Commit a3aacad6 authored by Shucai Xiao's avatar Shucai Xiao
Browse files

merge changes from develop branch

parents b47ca14f 53355978
...@@ -40,9 +40,9 @@ add_library(migraphx_device ...@@ -40,9 +40,9 @@ add_library(migraphx_device
device/div.cpp device/div.cpp
device/clip.cpp device/clip.cpp
device/reduce_sum.cpp device/reduce_sum.cpp
device/pow.cpp
device/reduce_mean.cpp
device/sqrt.cpp device/sqrt.cpp
device/reduce_mean.cpp
device/pow.cpp
) )
set_target_properties(migraphx_device PROPERTIES EXPORT_NAME device) set_target_properties(migraphx_device PROPERTIES EXPORT_NAME device)
rocm_clang_tidy_check(migraphx_device) rocm_clang_tidy_check(migraphx_device)
......
...@@ -52,9 +52,9 @@ ...@@ -52,9 +52,9 @@
#include <migraphx/gpu/convert.hpp> #include <migraphx/gpu/convert.hpp>
#include <migraphx/gpu/clip.hpp> #include <migraphx/gpu/clip.hpp>
#include <migraphx/gpu/reduce_sum.hpp> #include <migraphx/gpu/reduce_sum.hpp>
#include <migraphx/gpu/pow.hpp>
#include <migraphx/gpu/reduce_mean.hpp>
#include <migraphx/gpu/sqrt.hpp> #include <migraphx/gpu/sqrt.hpp>
#include <migraphx/gpu/reduce_mean.hpp>
#include <migraphx/gpu/pow.hpp>
#include <utility> #include <utility>
#include <functional> #include <functional>
#include <algorithm> #include <algorithm>
......
...@@ -79,7 +79,8 @@ struct tf_parser ...@@ -79,7 +79,8 @@ struct tf_parser
return result; return result;
} }
std::vector<size_t> parse_axes(const attribute_map& attributes, const std::string& s) const std::vector<size_t>
parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
{ {
auto attrs = attributes.at(s).list().i(); auto attrs = attributes.at(s).list().i();
std::vector<size_t> axes; std::vector<size_t> axes;
...@@ -87,14 +88,14 @@ struct tf_parser ...@@ -87,14 +88,14 @@ struct tf_parser
if(is_nhwc) if(is_nhwc)
{ {
std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) { std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
return parse_axis(axis); return parse_axis(axis, num_dims);
}); });
} }
return axes; return axes;
} }
template <class T> template <class T>
std::vector<T> parse_axes(std::vector<T> axes) const std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
{ {
if(is_nhwc) if(is_nhwc)
{ {
...@@ -102,7 +103,7 @@ struct tf_parser ...@@ -102,7 +103,7 @@ struct tf_parser
std::transform(axes.begin(), std::transform(axes.begin(),
axes.end(), axes.end(),
std::back_inserter(new_axes), std::back_inserter(new_axes),
[&](size_t axis) { return parse_axis(axis); }); [&](size_t axis) { return parse_axis(axis, num_dims); });
return new_axes; return new_axes;
} }
return axes; return axes;
...@@ -117,17 +118,17 @@ struct tf_parser ...@@ -117,17 +118,17 @@ struct tf_parser
std::vector<T> new_data(prev_data.size()); std::vector<T> new_data(prev_data.size());
for(size_t i = 0; i < new_data.size(); i++) for(size_t i = 0; i < new_data.size(); i++)
{ {
auto new_idx = parse_axis(i); auto new_idx = parse_axis(i, new_data.size());
new_data.at(new_idx) = prev_data.at(i); new_data.at(new_idx) = prev_data.at(i);
} }
prev_data = new_data; prev_data = new_data;
} }
template <class T> template <class T>
T parse_axis(const T& dim) const T parse_axis(const T& dim, const size_t num_dims) const
{ {
T new_dim = dim; T new_dim = dim;
if(is_nhwc) if(is_nhwc and num_dims >= 4)
{ {
switch(dim) switch(dim)
{ {
...@@ -165,6 +166,7 @@ struct tf_parser ...@@ -165,6 +166,7 @@ struct tf_parser
add_mem_op("Const", &tf_parser::parse_constant); add_mem_op("Const", &tf_parser::parse_constant);
add_mem_op("Conv2D", &tf_parser::parse_conv); add_mem_op("Conv2D", &tf_parser::parse_conv);
add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv); add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm); add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
add_mem_op("MatMul", &tf_parser::parse_matmul, false); add_mem_op("MatMul", &tf_parser::parse_matmul, false);
add_mem_op("MaxPool", &tf_parser::parse_pooling); add_mem_op("MaxPool", &tf_parser::parse_pooling);
...@@ -490,6 +492,25 @@ struct tf_parser ...@@ -490,6 +492,25 @@ struct tf_parser
return prog.add_instruction(op, {l0, new_weights}); return prog.add_instruction(op, {l0, new_weights});
} }
instruction_ref
parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
{
std::vector<size_t> input_dims = args[0]->get_shape().lens();
std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
size_t num_dims = input_dims.size();
int32_t dim = args[1]->eval().at<int32_t>();
if(dim < 0)
{
new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
}
else
{
new_dims.insert(new_dims.begin() + dim, 1);
}
return prog.add_instruction(op::reshape{new_dims}, args[0]);
}
instruction_ref instruction_ref
parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args) parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{ {
...@@ -519,11 +540,12 @@ struct tf_parser ...@@ -519,11 +540,12 @@ struct tf_parser
instruction_ref instruction_ref
parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args) parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{ {
auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector());
bool keep_dims = attributes.at("keep_dims").b(); bool keep_dims = attributes.at("keep_dims").b();
std::vector<int32_t> hw_axes{2, 3}; std::vector<int32_t> hw_axes{2, 3};
// check if conditions for GlobalAvgPool are met // check if conditions for GlobalAvgPool are met
auto lens = args[0]->get_shape().lens(); auto lens = args[0]->get_shape().lens();
auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector(), lens.size());
if(axes == hw_axes and lens.size() == 4) if(axes == hw_axes and lens.size() == 4)
{ {
op::pooling op{"average"}; op::pooling op{"average"};
...@@ -694,14 +716,15 @@ struct tf_parser ...@@ -694,14 +716,15 @@ struct tf_parser
std::vector<instruction_ref> args) std::vector<instruction_ref> args)
{ {
op::squeeze op; op::squeeze op;
auto input_dims = args[0]->get_shape().lens();
auto axes = attributes.at("squeeze_dims").list().i(); auto axes = attributes.at("squeeze_dims").list().i();
copy(axes, std::back_inserter(op.axes)); copy(axes, std::back_inserter(op.axes));
auto args0_dims = args[0]->get_shape().lens();
if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1 if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
{ {
for(size_t i = 0; i < args0_dims.size(); i++) for(size_t i = 0; i < input_dims.size(); i++)
{ {
if(args0_dims.at(i) == 1) if(input_dims.at(i) == 1)
{ {
op.axes.push_back(i); op.axes.push_back(i);
} }
......
...@@ -542,6 +542,21 @@ TEST_CASE(erf_test) ...@@ -542,6 +542,21 @@ TEST_CASE(erf_test)
EXPECT(migraphx::verify_range(results_vector, gold)); EXPECT(migraphx::verify_range(results_vector, gold));
} }
TEST_CASE(sqrt_test)
{
migraphx::program p;
migraphx::shape s{migraphx::shape::float_type, {5}};
auto l = p.add_literal(
migraphx::literal{s, {1.02481645, 0.85643062, 0.03404123, 0.92791926, 0.10569184}});
p.add_instruction(migraphx::op::sqrt{}, l);
p.compile(migraphx::cpu::target{});
auto result = p.eval({});
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {1.01233218, 0.92543537, 0.18450265, 0.96328566, 0.32510282};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(log_test) TEST_CASE(log_test)
{ {
migraphx::program p; migraphx::program p;
......
...@@ -255,6 +255,19 @@ struct test_erf : verify_program<test_erf> ...@@ -255,6 +255,19 @@ struct test_erf : verify_program<test_erf>
} }
}; };
struct test_sqrt : verify_program<test_sqrt>
{
migraphx::program create_program() const
{
migraphx::program p;
migraphx::shape s{migraphx::shape::float_type, {2, 3, 4, 6}};
auto param = p.add_parameter("x", s);
auto param_abs = p.add_instruction(migraphx::op::abs{}, param);
p.add_instruction(migraphx::op::sqrt{}, param_abs);
return p;
}
};
struct test_log : verify_program<test_log> struct test_log : verify_program<test_log>
{ {
migraphx::program create_program() const migraphx::program create_program() const
......
...@@ -202,6 +202,16 @@ TEST_CASE(erf_test) ...@@ -202,6 +202,16 @@ TEST_CASE(erf_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(sqrt_test)
{
migraphx::program p;
auto input = p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {10, 15}});
p.add_instruction(migraphx::op::sqrt{}, input);
auto prog = migraphx::parse_onnx("sqrt_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(log_test) TEST_CASE(log_test)
{ {
migraphx::program p; migraphx::program p;
......
 sqrt-example:C
xy"Sqrt test_sqrtZ
x


b
y


B
...@@ -159,6 +159,31 @@ TEST_CASE(depthwiseconv_test) ...@@ -159,6 +159,31 @@ TEST_CASE(depthwiseconv_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(expanddims_test)
{
migraphx::program p;
auto l0 = p.add_parameter("0", migraphx::shape{migraphx::shape::float_type, {2, 3, 4}});
p.add_literal(0);
p.add_instruction(migraphx::op::reshape{{1, 2, 3, 4}}, l0);
auto prog = optimize_tf("expanddims_test.pb", false);
EXPECT(p == prog);
}
TEST_CASE(expanddims_test_neg_dims)
{
// this check makes sure the pb parses negative dim value correctly
migraphx::program p;
auto l0 = p.add_parameter("0", migraphx::shape{migraphx::shape::float_type, {2, 3, 4}});
p.add_literal(-1);
p.add_instruction(migraphx::op::reshape{{2, 3, 4, 1}}, l0);
auto prog = optimize_tf("expanddims_neg_test.pb", false);
EXPECT(p == prog);
}
TEST_CASE(identity_test) TEST_CASE(identity_test)
{ {
migraphx::program p; migraphx::program p;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment