_isinf
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"IsInf"
,
"isinf"
}};
}
instruction_ref
parse
(
const
op_desc
&
/*opd*/
,
const
onnx_parser
&
parser
,
onnx_parser
::
node_info
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
bool
detect_negative
=
true
;
bool
detect_positive
=
true
;
if
(
contains
(
info
.
attributes
,
"detect_negative"
))
{
detect_negative
=
static_cast
<
bool
>
(
parser
.
parse_value
(
info
.
attributes
.
at
(
"detect_negative"
)).
at
<
int
>
());
}
if
(
contains
(
info
.
attributes
,
"detect_positive"
))
{
detect_positive
=
static_cast
<
bool
>
(
parser
.
parse_value
(
info
.
attributes
.
at
(
"detect_positive"
)).
at
<
int
>
());
}
auto
x_shape
=
args
[
0
]
->
get_shape
();
if
(
not
detect_negative
and
not
detect_positive
)
{
return
info
.
add_instruction
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
x_shape
.
lens
()}}),
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
shape
::
bool_type
},
{
false
}}));
}
auto
is_inf
=
info
.
add_instruction
(
make_op
(
"isinf"
),
args
[
0
]);
if
(
detect_negative
and
detect_positive
)
{
return
is_inf
;
}
auto
zero_l
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_shape
.
type
()},
{
0
}});
auto
mb_zero
=
info
.
add_instruction
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
x_shape
.
lens
()}}),
zero_l
);
auto
cond
=
info
.
add_broadcastable_binary_op
(
detect_negative
?
"less"
:
"greater"
,
args
[
0
],
mb_zero
);
if
(
cond
->
get_shape
().
type
()
!=
shape
::
bool_type
)
{
cond
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
shape
::
bool_type
}}),
cond
);
}
return
info
.
add_instruction
(
make_op
(
"logical_and"
),
is_inf
,
cond
);
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_loop.cpp
View file @
a6bde7c0
...
...
@@ -58,6 +58,16 @@ struct parse_loop : op_parser<parse_loop>
}
}
// cap max_iter because loop uses static shapes with max_iter size and huge numbers
// here can cause overflow
if
(
max_iterations
>
parser
.
limit_max_iterations
)
{
std
::
cerr
<<
"WARNING: PARSE_LOOP max_iterations exceeds the maximum loop "
"iterations limit, it will be changed from "
<<
max_iterations
<<
" to "
<<
parser
.
limit_max_iterations
<<
".
\n
"
;
max_iterations
=
parser
.
limit_max_iterations
;
}
// condition input is empty
if
(
args
.
at
(
1
)
->
name
()
==
"undefined"
)
{
...
...
src/onnx/parse_multinomial.cpp
View file @
a6bde7c0
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -41,6 +41,9 @@ struct parse_multinomial : op_parser<parse_multinomial>
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
if
(
args
.
empty
())
MIGRAPHX_THROW
(
"PARSE_MULTINOMIAL: no arguments given"
);
int
dtype
=
6
;
if
(
contains
(
info
.
attributes
,
"dtype"
))
dtype
=
info
.
attributes
.
at
(
"dtype"
).
i
();
...
...
@@ -49,35 +52,90 @@ struct parse_multinomial : op_parser<parse_multinomial>
size_t
sample_size
=
1
;
if
(
contains
(
info
.
attributes
,
"sample_size"
))
sample_size
=
info
.
attributes
.
at
(
"sample_size"
).
i
();
else
MIGRAPHX_THROW
(
"PARSE_MULTINOMIAL: sample_size not given"
);
// Use logarithmic math to scale probabilities while avoiding division by very
// small numbers. Scaling by the maximum makes very tiny ranges more
// tractable; any constant factor gives equivalent distr. since the Multinomial op.
// normalizes at runtime.
// Subtract the per-batch maximum log-probability, making the per-batch max 0
auto
maxes
=
info
.
add_instruction
(
migraphx
::
make_op
(
"reduce_max"
,
{{
"axes"
,
{
1
}}}),
args
[
0
]);
auto
mb_maxes
=
info
.
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
args
[
0
]
->
get_shape
().
lens
()}}),
maxes
);
auto
cdf
=
info
.
add_instruction
(
migraphx
::
make_op
(
"sub"
),
args
[
0
],
mb_maxes
);
auto
cdf
=
info
.
add_common_op
(
"sub"
,
args
[
0
],
maxes
);
// Take the element-wise exponent to get probabilities in the range (0, 1]
cdf
=
info
.
add_instruction
(
migraphx
::
make_op
(
"exp"
),
cdf
);
// Compute the cumulative d
ensity
function
// Compute the cumulative d
istribution
function
cdf
=
info
.
add_instruction
(
migraphx
::
make_op
(
"prefix_scan_sum"
,
{{
"axis"
,
1
},
{
"exclusive"
,
false
}}),
cdf
);
// Pre-compute random distribution
std
::
mt19937
gen
(
std
::
chrono
::
high_resolution_clock
::
now
().
time_since_epoch
().
count
());
instruction_ref
seed_input
;
if
(
contains
(
info
.
attributes
,
"seed"
))
gen
.
seed
(
info
.
attributes
.
at
(
"seed"
).
f
());
{
float
seed
=
info
.
attributes
.
at
(
"seed"
).
f
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
1
}};
std
::
vector
<
float
>
data
=
{
seed
};
seed_input
=
info
.
add_literal
(
migraphx
::
literal
(
s
,
data
));
}
else
{
seed_input
=
info
.
add_instruction
(
migraphx
::
make_op
(
"random_seed"
));
}
instruction_ref
randoms
;
shape
s0
=
args
[
0
]
->
get_shape
();
if
(
s0
.
dynamic
())
{
// Dynamic batch_size will be taken from args[0]. The input argument to this should
// have a second dimension of sample_size.
std
::
vector
<
shape
::
dynamic_dimension
>
dyn_dim_set
;
dyn_dim_set
.
emplace_back
(
s0
.
dyn_dims
().
front
());
dyn_dim_set
.
emplace_back
(
shape
::
dynamic_dimension
{
sample_size
,
sample_size
});
// read the input dimensions
auto
dim_of
=
info
.
add_instruction
(
migraphx
::
make_op
(
"dimensions_of"
,
{{
"end"
,
2
}}),
args
[
0
]);
// The next two operations insert the value sample_size into the second array position
// make an argument of (1, 0)
shape
s
(
shape
::
int64_type
,
{
2
});
std
::
vector
<
int64_t
>
data1
{
1
,
0
};
auto
l1
=
info
.
add_literal
(
s
,
data1
);
auto
batch_arg
=
info
.
add_instruction
(
migraphx
::
make_op
(
"mul"
),
dim_of
,
l1
);
std
::
vector
<
int64_t
>
data2
(
2
,
0
);
// make an argument of (0, sample_size)
data2
[
1
]
=
sample_size
;
auto
l2
=
info
.
add_literal
(
s
,
data2
);
auto
alloc_shape
=
info
.
add_instruction
(
migraphx
::
make_op
(
"add"
),
batch_arg
,
l2
);
// alloc_shape should contain the input-based shape dimensions as its values at runtime,
// and its own shape is {2}
// compile_shape is the shape used when compiling the Allocate op, and may be dynamic
migraphx
::
shape
compile_shape
=
migraphx
::
shape
(
s0
.
type
(),
{
s0
.
dyn_dims
().
front
(),
{
sample_size
,
sample_size
}});
std
::
uniform_real_distribution
<>
dis
(
0.0
,
1.0
);
size_t
batch_size
=
args
[
0
]
->
get_shape
().
lens
().
front
();
migraphx
::
shape
dist_shape
{
migraphx
::
shape
::
float_type
,
{
batch_size
,
sample_size
}};
// Allocate on-device storage for the random values
auto
alloc
=
info
.
add_instruction
(
migraphx
::
make_op
(
"allocate"
,
{{
"shape"
,
to_value
(
compile_shape
)}}),
alloc_shape
);
randoms
=
info
.
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
alloc
);
}
else
{
// use literal. The array populated by random_uniform may have any shape, as long its
// number of elements is batch_size * sample_size .
size_t
batch_size
=
s0
.
lens
().
front
();
auto
rand_dummy
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
batch_size
*
sample_size
}});
std
::
vector
<
float
>
random_dist
(
batch_size
*
sample_size
);
std
::
generate
(
random_dist
.
begin
(),
random_dist
.
end
(),
[
&
]()
{
return
dis
(
gen
);
}
);
auto
dist_lit
=
info
.
add_literal
(
migraphx
::
literal
{
dist_shape
,
random_dist
});
randoms
=
info
.
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
rand_dummy
);
}
return
info
.
add_instruction
(
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
output_type
}}),
cdf
,
dist_lit
);
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
output_type
}}),
cdf
,
randoms
);
}
};
...
...
src/onnx/parse_resize.cpp
View file @
a6bde7c0
...
...
@@ -181,6 +181,76 @@ static std::string get_nearest_mode(const onnx_parser::attribute_map& attr)
return
nearest_mode
;
}
static
std
::
vector
<
double
>
get_scales
(
const
onnx_parser
::
attribute_map
&
attr
)
{
std
::
vector
<
double
>
scales
;
if
(
contains
(
attr
,
"scales"
))
{
copy
(
attr
.
at
(
"scales"
).
floats
(),
std
::
back_inserter
(
scales
));
}
return
scales
;
}
static
void
parse_args
(
const
std
::
vector
<
instruction_ref
>&
args
,
const
std
::
vector
<
size_t
>&
in_lens
,
const
std
::
string
&
op_name
,
std
::
vector
<
double
>&
vec_scale
,
std
::
vector
<
std
::
size_t
>&
out_lens
)
{
for
(
const
auto
&
arg
:
args
)
{
if
(
arg
->
name
()
==
"undefined"
or
arg
==
args
.
front
())
{
continue
;
}
// skipped empty input
auto
lens
=
arg
->
get_shape
().
lens
();
if
(
lens
.
empty
())
{
continue
;
}
auto
type
=
arg
->
get_shape
().
type
();
// output size
if
(
type
==
shape
::
int64_type
)
{
auto
arg_out_s
=
arg
->
eval
();
check_arg_empty
(
arg_out_s
,
"PARSE_"
+
op_name
+
": dynamic output size is not supported!"
);
arg_out_s
.
visit
([
&
](
const
auto
&
ol
)
{
out_lens
.
assign
(
ol
.
begin
(),
ol
.
end
());
});
if
(
out_lens
.
size
()
!=
in_lens
.
size
())
{
MIGRAPHX_THROW
(
"PARSE_"
+
op_name
+
": specified output size does not match input size"
);
}
// compute the scale
vec_scale
.
resize
(
in_lens
.
size
());
std
::
transform
(
in_lens
.
begin
(),
in_lens
.
end
(),
out_lens
.
begin
(),
vec_scale
.
begin
(),
[](
auto
iss
,
auto
oss
)
{
return
1.0
*
oss
/
iss
;
});
}
else
{
// scale input
if
(
lens
[
0
]
==
in_lens
.
size
())
{
auto
arg_scale
=
arg
->
eval
();
check_arg_empty
(
arg_scale
,
"PARSE_"
+
op_name
+
": dynamic input scale is not supported!"
);
arg_scale
.
visit
([
&
](
const
auto
&
v
)
{
vec_scale
.
assign
(
v
.
begin
(),
v
.
end
());
});
}
}
}
}
struct
parse_resize
:
op_parser
<
parse_resize
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"Resize"
},
{
"Upsample"
}};
}
...
...
@@ -214,72 +284,30 @@ struct parse_resize : op_parser<parse_resize>
std
::
vector
<
std
::
size_t
>
out_lens
(
in_lens
.
size
());
// scale
std
::
vector
<
double
>
vec_scale
;
std
::
vector
<
double
>
vec_scale
=
get_scales
(
info
.
attributes
)
;
for
(
const
auto
&
arg
:
args
)
// If `scales` was not an attribute, it must be an input
if
(
vec_scale
.
empty
())
{
if
(
arg
->
name
()
==
"undefined"
or
arg
==
args
.
front
())
{
continue
;
}
// skipped empty input
auto
lens
=
arg
->
get_shape
().
lens
();
if
(
lens
.
empty
())
{
continue
;
}
auto
type
=
arg
->
get_shape
().
type
();
// output size
if
(
type
==
shape
::
int64_type
)
{
auto
arg_out_s
=
arg
->
eval
();
check_arg_empty
(
arg_out_s
,
"PARSE_"
+
opd
.
op_name
+
": dynamic output size is not supported!"
);
arg_out_s
.
visit
([
&
](
const
auto
&
ol
)
{
out_lens
.
assign
(
ol
.
begin
(),
ol
.
end
());
});
if
(
out_lens
.
size
()
!=
in_lens
.
size
())
{
MIGRAPHX_THROW
(
"PARSE_"
+
opd
.
op_name
+
": specified output size does not match input size"
);
}
// Depending on the args, it *must* populate the `vec_scale`, and might populate
// `out_lens`
parse_args
(
args
,
in_lens
,
opd
.
op_name
,
vec_scale
,
out_lens
);
}
// compute the scale
vec_scale
.
resize
(
in_lens
.
size
());
std
::
transform
(
in_lens
.
begin
(),
in_lens
.
end
(),
out_lens
.
begin
(),
vec_scale
.
begin
(),
[](
auto
iss
,
auto
oss
)
{
return
1.0
*
oss
/
iss
;
});
}
else
{
if
(
in_lens
.
size
()
!=
vec_scale
.
size
())
{
MIGRAPHX_THROW
(
"PARSE_"
+
opd
.
op_name
+
": ranks of input and scale are different!"
);
}
// scale input
if
(
lens
[
0
]
==
in_lens
.
size
())
{
auto
arg_scale
=
arg
->
eval
();
check_arg_empty
(
arg_scale
,
"PARSE_"
+
opd
.
op_name
+
": dynamic input scale is not supported!"
);
arg_scale
.
visit
([
&
](
const
auto
&
v
)
{
vec_scale
.
assign
(
v
.
begin
(),
v
.
end
());
});
if
(
in_lens
.
size
()
!=
vec_scale
.
size
())
{
MIGRAPHX_THROW
(
"PARSE_"
+
opd
.
op_name
+
": ranks of input and scale are different!"
);
}
std
::
transform
(
in_lens
.
begin
(),
in_lens
.
end
(),
vec_scale
.
begin
(),
out_lens
.
begin
(),
[
&
](
auto
idx
,
auto
scale
)
{
return
static_cast
<
std
::
size_t
>
(
idx
*
scale
);
});
}
}
// if the output was not calculated yet, we update it based on the scales
if
(
all_of
(
out_lens
.
cbegin
(),
out_lens
.
cend
(),
[](
auto
o
)
{
return
o
==
0
;
}))
{
std
::
transform
(
in_lens
.
begin
(),
in_lens
.
end
(),
vec_scale
.
begin
(),
out_lens
.
begin
(),
[
&
](
auto
idx
,
auto
scale
)
{
return
static_cast
<
std
::
size_t
>
(
idx
*
scale
);
});
}
shape
out_s
{
in_s
.
type
(),
out_lens
};
...
...
@@ -288,7 +316,6 @@ struct parse_resize : op_parser<parse_resize>
// reshape input to one-dimension
std
::
vector
<
int64_t
>
rsp_lens
=
{
static_cast
<
int64_t
>
(
in_s
.
elements
())};
args
[
0
]
=
info
.
make_contiguous
(
args
[
0
]);
auto
rsp
=
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
rsp_lens
}}),
args
[
0
]);
if
(
mode
==
"nearest"
)
...
...
src/onnx/parse_slice.cpp
View file @
a6bde7c0
...
...
@@ -46,6 +46,9 @@ struct parse_slice : op_parser<parse_slice>
void
always_insert
(
instruction_ref
arg
)
{
op_args
.
insert
(
op_args
.
begin
(),
arg
);
}
/**
* Either insert argument into `this->op_args` or return the constant value of the argument
*/
std
::
vector
<
int64_t
>
insert
(
instruction_ref
arg
)
{
std
::
vector
<
int64_t
>
result
;
...
...
@@ -144,16 +147,15 @@ struct parse_slice : op_parser<parse_slice>
sd
.
op
.
axes
=
axes
;
}
if
(
not
sd
.
steps
.
empty
(
))
if
(
std
::
any_of
(
sd
.
steps
.
begin
(),
sd
.
steps
.
end
(),
[](
auto
s
)
{
return
s
!=
1
;
}
))
{
if
(
sd
.
op
.
starts
.
empty
()
or
sd
.
op
.
ends
.
empty
())
MIGRAPHX_THROW
(
"PARSE_SLICE: steps and variable starts and ends is not supported"
);
MIGRAPHX_THROW
(
"PARSE_SLICE: steps and variable starts and/or ends is not supported"
);
if
(
sd
.
op
.
axes
.
empty
())
MIGRAPHX_THROW
(
"PARSE_SLICE: steps and variable axes is not supported"
);
}
assert
(
sd
.
steps
.
empty
()
or
sd
.
steps
.
size
()
==
sd
.
op
.
axes
.
size
());
// If any axes have negative step, prepare to add a "reverse" op
for
(
auto
i
:
range
(
sd
.
steps
.
size
()))
{
...
...
src/onnx/parse_split.cpp
View file @
a6bde7c0
...
...
@@ -68,13 +68,34 @@ struct parse_split : op_parser<parse_split>
// no split attribute, input is equally divided
else
{
if
((
lens
[
tuned_axis
]
%
info
.
num_outputs
)
!=
0
)
std
::
size_t
num_outputs
=
info
.
num_outputs
;
// the num_outputs attribute seems to be redundant since we already have
// node_info::num_outputs, but we can still perform an error check
if
(
contains
(
info
.
attributes
,
"num_outputs"
))
{
MIGRAPHX_THROW
(
"PARSE_SPLIT: input cannot be equally divided into "
+
std
::
to_string
(
info
.
num_outputs
)
+
" splits!"
);
num_outputs
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"num_outputs"
)).
at
<
std
::
size_t
>
();
if
(
num_outputs
!=
info
.
num_outputs
)
{
MIGRAPHX_THROW
(
"PARSE_SPLIT: num_outputs attribute "
+
std
::
to_string
(
num_outputs
)
+
" doesn't match actual number of outputs "
+
std
::
to_string
(
info
.
num_outputs
)
+
"!"
);
}
}
if
(
lens
[
tuned_axis
]
%
num_outputs
==
0
)
{
std
::
size_t
chunk_size
=
lens
[
tuned_axis
]
/
num_outputs
;
vec_splits
.
resize
(
num_outputs
,
chunk_size
);
}
else
{
std
::
size_t
chunk_size
=
lens
[
tuned_axis
]
/
num_outputs
+
1
;
std
::
size_t
last_chunk_size
=
lens
[
tuned_axis
]
-
chunk_size
*
(
num_outputs
-
1
);
vec_splits
.
resize
(
num_outputs
-
1
,
chunk_size
);
vec_splits
.
push_back
(
last_chunk_size
);
}
auto
dl
=
lens
[
tuned_axis
]
/
info
.
num_outputs
;
vec_splits
.
resize
(
info
.
num_outputs
,
dl
);
}
if
(
std
::
accumulate
(
vec_splits
.
begin
(),
vec_splits
.
end
(),
int64_t
(
0
))
!=
...
...
src/py/migraphx_py.cpp
View file @
a6bde7c0
...
...
@@ -472,7 +472,8 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
map_dyn_input_dims
,
bool
skip_unknown_operators
,
bool
print_program_on_error
,
int64_t
max_loop_iterations
)
{
int64_t
max_loop_iterations
,
int64_t
limit_max_iterations
)
{
migraphx
::
onnx_options
options
;
options
.
default_dim_value
=
default_dim_value
;
options
.
default_dyn_dim_value
=
default_dyn_dim_value
;
...
...
@@ -481,6 +482,7 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
options
.
skip_unknown_operators
=
skip_unknown_operators
;
options
.
print_program_on_error
=
print_program_on_error
;
options
.
max_loop_iterations
=
max_loop_iterations
;
options
.
limit_max_iterations
=
limit_max_iterations
;
return
migraphx
::
parse_onnx
(
filename
,
options
);
},
"Parse onnx file"
,
...
...
@@ -492,7 +494,8 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
migraphx
::
shape
::
dynamic_dimension
>>
(),
py
::
arg
(
"skip_unknown_operators"
)
=
false
,
py
::
arg
(
"print_program_on_error"
)
=
false
,
py
::
arg
(
"max_loop_iterations"
)
=
10
);
py
::
arg
(
"max_loop_iterations"
)
=
10
,
py
::
arg
(
"limit_max_iterations"
)
=
std
::
numeric_limits
<
uint16_t
>::
max
());
m
.
def
(
"parse_onnx_buffer"
,
...
...
src/rewrite_quantization.cpp
View file @
a6bde7c0
...
...
@@ -47,7 +47,7 @@ void apply_quantizelinear(module& m, instruction_ref ins)
ins
,
make_op
(
"convert"
,
{{
"target_type"
,
y_scale
->
get_shape
().
type
()}}),
x
);
}
auto
div
=
m
.
insert_instruction
(
ins
,
make_op
(
"div"
),
x
,
y_scale
);
auto
add_zero_point
=
m
.
insert_instruction
(
ins
,
make_op
(
"
round
"
),
div
);
auto
add_zero_point
=
m
.
insert_instruction
(
ins
,
make_op
(
"
nearbyint
"
),
div
);
if
(
ins
->
inputs
().
size
()
==
3
)
{
...
...
Prev
1
2
3
4
5
6
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment