Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
a24ed87e
Unverified
Commit
a24ed87e
authored
Dec 05, 2023
by
Chris Austen
Committed by
GitHub
Dec 05, 2023
Browse files
Merge branch 'develop' into optimize_jenkinsfile
parents
6481cd69
a09dc502
Changes
391
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
815 additions
and
342 deletions
+815
-342
src/include/migraphx/streamutils.hpp
src/include/migraphx/streamutils.hpp
+14
-0
src/include/migraphx/tune_axis.hpp
src/include/migraphx/tune_axis.hpp
+8
-8
src/include/migraphx/type_traits.hpp
src/include/migraphx/type_traits.hpp
+15
-5
src/normalize_attributes.cpp
src/normalize_attributes.cpp
+8
-8
src/onnx/CMakeLists.txt
src/onnx/CMakeLists.txt
+9
-2
src/onnx/include/migraphx/onnx/onnx_parser.hpp
src/onnx/include/migraphx/onnx/onnx_parser.hpp
+5
-4
src/onnx/include/migraphx/onnx/pooling.hpp
src/onnx/include/migraphx/onnx/pooling.hpp
+15
-16
src/onnx/onnx.cpp
src/onnx/onnx.cpp
+1
-0
src/onnx/onnx.proto
src/onnx/onnx.proto
+193
-61
src/onnx/onnx_parser.cpp
src/onnx/onnx_parser.cpp
+23
-0
src/onnx/parse_clip.cpp
src/onnx/parse_clip.cpp
+1
-1
src/onnx/parse_generic_op.cpp
src/onnx/parse_generic_op.cpp
+1
-1
src/onnx/parse_isinf.cpp
src/onnx/parse_isinf.cpp
+87
-0
src/onnx/parse_loop.cpp
src/onnx/parse_loop.cpp
+10
-0
src/onnx/parse_lstm.cpp
src/onnx/parse_lstm.cpp
+47
-0
src/onnx/parse_multinomial.cpp
src/onnx/parse_multinomial.cpp
+74
-16
src/onnx/parse_pooling.cpp
src/onnx/parse_pooling.cpp
+11
-207
src/onnx/parse_qlinearbinary.cpp
src/onnx/parse_qlinearbinary.cpp
+27
-13
src/onnx/parse_qlinearpooling.cpp
src/onnx/parse_qlinearpooling.cpp
+115
-0
src/onnx/parse_qlinearunary.cpp
src/onnx/parse_qlinearunary.cpp
+151
-0
No files found.
src/include/migraphx/streamutils.hpp
View file @
a24ed87e
...
...
@@ -30,6 +30,7 @@
#include <migraphx/rank.hpp>
#include <migraphx/requires.hpp>
#include <migraphx/config.hpp>
#include <migraphx/optional.hpp>
#include <vector>
namespace
migraphx
{
...
...
@@ -68,6 +69,19 @@ auto stream_write_value_impl(rank<1>, std::ostream& os, const T& x) -> decltype(
os
<<
x
;
}
template
<
class
T
>
auto
stream_write_value_impl
(
rank
<
1
>
,
std
::
ostream
&
os
,
const
optional
<
T
>&
x
)
{
if
(
x
.
has_value
())
{
os
<<
*
x
;
}
else
{
os
<<
"nullopt"
;
}
}
template
<
class
T
>
void
stream_write_value_impl
(
rank
<
1
>
,
std
::
ostream
&
os
,
const
std
::
vector
<
T
>&
r
)
{
...
...
src/include/migraphx/tune_axis.hpp
View file @
a24ed87e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -24,21 +24,21 @@
#ifndef MIGRAPHX_GUARD_OPERATORS_TUNE_AXIS_HPP
#define MIGRAPHX_GUARD_OPERATORS_TUNE_AXIS_HPP
#include <utility>
#include <cstdint>
#include <migraphx/stringutils.hpp>
#include <migraphx/errors.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
int
tune_axis
(
const
int
n_dim
,
const
int
axis
,
const
std
::
string
&
op_name
=
"OPERATOR"
)
inline
int
tune_axis
(
int
n_dim
,
int
axis
,
const
std
::
string
&
op_name
=
"OPERATOR"
)
{
if
(
axis
>=
n_dim
or
std
::
abs
(
axis
)
>
n_dim
)
{
if
(
axis
<
0
)
axis
+=
n_dim
;
if
(
axis
<
0
or
axis
>=
n_dim
)
MIGRAPHX_THROW
(
to_upper
(
op_name
)
+
": axis is out of range."
);
}
return
(
axis
<
0
)
?
axis
+
n_dim
:
axis
;
return
axis
;
}
}
// namespace MIGRAPHX_INLINE_NS
...
...
src/include/migraphx/type_traits.hpp
View file @
a24ed87e
...
...
@@ -28,25 +28,35 @@
#include <type_traits>
#include <migraphx/half.hpp>
#include <migraphx/config.hpp>
#include <migraphx/float8.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
#define MIGRAPHX_DETAIL_DEFINE_TRAIT(trait) \
template <class X> \
struct trait : std::trait<X> \
{ \
};
#define MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(trait, T) \
template <class X> \
struct trait : std::trait<X> \
{ \
}; \
\
template <> \
struct trait<T> : std::true_type \
{ \
};
MIGRAPHX_DETAIL_DEFINE_TRAIT
(
is_floating_point
);
MIGRAPHX_DETAIL_DEFINE_TRAIT
(
is_arithmetic
);
MIGRAPHX_DETAIL_DEFINE_TRAIT
(
is_signed
);
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR
(
is_floating_point
,
half
)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR
(
is_signed
,
half
)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR
(
is_arithmetic
,
half
)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR
(
is_floating_point
,
migraphx
::
fp8
::
fp8e4m3fnuz
)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR
(
is_signed
,
migraphx
::
fp8
::
fp8e4m3fnuz
)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR
(
is_arithmetic
,
migraphx
::
fp8
::
fp8e4m3fnuz
)
template
<
class
T
>
using
accumulator_type
=
std
::
conditional_t
<
is_floating_point
<
T
>
{},
...
...
src/normalize_attributes.cpp
View file @
a24ed87e
...
...
@@ -66,15 +66,15 @@ auto tune_attribute(const std::vector<int64_t>& vec,
{
if
(
input_shape
.
dynamic
())
{
// return the unchanged `vec` if the dynamic_dimensions at `axes` are not fixed
if
(
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
ax
)
{
return
not
input_shape
.
dyn_dims
().
at
(
ax
).
is_fixed
();
}))
{
return
vec
;
}
std
::
transform
(
axes
.
begin
(),
axes
.
end
(),
max_vals
.
begin
(),
[
&
](
auto
i
)
{
const
auto
&
dd
=
input_shape
.
dyn_dims
().
at
(
i
);
if
(
not
dd
.
is_fixed
())
{
MIGRAPHX_THROW
(
"NORMALIZE_ATTR: 'use_lens' on a non-fixed dynamic dimension, axis="
+
std
::
to_string
(
i
));
}
return
dd
.
max
;
return
input_shape
.
dyn_dims
().
at
(
i
).
max
;
});
}
else
...
...
src/onnx/CMakeLists.txt
View file @
a24ed87e
...
...
@@ -26,7 +26,11 @@ find_package(Protobuf REQUIRED)
protobuf_generate_cpp
(
PROTO_SRCS PROTO_HDRS onnx.proto
)
add_library
(
onnx-proto STATIC
${
PROTO_SRCS
}
)
target_include_directories
(
onnx-proto SYSTEM PUBLIC
${
CMAKE_CURRENT_BINARY_DIR
}
${
PROTOBUF_INCLUDE_DIR
}
)
target_compile_options
(
onnx-proto PRIVATE -w
)
if
(
MSVC
)
target_compile_options
(
onnx-proto PRIVATE /w
)
else
()
target_compile_options
(
onnx-proto PRIVATE -w
)
endif
()
target_link_libraries
(
onnx-proto PRIVATE
${
PROTOBUF_LIBRARY
}
)
set_target_properties
(
onnx-proto PROPERTIES POSITION_INDEPENDENT_CODE On
)
...
...
@@ -37,7 +41,10 @@ set_target_properties(migraphx_onnx PROPERTIES EXPORT_NAME onnx)
migraphx_generate_export_header
(
migraphx_onnx
)
rocm_set_soversion
(
migraphx_onnx
${
MIGRAPHX_SO_VERSION
}
)
rocm_clang_tidy_check
(
migraphx_onnx
)
target_link_libraries
(
migraphx_onnx PRIVATE onnx-proto
"-Wl,--exclude-libs,ALL"
)
target_link_libraries
(
migraphx_onnx PRIVATE onnx-proto
)
if
(
NOT WIN32
)
target_link_libraries
(
migraphx_onnx PRIVATE
"-Wl,--exclude-libs,ALL"
)
endif
()
target_link_libraries
(
migraphx_onnx PUBLIC migraphx
)
rocm_install_targets
(
...
...
src/onnx/include/migraphx/onnx/onnx_parser.hpp
View file @
a24ed87e
...
...
@@ -97,10 +97,11 @@ struct onnx_parser
shape
::
dynamic_dimension
default_dyn_dim_value
=
{
1
,
1
};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
size_t
>>
map_input_dims
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
shape
::
dynamic_dimension
>>
map_dyn_input_dims
;
bool
use_dyn_output
=
false
;
bool
skip_unknown_operators
=
false
;
int64_t
max_loop_iterations
=
10
;
int64_t
opset_version
=
13
;
bool
use_dyn_output
=
false
;
bool
skip_unknown_operators
=
false
;
int64_t
max_loop_iterations
=
10
;
int64_t
limit_max_iterations
=
std
::
numeric_limits
<
uint16_t
>::
max
();
int64_t
opset_version
=
13
;
std
::
unordered_map
<
std
::
string
,
op_func
>
ops
;
...
...
src/
targets/gpu
/include/migraphx/
gpu/device/pad
.hpp
→
src/
onnx
/include/migraphx/
onnx/pooling
.hpp
View file @
a24ed87e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -21,27 +21,26 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_AMDMIGRAPHX_ONNX_POOLING_HPP
#define MIGRAPHX_GUARD_AMDMIGRAPHX_ONNX_POOLING_HPP
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_PAD_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_PAD_HPP
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/config.hpp>
#include <hip/hip_runtime_api.h>
#include <migraphx/config.hpp>
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
namespace
onnx
{
value
handle_pooling_values
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
const
shape
&
in_shape
,
value
values
);
argument
MIGRAPHX_DEVICE_EXPORT
pad
(
hipStream_t
stream
,
argument
result
,
argument
arg1
,
float
value
,
std
::
vector
<
std
::
int64_t
>
pads
);
instruction_ref
add_pooling_op
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
instruction_ref
l0
);
}
// namespace device
}
// namespace gpu
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/onnx/onnx.cpp
View file @
a24ed87e
...
...
@@ -67,6 +67,7 @@ program parse_onnx_from(const onnx_options& options, Ts&&... xs)
}
parser
.
skip_unknown_operators
=
options
.
skip_unknown_operators
;
parser
.
max_loop_iterations
=
options
.
max_loop_iterations
;
parser
.
limit_max_iterations
=
options
.
limit_max_iterations
;
parser
.
use_dyn_output
=
options
.
use_dyn_output
;
if
(
options
.
print_program_on_error
)
...
...
src/onnx/onnx.proto
View file @
a24ed87e
...
...
@@ -3,8 +3,8 @@
//
//
Copyright (c) ONNX Project Contributors.
// Licensed under the MIT license.
//
SPDX-License-Identifier: Apache-2.0
syntax
=
"proto2"
;
...
...
@@ -20,23 +20,16 @@ package onnx_for_migraphx;
//
// This document describes the syntax of models and their computation graphs,
// as well as the standard data types. Together, they are referred to as the ONNX
// Intermediate Representation, or 'IR' for short.
// Intermediate Representation, or 'IR' for short.
//
// The normative semantic specification of the ONNX IR is found in docs/IR.md.
// Definitions of the built-in neural network operators may be found in docs/Operators.md.
// Notes
//
// Release
//
// We are still in the very early stage of defining ONNX. The current
// version of ONNX is a starting point. While we are actively working
// towards a complete spec, we would like to get the community involved
// by sharing our working version of ONNX.
//
// Protobuf compatibility
//
// To simplify framework compatibility, ONNX is defined using the subset of protobuf
//
// To simplify framework compatibility, ONNX is defined using the subset of protobuf
// that is compatible with both protobuf v2 and v3. This means that we do not use any
// protobuf features that are only available in one of the two versions.
//
...
...
@@ -60,7 +53,7 @@ enum Version {
_START_VERSION
=
0
;
// The version field is always serialized and we will use it to store the
// version that the graph is generated from. This helps us set up version
// control.
// control.
// For the IR, we are using simple numbers starting with 0x00000001,
// which was the version we published on Oct 10, 2017.
IR_VERSION_2017_10_10
=
0x0000000000000001
;
...
...
@@ -92,15 +85,28 @@ enum Version {
// - Add sparse initializers
IR_VERSION_2019_9_19
=
0x0000000000000006
;
// IR VERSION 7 published on <TBD>
// IR VERSION 7 published on May 8, 2020
// - Add support to allow function body graph to rely on multiple external opreator sets.
// - Add a list to promote inference graph's initializers to global and
// mutable variables. Global variables are visible in all graphs of the
// stored models.
// - Add message TrainingInfoProto to store initialization
// method and training algorithm. The execution of TrainingInfoProto
// can modify the values of mutable variables.
// - Make inference graph callable from TrainingInfoProto via GraphCall operator.
IR_VERSION
=
0x0000000000000007
;
// - Implicitly add inference graph into each TrainingInfoProto's algorithm.
IR_VERSION_2020_5_8
=
0x0000000000000007
;
// IR VERSION 8 published on July 30, 2021
// Introduce TypeProto.SparseTensor
// Introduce TypeProto.Optional
// Added a list of FunctionProtos local to the model
// Deprecated since_version and operator status from FunctionProto
IR_VERSION_2021_7_30
=
0x0000000000000008
;
// IR VERSION 9 published on TBD
// Added AttributeProto to FunctionProto so that default attribute values can be set.
// Added FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ.
IR_VERSION
=
0x0000000000000009
;
}
// Attributes
...
...
@@ -121,6 +127,7 @@ message AttributeProto {
TENSOR
=
4
;
GRAPH
=
5
;
SPARSE_TENSOR
=
11
;
TYPE_PROTO
=
13
;
FLOATS
=
6
;
INTS
=
7
;
...
...
@@ -128,11 +135,12 @@ message AttributeProto {
TENSORS
=
9
;
GRAPHS
=
10
;
SPARSE_TENSORS
=
12
;
TYPE_PROTOS
=
14
;
}
// The name field MUST be present for this version of the IR.
optional
string
name
=
1
;
// namespace Attribute
// if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
// In this case, this AttributeProto does not contain data, and it's a reference of attribute
// in parent scope.
...
...
@@ -159,6 +167,7 @@ message AttributeProto {
optional
SparseTensorProto
sparse_tensor
=
22
;
// sparse tensor value
// Do not use field below, it's deprecated.
// optional ValueProto v = 12; // value - subsumes everything but graph
optional
TypeProto
tp
=
14
;
// type proto
repeated
float
floats
=
7
;
// list of floats
repeated
int64
ints
=
8
;
// list of ints
...
...
@@ -166,6 +175,7 @@ message AttributeProto {
repeated
TensorProto
tensors
=
10
;
// list of tensors
repeated
GraphProto
graphs
=
11
;
// list of graph
repeated
SparseTensorProto
sparse_tensors
=
23
;
// list of sparse tensors
repeated
TypeProto
type_protos
=
15
;
// list of type protos
}
// Defines information on value, including the name, the type, and
...
...
@@ -185,7 +195,7 @@ message ValueInfoProto {
// Computation graphs are made up of a DAG of nodes, which represent what is
// commonly called a "layer" or "pipeline stage" in machine learning frameworks.
//
// For example, it can be a node of type "Conv" that takes in an image, a filter
// For example, it can be a node of type "Conv" that takes in an image, a filter
// tensor and a bias tensor, and produces the convolved output.
message
NodeProto
{
repeated
string
input
=
1
;
// namespace Value
...
...
@@ -211,7 +221,7 @@ message NodeProto {
// TrainingInfoProto stores information for training a model.
// In particular, this defines two functionalities: an initialization-step
// and a training-algorithm-step. Initialization resets the model
// back to its original state as if no training has been
consu
med.
// back to its original state as if no training has been
perfor
med.
// Training algorithm improves the model based on input data.
//
// The semantics of the initialization-step is that the initializers
...
...
@@ -224,8 +234,8 @@ message NodeProto {
// training algorithm's step. After the execution of a
// TrainingInfoProto.algorithm, the initializers specified by "update_binding"
// may be immediately updated. If the targeted training algorithm contains
// consecutive update st
ag
es (such as block coordinate descent methods),
// the user needs to create a TrainingInfoProto for each st
ag
e.
// consecutive update ste
p
s (such as block coordinate descent methods),
// the user needs to create a TrainingInfoProto for each ste
p
.
message
TrainingInfoProto
{
// This field describes a graph to compute the initial tensors
// upon starting the training process. Initialization graph has no input
...
...
@@ -239,24 +249,42 @@ message TrainingInfoProto {
// iteration to zero.
//
// By default, this field is an empty graph and its evaluation does not
// produce any output.
// produce any output.
Thus, no initializer would be changed by default.
optional
GraphProto
initialization
=
1
;
// This field represents a training algorithm step. Given required inputs,
// it computes outputs to update initializers in its own or inference graph's
// initializer lists. In general, this graph contains loss node, gradient node,
// optimizer node, increment of iteration count, and some calls to the inference
// graph.
// initializer lists. In general, this field contains loss node, gradient node,
// optimizer node, increment of iteration count.
//
// The field algorithm.node is the only place the user can use GraphCall
// operator. The only callable graph is the one stored in ModelProto.graph.
// An execution of the training algorithm step is performed by executing the
// graph obtained by combining the inference graph (namely "ModelProto.graph")
// and the "algorithm" graph. That is, the actual the actual
// input/initializer/output/node/value_info/sparse_initializer list of
// the training graph is the concatenation of
// "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
// and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
// in that order. This combined graph must satisfy the normal ONNX conditions.
// Now, let's provide a visualization of graph combination for clarity.
// Let the inference graph (i.e., "ModelProto.graph") be
// tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
// and the "algorithm" graph be
// tensor_d -> Add -> tensor_e
// The combination process results
// tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
//
// Notice that an input of a node in the "algorithm" graph may reference the
// output of a node in the inference graph (but not the other way round). Also, inference
// node cannot reference inputs of "algorithm". With these restrictions, inference graph
// can always be run independently without training information.
//
// By default, this field is an empty graph and its evaluation does not
// produce any output.
// produce any output. Evaluating the default training step never
// update any initializers.
optional
GraphProto
algorithm
=
2
;
// This field specifies the bindings from the outputs of "initialization" to
// some initializers in "ModelProto.graph.initializer" and
// some initializers in "ModelProto.graph.initializer" and
// the "algorithm.initializer" in the same TrainingInfoProto.
// See "update_binding" below for details.
//
...
...
@@ -284,23 +312,16 @@ message TrainingInfoProto {
// be multiple key-value pairs in "update_binding".
//
// The initializers appears as keys in "update_binding" are considered
// mutable
and globally-visible
variables. This implies some behaviors
// mutable variables. This implies some behaviors
// as described below.
//
// 1. We have only unique keys in all "update_binding"s so that two
global
// 1. We have only unique keys in all "update_binding"s so that two
// variables may not have the same name. This ensures that one
//
global
variable is assigned up to once.
// variable is assigned up to once.
// 2. The keys must appear in names of "ModelProto.graph.initializer" or
// "TrainingInfoProto.algorithm.initializer".
// 3. The values must be output names of "algorithm".
// 4. If an optional input of a graph is omitted when using GraphCall, the
// global variable with the same name may be used.
// 5. When using GraphCall, the users always can pass values to optional
// inputs of the called graph even if the associated initializers appears
// as keys in "update_binding"s.
// 6. The graphs in TrainingInfoProto's can use global variables as
// their operator inputs.
// 7. Mutable variables are initialized to the value specified by the
// 3. The values must be output names of "algorithm" or "ModelProto.graph.output".
// 4. Mutable variables are initialized to the value specified by the
// corresponding initializer, and then potentially updated by
// "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
//
...
...
@@ -375,13 +396,31 @@ message ModelProto {
//
// If this field is empty, the training behavior of the model is undefined.
repeated
TrainingInfoProto
training_info
=
20
;
// A list of function protos local to the model.
//
// Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
// In case of any conflicts the behavior (whether the model local functions are given higher priority,
// or standard opserator sets are given higher priotity or this is treated as error) is defined by
// the runtimes.
//
// The operator sets imported by FunctionProto should be compatible with the ones
// imported by ModelProto and other model local FunctionProtos.
// Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
// or by 2 FunctionProtos then versions for the operator set may be different but,
// the operator schema returned for op_type, domain, version combination
// for both the versions should be same for every node in the function body.
//
// One FunctionProto can reference other FunctionProto in the model, however, recursive reference
// is not allowed.
repeated
FunctionProto
functions
=
25
;
};
// StringStringEntryProto follows the pattern for cross-proto-version maps.
// See https://developers.google.com/protocol-buffers/docs/proto3#maps
message
StringStringEntryProto
{
optional
string
key
=
1
;
optional
string
value
=
2
;
optional
string
value
=
2
;
};
message
TensorAnnotation
{
...
...
@@ -397,7 +436,7 @@ message TensorAnnotation {
// Graphs
//
// A graph defines the computational logic of a model and is comprised of a parameterized
// A graph defines the computational logic of a model and is comprised of a parameterized
// list of nodes that form a directed acyclic graph based on their inputs and outputs.
// This is the equivalent of the "network" or "graph" in many deep learning
// frameworks.
...
...
@@ -409,8 +448,9 @@ message GraphProto {
optional
string
name
=
2
;
// namespace Graph
// A list of named tensor values, used to specify constant inputs of the graph.
// Each TensorProto entry must have a distinct name (within the list) that
// MAY also appear in the input list.
// Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
// The name MUST be unique across both initializer and sparse_initializer,
// but the name MAY also appear in the input list.
repeated
TensorProto
initializer
=
5
;
// Initializers (see above) stored in sparse format.
...
...
@@ -433,13 +473,8 @@ message GraphProto {
// which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
repeated
TensorAnnotation
quantization_annotation
=
14
;
// DO NOT USE the following fields, they were deprecated from earlier versions.
// repeated string input = 3;
// repeated string output = 4;
// optional int64 ir_version = 6;
// optional int64 producer_version = 7;
// optional string producer_tag = 8;
// optional string domain = 9;
reserved
3
,
4
,
6
to
9
;
reserved
"ir_version"
,
"producer_version"
,
"producer_tag"
,
"domain"
;
}
// Tensors
...
...
@@ -474,6 +509,17 @@ message TensorProto {
// This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits.
BFLOAT16
=
16
;
// Non-IEEE floating-point format based on papers
// FP8 Formats for Deep Learning, https://arxiv.org/abs/2209.05433,
// 8-bit Numerical Formats For Deep Neural Networks, https://arxiv.org/pdf/2206.02915.pdf.
// Operators supported FP8 are Cast, CastLike, QuantizeLinear, DequantizeLinear.
// The computation usually happens inside a block quantize / dequantize
// fused by the runtime.
FLOAT8E4M3FN
=
17
;
// float 8, mostly used for coefficients, supports nan, not inf
FLOAT8E4M3FNUZ
=
18
;
// float 8, mostly used for coefficients, supports nan, not inf, no negative zero
FLOAT8E5M2
=
19
;
// follows IEEE 754, supports nan, inf, mostly used for gradients
FLOAT8E5M2FNUZ
=
20
;
// follows IEEE 754, supports nan, inf, mostly used for gradients, no negative zero
// Future extensions go here.
}
...
...
@@ -507,11 +553,11 @@ message TensorProto {
// When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
repeated
float
float_data
=
4
[
packed
=
true
];
// For int32, uint8, int8, uint16, int16, bool, and float16 values
// float16 values must be bit-wise converted to an uint16_t prior
// For int32, uint8, int8, uint16, int16, bool,
float8,
and float16 values
// float16
and float8
values must be bit-wise converted to an uint16_t prior
// to writing to the buffer.
// When this field is present, the data_type field MUST be
// INT32, INT16, INT8, UINT16, UINT8, BOOL,
or
FLOAT16
// INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16
, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
repeated
int32
int32_data
=
5
[
packed
=
true
];
// For strings.
...
...
@@ -589,6 +635,8 @@ message TensorProto {
message
SparseTensorProto
{
// The sequence of non-default values are encoded as a tensor of shape [NNZ].
// The default-value is zero for numeric tensors, and empty-string for string tensors.
// values must have a non-empty name present which serves as a name for SparseTensorProto
// when used in sparse_initializer list.
optional
TensorProto
values
=
1
;
// The indices of the non-default values, which may be stored in one of two formats.
...
...
@@ -619,7 +667,7 @@ message TensorShapeProto {
// Standard denotation can optionally be used to denote tensor
// dimensions with standard semantic descriptions to ensure
// that operations are applied to the correct axis of a tensor.
// Refer to https://github.com/onnx/onnx/blob/ma
ster
/docs/DimensionDenotation.md#denotation-definition
// Refer to https://github.com/onnx/onnx/blob/ma
in
/docs/DimensionDenotation.md#denotation-definition
// for pre-defined dimension denotations.
optional
string
denotation
=
3
;
};
...
...
@@ -656,6 +704,23 @@ message TypeProto {
optional
TypeProto
value_type
=
2
;
};
// wrapper for Tensor, Sequence, or Map
message
Optional
{
// The type and optional shape of the element wrapped.
// This field MUST be present for this version of the IR.
// Possible values correspond to OptionalProto.DataType enum
optional
TypeProto
elem_type
=
1
;
};
message
SparseTensor
{
// This field MUST NOT have the value of UNDEFINED
// This field MUST have a valid TensorProto.DataType value
// This field MUST be present for this version of the IR.
optional
int32
elem_type
=
1
;
optional
TensorShapeProto
shape
=
2
;
}
oneof
value
{
// The type of a tensor.
...
...
@@ -672,11 +737,18 @@ message TypeProto {
// The type of a map.
Map
map_type
=
5
;
// The type of an optional.
Optional
optional_type
=
9
;
// Type of the sparse tensor
SparseTensor
sparse_tensor_type
=
8
;
}
// An optional denotation can be used to denote the whole
// type with a standard semantic description as to what is
// stored inside. Refer to https://github.com/onnx/onnx/blob/ma
ster
/docs/TypeDenotation.md#type-denotation-definition
// An optional denotation can be used to denote the whole
// type with a standard semantic description as to what is
// stored inside. Refer to https://github.com/onnx/onnx/blob/ma
in
/docs/TypeDenotation.md#type-denotation-definition
// for pre-defined type denotations.
optional
string
denotation
=
6
;
}
...
...
@@ -696,7 +768,67 @@ message OperatorSetIdProto {
optional
int64
version
=
2
;
}
// Operator/function status.
enum
OperatorStatus
{
EXPERIMENTAL
=
0
;
STABLE
=
1
;
}
message
FunctionProto
{
// The name of the function, similar usage of op_type in OperatorProto.
// Combined with FunctionProto.domain, this forms the unique identity of
// the FunctionProto.
optional
string
name
=
1
;
// Deprecated since IR Version 8
// optional int64 since_version = 2;
reserved
2
;
reserved
"since_version"
;
// Deprecated since IR Version 8
// optional OperatorStatus status = 3;
reserved
3
;
reserved
"status"
;
// The inputs and outputs of the function.
repeated
string
input
=
4
;
repeated
string
output
=
5
;
// The attribute parameters of the function.
// It is for function parameters without default values.
repeated
string
attribute
=
6
;
// The attribute protos of the function.
// It is for function attributes with default values.
// A function attribute shall be represented either as
// a string attribute or an AttributeProto, not both.
repeated
AttributeProto
attribute_proto
=
11
;
// The nodes in the function.
repeated
NodeProto
node
=
7
;
// A human-readable documentation for this function. Markdown is allowed.
optional
string
doc_string
=
8
;
// The OperatorSets this function body (graph) relies on.
//
// All nodes in the function body (graph) will bind against the operator
// with the same-domain/same-op_type operator with the HIGHEST version
// in the referenced operator sets. This means at most one version can be relied
// for one domain.
//
// The operator sets imported by FunctionProto should be compatible with the ones
// imported by ModelProto. Example, if same operator set say 'A' is imported by FunctionProto
// and ModelProto then versions for the operator set may be different but,
// the operator schema returned for op_type, domain, version combination
// for both the versions should be same.
// For using protobuf-lite
option
optimize_for
=
LITE_RUNTIME
;
repeated
OperatorSetIdProto
opset_import
=
9
;
// The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
// the FunctionProto.
optional
string
domain
=
10
;
}
// For using protobuf-lite
option
optimize_for
=
LITE_RUNTIME
;
\ No newline at end of file
src/onnx/onnx_parser.cpp
View file @
a24ed87e
...
...
@@ -34,7 +34,9 @@
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/float8.hpp>
#include <migraphx/env.hpp>
#include <onnx.pb.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -484,6 +486,8 @@ literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
case
onnx
::
AttributeProto
::
TENSORS
:
case
onnx
::
AttributeProto
::
SPARSE_TENSOR
:
case
onnx
::
AttributeProto
::
SPARSE_TENSORS
:
case
onnx
::
AttributeProto
::
TYPE_PROTOS
:
case
onnx
::
AttributeProto
::
TYPE_PROTO
:
case
onnx
::
AttributeProto
::
GRAPHS
:
return
{};
}
MIGRAPHX_THROW
(
"PARSE_VALUE: Invalid attribute type "
+
std
::
to_string
(
attr
.
type
()));
...
...
@@ -545,6 +549,18 @@ literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
case
onnx
::
TensorProto
::
DOUBLE
:
return
create_literal
(
shape
::
double_type
,
dims
,
t
.
double_data
());
case
onnx
::
TensorProto
::
FLOAT
:
return
create_literal
(
shape
::
float_type
,
dims
,
t
.
float_data
());
case
onnx
::
TensorProto
::
FLOAT8E4M3FNUZ
:
{
std
::
vector
<
int32_t
>
data_int32
(
t
.
int32_data
().
begin
(),
t
.
int32_data
().
end
());
std
::
vector
<
migraphx
::
fp8
::
fp8e4m3fnuz
>
data_fp8
;
std
::
transform
(
data_int32
.
begin
(),
data_int32
.
end
(),
std
::
back_inserter
(
data_fp8
),
[](
float
raw_val
)
{
return
migraphx
::
fp8
::
fp8e4m3fnuz
{
raw_val
};
});
return
create_literal
(
shape
::
fp8e4m3fnuz_type
,
dims
,
data_fp8
);
}
case
onnx
::
TensorProto
::
FLOAT8E5M2FNUZ
:
case
onnx
::
TensorProto
::
FLOAT8E5M2
:
case
onnx
::
TensorProto
::
FLOAT8E4M3FN
:
case
onnx
::
TensorProto
::
UNDEFINED
:
case
onnx
::
TensorProto
::
STRING
:
case
onnx
::
TensorProto
::
COMPLEX64
:
...
...
@@ -609,6 +625,13 @@ shape::type_t get_type(int dtype)
case
11
:
return
shape
::
double_type
;
case
12
:
return
shape
::
uint32_type
;
case
13
:
return
shape
::
uint64_type
;
case
18
:
return
shape
::
fp8e4m3fnuz_type
;
case
14
:
case
15
:
case
16
:
case
17
:
case
19
:
case
20
:
default:
{
MIGRAPHX_THROW
(
"Prototensor data type "
+
std
::
to_string
(
dtype
)
+
" not supported"
);
}
...
...
src/onnx/parse_clip.cpp
View file @
a24ed87e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
src/onnx/parse_generic_op.cpp
View file @
a24ed87e
...
...
@@ -60,7 +60,7 @@ struct parse_generic_op : op_parser<parse_generic_op>
{
"Neg"
,
"neg"
},
{
"Reciprocal"
,
"recip"
},
{
"Relu"
,
"relu"
},
{
"Round"
,
"
round
"
},
{
"Round"
,
"
nearbyint
"
},
{
"Sigmoid"
,
"sigmoid"
},
{
"Sign"
,
"sign"
},
{
"Sin"
,
"sin"
},
...
...
src/onnx/parse_isinf.cpp
0 → 100644
View file @
a24ed87e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
struct
parse_isinf
:
op_parser
<
parse_isinf
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"IsInf"
,
"isinf"
}};
}
instruction_ref
parse
(
const
op_desc
&
/*opd*/
,
const
onnx_parser
&
parser
,
onnx_parser
::
node_info
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
bool
detect_negative
=
true
;
bool
detect_positive
=
true
;
if
(
contains
(
info
.
attributes
,
"detect_negative"
))
{
detect_negative
=
static_cast
<
bool
>
(
parser
.
parse_value
(
info
.
attributes
.
at
(
"detect_negative"
)).
at
<
int
>
());
}
if
(
contains
(
info
.
attributes
,
"detect_positive"
))
{
detect_positive
=
static_cast
<
bool
>
(
parser
.
parse_value
(
info
.
attributes
.
at
(
"detect_positive"
)).
at
<
int
>
());
}
auto
x_shape
=
args
[
0
]
->
get_shape
();
if
(
not
detect_negative
and
not
detect_positive
)
{
return
info
.
add_instruction
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
x_shape
.
lens
()}}),
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
shape
::
bool_type
},
{
false
}}));
}
auto
is_inf
=
info
.
add_instruction
(
make_op
(
"isinf"
),
args
[
0
]);
if
(
detect_negative
and
detect_positive
)
{
return
is_inf
;
}
auto
zero_l
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_shape
.
type
()},
{
0
}});
auto
mb_zero
=
info
.
add_instruction
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
x_shape
.
lens
()}}),
zero_l
);
auto
cond
=
info
.
add_broadcastable_binary_op
(
detect_negative
?
"less"
:
"greater"
,
args
[
0
],
mb_zero
);
if
(
cond
->
get_shape
().
type
()
!=
shape
::
bool_type
)
{
cond
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
shape
::
bool_type
}}),
cond
);
}
return
info
.
add_instruction
(
make_op
(
"logical_and"
),
is_inf
,
cond
);
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_loop.cpp
View file @
a24ed87e
...
...
@@ -58,6 +58,16 @@ struct parse_loop : op_parser<parse_loop>
}
}
// cap max_iter because loop uses static shapes with max_iter size and huge numbers
// here can cause overflow
if
(
max_iterations
>
parser
.
limit_max_iterations
)
{
std
::
cerr
<<
"WARNING: PARSE_LOOP max_iterations exceeds the maximum loop "
"iterations limit, it will be changed from "
<<
max_iterations
<<
" to "
<<
parser
.
limit_max_iterations
<<
".
\n
"
;
max_iterations
=
parser
.
limit_max_iterations
;
}
// condition input is empty
if
(
args
.
at
(
1
)
->
name
()
==
"undefined"
)
{
...
...
src/onnx/parse_lstm.cpp
View file @
a24ed87e
...
...
@@ -116,6 +116,37 @@ void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv
}
}
void
lstm_transpose_inputs
(
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>&
args
)
{
std
::
vector
<
int64_t
>
perm
{
1
,
0
,
2
};
args
[
0
]
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
args
[
0
]);
if
(
args
.
size
()
>=
6
and
not
args
[
5
]
->
is_undefined
())
{
args
[
5
]
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
args
[
5
]);
}
if
(
args
.
size
()
>=
7
and
not
args
[
6
]
->
is_undefined
())
{
args
[
6
]
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
args
[
6
]);
}
}
void
lstm_transpose_outputs
(
onnx_parser
::
node_info
&
info
,
instruction_ref
&
hidden_states
,
instruction_ref
&
last_output
,
instruction_ref
&
last_cell_output
)
{
std
::
vector
<
int64_t
>
perm_hs
{
2
,
0
,
1
,
3
};
hidden_states
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm_hs
}}),
hidden_states
);
std
::
vector
<
int64_t
>
perm_last
{
1
,
0
,
2
};
last_output
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm_last
}}),
last_output
);
last_cell_output
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm_last
}}),
last_cell_output
);
}
struct
parse_lstm
:
op_parser
<
parse_lstm
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"LSTM"
}};
}
...
...
@@ -202,6 +233,12 @@ struct parse_lstm : op_parser<parse_lstm>
input_forget
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"input_forget"
)).
at
<
int
>
();
}
int
layout
=
0
;
if
(
contains
(
info
.
attributes
,
"layout"
))
{
layout
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"layout"
)).
at
<
int
>
();
}
// append undefined opeator to make 6 arguments
if
(
args
.
size
()
<
8
)
{
...
...
@@ -209,6 +246,11 @@ struct parse_lstm : op_parser<parse_lstm>
args
.
insert
(
args
.
end
(),
8
-
args
.
size
(),
ins
);
}
if
(
layout
!=
0
)
{
lstm_transpose_inputs
(
info
,
args
);
}
// first output for concatenation of hidden states
auto
hidden_states
=
info
.
add_instruction
(
make_op
(
"lstm"
,
{{
"hidden_size"
,
hidden_size
},
...
...
@@ -224,6 +266,11 @@ struct parse_lstm : op_parser<parse_lstm>
auto
last_cell_output
=
info
.
add_instruction
(
make_op
(
"rnn_last_cell_output"
),
hidden_states
);
if
(
layout
!=
0
)
{
lstm_transpose_outputs
(
info
,
hidden_states
,
last_output
,
last_cell_output
);
}
return
{
hidden_states
,
last_output
,
last_cell_output
};
}
};
...
...
src/onnx/parse_multinomial.cpp
View file @
a24ed87e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -41,6 +41,9 @@ struct parse_multinomial : op_parser<parse_multinomial>
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
if
(
args
.
empty
())
MIGRAPHX_THROW
(
"PARSE_MULTINOMIAL: no arguments given"
);
int
dtype
=
6
;
if
(
contains
(
info
.
attributes
,
"dtype"
))
dtype
=
info
.
attributes
.
at
(
"dtype"
).
i
();
...
...
@@ -49,35 +52,90 @@ struct parse_multinomial : op_parser<parse_multinomial>
size_t
sample_size
=
1
;
if
(
contains
(
info
.
attributes
,
"sample_size"
))
sample_size
=
info
.
attributes
.
at
(
"sample_size"
).
i
();
else
MIGRAPHX_THROW
(
"PARSE_MULTINOMIAL: sample_size not given"
);
// Use logarithmic math to scale probabilities while avoiding division by very
// small numbers. Scaling by the maximum makes very tiny ranges more
// tractable; any constant factor gives equivalent distr. since the Multinomial op.
// normalizes at runtime.
// Subtract the per-batch maximum log-probability, making the per-batch max 0
auto
maxes
=
info
.
add_instruction
(
migraphx
::
make_op
(
"reduce_max"
,
{{
"axes"
,
{
1
}}}),
args
[
0
]);
auto
mb_maxes
=
info
.
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
args
[
0
]
->
get_shape
().
lens
()}}),
maxes
);
auto
cdf
=
info
.
add_instruction
(
migraphx
::
make_op
(
"sub"
),
args
[
0
],
mb_maxes
);
auto
cdf
=
info
.
add_common_op
(
"sub"
,
args
[
0
],
maxes
);
// Take the element-wise exponent to get probabilities in the range (0, 1]
cdf
=
info
.
add_instruction
(
migraphx
::
make_op
(
"exp"
),
cdf
);
// Compute the cumulative d
ensity
function
// Compute the cumulative d
istribution
function
cdf
=
info
.
add_instruction
(
migraphx
::
make_op
(
"prefix_scan_sum"
,
{{
"axis"
,
1
},
{
"exclusive"
,
false
}}),
cdf
);
// Pre-compute random distribution
std
::
mt19937
gen
(
std
::
chrono
::
high_resolution_clock
::
now
().
time_since_epoch
().
count
());
instruction_ref
seed_input
;
if
(
contains
(
info
.
attributes
,
"seed"
))
gen
.
seed
(
info
.
attributes
.
at
(
"seed"
).
f
());
{
float
seed
=
info
.
attributes
.
at
(
"seed"
).
f
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
1
}};
std
::
vector
<
float
>
data
=
{
seed
};
seed_input
=
info
.
add_literal
(
migraphx
::
literal
(
s
,
data
));
}
else
{
seed_input
=
info
.
add_instruction
(
migraphx
::
make_op
(
"random_seed"
));
}
instruction_ref
randoms
;
shape
s0
=
args
[
0
]
->
get_shape
();
if
(
s0
.
dynamic
())
{
// Dynamic batch_size will be taken from args[0]. The input argument to this should
// have a second dimension of sample_size.
std
::
vector
<
shape
::
dynamic_dimension
>
dyn_dim_set
;
dyn_dim_set
.
emplace_back
(
s0
.
dyn_dims
().
front
());
dyn_dim_set
.
emplace_back
(
shape
::
dynamic_dimension
{
sample_size
,
sample_size
});
// read the input dimensions
auto
dim_of
=
info
.
add_instruction
(
migraphx
::
make_op
(
"dimensions_of"
,
{{
"end"
,
2
}}),
args
[
0
]);
// The next two operations insert the value sample_size into the second array position
// make an argument of (1, 0)
shape
s
(
shape
::
int64_type
,
{
2
});
std
::
vector
<
int64_t
>
data1
{
1
,
0
};
auto
l1
=
info
.
add_literal
(
s
,
data1
);
auto
batch_arg
=
info
.
add_instruction
(
migraphx
::
make_op
(
"mul"
),
dim_of
,
l1
);
std
::
vector
<
int64_t
>
data2
(
2
,
0
);
// make an argument of (0, sample_size)
data2
[
1
]
=
sample_size
;
auto
l2
=
info
.
add_literal
(
s
,
data2
);
auto
alloc_shape
=
info
.
add_instruction
(
migraphx
::
make_op
(
"add"
),
batch_arg
,
l2
);
// alloc_shape should contain the input-based shape dimensions as its values at runtime,
// and its own shape is {2}
std
::
uniform_real_distribution
<>
dis
(
0.0
,
1.0
);
size_t
batch_size
=
args
[
0
]
->
get_shape
().
lens
().
front
();
migraphx
::
shape
dist_shape
{
migraphx
::
shape
::
float_type
,
{
batch
_size
,
sample_size
}};
// compile_shape is the shape used when compiling the Allocate op, and may be dynamic
migraphx
::
shape
compile_shape
=
migraphx
::
shape
(
s0
.
type
(),
{
s0
.
dyn_dims
().
front
(),
{
sample
_size
,
sample_size
}}
)
;
std
::
vector
<
float
>
random_dist
(
batch_size
*
sample_size
);
std
::
generate
(
random_dist
.
begin
(),
random_dist
.
end
(),
[
&
]()
{
return
dis
(
gen
);
});
auto
dist_lit
=
info
.
add_literal
(
migraphx
::
literal
{
dist_shape
,
random_dist
});
// Allocate on-device storage for the random values
auto
alloc
=
info
.
add_instruction
(
migraphx
::
make_op
(
"allocate"
,
{{
"shape"
,
to_value
(
compile_shape
)}}),
alloc_shape
);
randoms
=
info
.
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
alloc
);
}
else
{
// use literal. The array populated by random_uniform may have any shape, as long its
// number of elements is batch_size * sample_size .
size_t
batch_size
=
s0
.
lens
().
front
();
auto
rand_dummy
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
batch_size
,
sample_size
}},
std
::
vector
<
float
>
(
batch_size
*
sample_size
)});
randoms
=
info
.
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
rand_dummy
);
}
return
info
.
add_instruction
(
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
output_type
}}),
cdf
,
dist_lit
);
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
output_type
}}),
cdf
,
randoms
);
}
};
...
...
src/onnx/parse_pooling.cpp
View file @
a24ed87e
...
...
@@ -22,14 +22,8 @@
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -39,68 +33,14 @@ struct parse_pooling : op_parser<parse_pooling>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"AveragePool"
,
"average"
},
{
"GlobalAveragePool"
,
"average"
},
{
"GlobalMaxPool"
,
"max"
},
{
"MaxPool"
,
"max"
},
{
"LpPool"
,
"lpnorm"
},
{
"GlobalLpPool"
,
"lpnorm"
}};
}
value
handle_values
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
const
shape
&
in_shape
,
value
values
)
const
{
auto
kdims
=
in_shape
.
ndim
()
-
2
;
if
(
starts_with
(
opd
.
onnx_name
,
"Global"
))
{
// if spatial dimensions are dynamic use dyn_global flag
if
(
in_shape
.
dynamic
()
and
std
::
any_of
(
in_shape
.
dyn_dims
().
cbegin
()
+
2
,
in_shape
.
dyn_dims
().
cend
(),
[](
auto
dd
)
{
return
not
dd
.
is_fixed
();
}))
{
values
[
"dyn_global"
]
=
true
;
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
();
}
else
{
// works with static and fixed dynamic shape
auto
m_lens
=
in_shape
.
max_lens
();
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
(
m_lens
.
begin
()
+
2
,
m_lens
.
end
());
}
}
if
(
contains
(
info
.
attributes
,
"ceil_mode"
))
{
values
[
"ceil_mode"
]
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"ceil_mode"
).
i
());
}
if
(
contains
(
info
.
attributes
,
"strides"
))
{
values
[
"stride"
].
clear
();
copy
(
info
.
attributes
[
"strides"
].
ints
(),
std
::
back_inserter
(
values
[
"stride"
]));
check_attr_sizes
(
kdims
,
values
[
"stride"
].
size
(),
"PARSE_POOLING: inconsistent strides"
);
}
if
(
contains
(
info
.
attributes
,
"kernel_shape"
))
{
values
[
"lengths"
].
clear
();
copy
(
info
.
attributes
[
"kernel_shape"
].
ints
(),
std
::
back_inserter
(
values
[
"lengths"
]));
check_attr_sizes
(
kdims
,
values
[
"lengths"
].
size
(),
"PARSE_POOLING: inconsistent lengths"
);
}
// lp_order attribute
if
(
contains
(
info
.
attributes
,
"p"
))
{
values
[
"lp_order"
]
=
info
.
attributes
.
at
(
"p"
).
i
();
}
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode
(
info
,
"POOLING"
);
return
values
;
return
{
{
"AveragePool"
,
"average"
},
{
"GlobalAveragePool"
,
"average"
},
{
"GlobalMaxPool"
,
"max"
},
{
"MaxPool"
,
"max"
},
{
"LpPool"
,
"lpnorm"
},
{
"GlobalLpPool"
,
"lpnorm"
},
};
}
instruction_ref
parse
(
const
op_desc
&
opd
,
...
...
@@ -108,144 +48,8 @@ struct parse_pooling : op_parser<parse_pooling>
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
std
::
string
mode
=
opd
.
op_name
;
const
std
::
unordered_map
<
std
::
string
,
op
::
pooling_mode
>
mode_map
=
{
{
"max"
,
op
::
pooling_mode
::
max
},
{
"average"
,
op
::
pooling_mode
::
average
},
{
"lpnorm"
,
op
::
pooling_mode
::
lpnorm
}};
if
(
not
contains
(
mode_map
,
mode
))
{
MIGRAPHX_THROW
(
"PARSE_POOLING: onnx pooling mode must be [
\"
max
\"
,
\"
average
\"
,
\"
lpnorm
\"
]"
);
}
operation
op
=
make_op
(
"pooling"
,
{{
"mode"
,
mode_map
.
at
(
mode
)}});
value
values
=
op
.
to_value
();
auto
l0
=
args
[
0
];
auto
in_shape
=
l0
->
get_shape
();
assert
(
in_shape
.
ndim
()
>
2
);
auto
kdims
=
in_shape
.
ndim
()
-
2
;
values
=
handle_values
(
opd
,
info
,
in_shape
,
values
);
// count include padding, if count include pad is 1, we always use
// explicit pad
int
count_include_pad
=
0
;
if
(
contains
(
info
.
attributes
,
"count_include_pad"
))
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape"
);
}
count_include_pad
=
info
.
attributes
.
at
(
"count_include_pad"
).
i
();
}
std
::
vector
<
int64_t
>
paddings
;
float
pad_val
=
((
mode
==
"max"
)
?
std
::
numeric_limits
<
float
>::
lowest
()
:
0.0
f
);
if
(
contains
(
info
.
attributes
,
"pads"
))
{
values
[
"padding"
].
clear
();
copy
(
info
.
attributes
[
"pads"
].
ints
(),
std
::
back_inserter
(
paddings
));
check_attr_sizes
(
kdims
,
paddings
.
size
()
/
2
,
"PARSE_POOLING: inconsistent explicit paddings"
);
}
if
(
paddings
.
size
()
!=
2
*
kdims
)
{
paddings
.
resize
(
kdims
*
2
);
std
::
fill_n
(
paddings
.
begin
(),
2
*
kdims
,
0
);
}
if
(
values
[
"padding"
].
size
()
!=
kdims
)
{
values
[
"padding"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"padding"
].
begin
(),
kdims
,
0
);
}
if
(
values
[
"stride"
].
size
()
!=
kdims
)
{
values
[
"stride"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"stride"
].
begin
(),
kdims
,
1
);
}
// used to calculate the supposed output shape
std
::
vector
<
int64_t
>
orig_padding
=
paddings
;
// TODO: add parsing for dilations
if
(
contains
(
info
.
attributes
,
"auto_pad"
)
and
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
())
!=
"NOTSET"
)
{
auto
auto_pad
=
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
());
// don't use the given padding sizes, if any
// values["padding"].clear();
if
(
in_shape
.
dynamic
())
{
// set padding_mode to trigger auto padding at runtime
bool
is_same_upper
=
(
auto_pad
.
find
(
"SAME_UPPER"
)
!=
std
::
string
::
npos
);
values
[
"padding_mode"
]
=
is_same_upper
?
to_value
(
op
::
padding_mode_t
::
same_upper
)
:
to_value
(
op
::
padding_mode_t
::
same_lower
);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size
(
info
,
values
,
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
std
::
vector
<
size_t
>
(
in_shape
.
ndim
()
-
2
,
1
),
in_shape
.
lens
(),
paddings
);
values
[
"padding"
]
=
paddings
;
// default padding_mode indicates that padding sizes are not calculated dynamically
values
[
"padding_mode"
]
=
migraphx
::
op
::
padding_mode_t
::
default_
;
}
}
std
::
vector
<
int64_t
>
slice_start
;
std
::
vector
<
int64_t
>
slice_end
;
tune_padding_size
(
values
,
paddings
,
count_include_pad
,
slice_start
);
if
(
not
slice_start
.
empty
())
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape"
);
}
// calculate expected output shape
orig_padding
.
insert
(
orig_padding
.
begin
()
+
kdims
,
2
,
0
);
orig_padding
.
insert
(
orig_padding
.
begin
(),
2
,
0
);
op
::
pad
pad
{
orig_padding
,
0.0
f
};
shape
padded_shape
=
pad
.
compute_shape
({
l0
->
get_shape
()});
// make an op just to get its output shape
auto
out_lens
=
make_op
(
"pooling"
,
values
).
compute_shape
({
padded_shape
}).
lens
();
// compute slice_end information
slice_end
.
resize
(
slice_start
.
size
());
std
::
transform
(
out_lens
.
begin
()
+
2
,
out_lens
.
end
(),
slice_start
.
begin
(),
slice_end
.
begin
(),
[](
auto
i
,
auto
j
)
{
return
i
+
j
;
});
}
values
[
"padding"
]
=
std
::
vector
<
size_t
>
(
paddings
.
begin
(),
paddings
.
end
());
check_asym_padding
(
info
,
l0
,
paddings
,
values
,
count_include_pad
,
pad_val
);
op
.
from_value
(
values
);
auto
l1
=
info
.
add_instruction
(
op
,
l0
);
if
(
not
slice_start
.
empty
())
{
std
::
vector
<
int64_t
>
axes
(
kdims
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
2
);
l1
=
info
.
add_instruction
(
make_op
(
"slice"
,
{{
"axes"
,
axes
},
{
"starts"
,
slice_start
},
{
"ends"
,
slice_end
}}),
l1
);
}
return
l1
;
}
return
add_pooling_op
(
opd
,
std
::
move
(
info
),
args
[
0
]);
};
};
}
// namespace onnx
...
...
src/onnx/parse_qlinear
add
.cpp
→
src/onnx/parse_qlinear
binary
.cpp
View file @
a24ed87e
...
...
@@ -36,7 +36,7 @@ namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearAdd
in
*
* Reference: see QLinearAdd
, QLinearMul in
*
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
...
...
@@ -49,6 +49,17 @@ namespace onnx {
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
com.microsoft.QLinearMul
Performs element-wise binary multiplication on 8 bit data types (with Numpy-style broadcasting
support).
C = ((A - A_zero_point) * (B - B_zero_point)) * (A_scale * B_scale)/C_scale + C_zero_point
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
General definition of binary QLinear* ops:
Inputs (7 - 8)
A : T
First operand.
...
...
@@ -88,15 +99,18 @@ namespace onnx {
*/
struct
parse_qlinear
add
:
op_parser
<
parse_qlinear
add
>
struct
parse_qlinear
binary
:
op_parser
<
parse_qlinear
binary
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearAdd"
}};
}
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearAdd"
,
"add"
},
{
"QLinearMul"
,
"mul"
}};
}
// basic type checking for QLinear
Add
Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
// basic type checking for
binary
QLinear Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
,
const
std
::
string
&
op_name
)
const
{
if
(
args
.
size
()
<
7
)
MIGRAPHX_THROW
(
"QLINEARADD
: missing inputs"
);
MIGRAPHX_THROW
(
op_name
+
"
: missing inputs"
);
const
auto
&
in_a
=
args
[
0
];
const
auto
&
in_b
=
args
[
3
];
...
...
@@ -107,19 +121,19 @@ struct parse_qlinearadd : op_parser<parse_qlinearadd>
auto
type_a
=
sh_a
.
type
();
auto
type_b
=
sh_b
.
type
();
if
(
type_a
!=
migraphx
::
shape
::
int8_type
and
type_a
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARADD
: unsupported input type"
);
MIGRAPHX_THROW
(
op_name
+
"
: unsupported input type"
);
if
(
type_b
!=
migraphx
::
shape
::
int8_type
and
type_b
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARADD
: unsupported input type"
);
MIGRAPHX_THROW
(
op_name
+
"
: unsupported input type"
);
if
(
type_a
!=
type_b
)
MIGRAPHX_THROW
(
"QLINEARADD
: mismatched input types"
);
MIGRAPHX_THROW
(
op_name
+
"
: mismatched input types"
);
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
/*parser*/
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
args
);
check_inputs
(
args
,
opd
.
op_name
);
// A
const
auto
&
in_a
=
args
[
0
];
...
...
@@ -134,8 +148,8 @@ struct parse_qlinearadd : op_parser<parse_qlinearadd>
const
auto
&
in_zero_pt_b
=
args
[
5
];
auto
dquant_b
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_b
,
in_scale_b
,
in_zero_pt_b
,
info
);
// C =
A +
B
auto
out_c
=
info
.
add_common_op
(
"add"
,
dquant_a
,
dquant_b
);
// C =
op(A,
B
)
auto
out_c
=
info
.
add_common_op
(
opd
.
op_name
,
dquant_a
,
dquant_b
);
const
auto
&
in_scale_c
=
args
[
6
];
...
...
src/onnx/parse_qlinear
glavg
pool.cpp
→
src/onnx/parse_qlinearpool
ing
.cpp
View file @
a24ed87e
...
...
@@ -23,6 +23,7 @@
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
...
...
@@ -36,90 +37,56 @@ namespace onnx {
/*
*********************************************************************************
* Reference: see QLinear
GlobalAveragePool in
*
* Reference: see QLinear
AveragePool and QLinearGlobalAveragePool in
*
* github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
*/
QLinearGlobalAveragePool consumes an input tensor X and applies
Average pooling across the values in the same channel. This is
equivalent to AveragePool with kernel size equal to the spatial
dimension of input tensor. Input is of type uint8_t or int8_t.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
channels_last : int
Inputs
X : T
Input data tensor from the previous operator; According to channels_last, dimensions for image case
are (N x C x H x W), or (N x H x W x C) where N is the batch size, C is the number of channels, and
H and W are the height and the width of the data. For non image case, the dimensions are in the form
of (N x C x D1 x D2 ... Dn), or (N x D1 X D2 ... Dn x C) where N is the batch size.
x_scale : tensor(float)
Scale of quantized input 'X'. It must be a scalar.
x_zero_point : T
Zero point tensor for input 'X'. It must be a scalar.
y_scale : tensor(float)
Scale of quantized output 'Y'. It must be a scalar.
y_zero_point : T
Zero point tensor for output 'Y'. It must be a scalar.
Outputs
Y : T
Output data tensor from pooling across the input tensor. The output tensor has the same rank as the
input. with the N and C value keep it value, while the other dimensions are all 1. Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to signed/unsigned int8 tensors.
*/
struct
parse_qlinearglobalaveragepool
:
op_parser
<
parse_qlinearglobalaveragepool
>
struct
parse_qlinearpooling
:
op_parser
<
parse_qlinearpooling
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearGlobalAveragePool"
}};
}
// basic type checking for QLinearGlobalAveragePool Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
std
::
vector
<
op_desc
>
operators
()
const
{
if
(
args
.
size
()
<
5
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: missing inputs"
);
return
{{
"QLinearGlobalAveragePool"
,
"average"
},
{
"QLinearAveragePool"
,
"average"
}};
}
const
auto
&
in_x
=
args
[
0
];
const
auto
&
zero_pt_x
=
args
[
2
];
const
auto
&
zero_pt_y
=
args
[
4
];
void
check_inputs
(
const
op_desc
&
opd
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
const
auto
&
in_x
=
args
[
0
];
const
auto
onnx_name
=
opd
.
onnx_name
;
if
(
in_x
->
get_shape
().
ndim
()
<=
2
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL
: input dimensions too small"
);
MIGRAPHX_THROW
(
onnx_name
+
"
: input dimensions too small"
);
auto
type_x
=
in_x
->
get_shape
().
type
();
if
(
type_x
!=
migraphx
::
shape
::
int8_type
and
type_x
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL
: unsupported input type"
);
MIGRAPHX_THROW
(
onnx_name
+
"
: unsupported input type"
);
const
auto
&
zero_pt_x
=
args
[
2
];
if
(
type_x
!=
zero_pt_x
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: input zero point"
);
if
(
type_x
!=
zero_pt_y
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: output zero point"
);
MIGRAPHX_THROW
(
onnx_name
+
": mismatched type: input zero point"
);
if
(
args
.
size
()
==
5
)
{
const
auto
&
zero_pt_y
=
args
[
4
];
if
(
type_x
!=
zero_pt_y
->
get_shape
().
type
())
MIGRAPHX_THROW
(
onnx_name
+
": mismatched type: output zero point"
);
}
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
int
channels_last
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"channels_last"
)).
template
at
<
int
>();
if
(
channels_last
!=
0
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: channels_last (N x D1..Dn x C) is not supported"
);
if
(
contains
(
info
.
attributes
,
"channel_last"
))
{
int
channels_last
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"channels_last"
)).
template
at
<
int
>();
if
(
channels_last
!=
0
)
MIGRAPHX_THROW
(
opd
.
onnx_name
+
": channels_last (N x D1..Dn x C) is not supported"
);
}
check_inputs
(
args
);
check_inputs
(
opd
,
args
);
// Input: X
...
...
@@ -128,21 +95,18 @@ struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool
const
auto
&
zero_pt_x
=
args
[
2
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
scale_x
,
zero_pt_x
,
info
);
// Output Y = globalaveragepool(X)
auto
op
=
migraphx
::
op
::
pooling
{
migraphx
::
op
::
pooling_mode
::
average
};
auto
lens
=
in_x
->
get_shape
().
lens
();
std
::
vector
<
size_t
>
lengths
(
lens
.
begin
()
+
2
,
lens
.
end
());
op
.
lengths
=
lengths
;
op
.
padding
=
std
::
vector
<
size_t
>
(
lens
.
size
());
auto
out_y
=
info
.
add_instruction
(
op
,
dquant_x
);
// Output Y = pooling_op(X)
const
auto
&
scale_y
=
args
[
3
];
const
auto
&
zero_pt_y
=
args
[
4
];
auto
out_y
=
add_pooling_op
(
opd
,
info
,
dquant_x
);
auto
out_quant_y
=
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
scale_y
,
zero_pt_y
,
info
);
const
auto
&
in_scale_y
=
args
[
3
];
// zero_pt for Y is supplied as the last optional argument..
if
(
args
.
size
()
==
5
)
return
(
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
in_scale_y
,
args
[
4
],
info
));
return
out_quant_y
;
// if no zero_pt: just broadcast the scale..
auto
bcast_scale_y
=
bcast_scalar_instr
(
out_y
->
get_shape
(),
in_scale_y
,
info
);
return
(
info
.
add_instruction
(
migraphx
::
make_op
(
"quantizelinear"
),
out_y
,
bcast_scale_y
));
}
};
...
...
src/onnx/parse_qlinearunary.cpp
0 → 100644
View file @
a24ed87e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/common.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearSigmoid, QLinearLeakyRelu in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearSigmoid
QLinearSigmoid takes quantized input data (Tensor), and quantize parameter for output, and produces
one output data (Tensor) where the function f(x) = quantize(Sigmoid(dequantize(x))), is applied to
the data tensor elementwise. Where the function Sigmoid(x) = 1 / (1 + exp(-x))
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
*****************************************************************************************************
com.microsoft.QLinearLeakyRelu
QLinearLeakyRelu takes quantized input data (Tensor), an argument alpha, and quantize parameter for
output, and produces one output data (Tensor) where the function f(x) = quantize(alpha *
dequantize(x)) for dequantize(x) < 0, f(x) = quantize(dequantize(x)) for dequantize(x) >= 0, is
applied to the data tensor elementwise.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
alpha : float
Coefficient of leakage.
******************************************************************************************************
Generic input layout of QLinear unary operators:
Inputs (4 - 5)
X : T
Input tensor
X_scale : tensor(float)
Input X's scale. It's a scalar, which means a per-tensor/layer quantization.
X_zero_point (optional) : T
Input X's zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
Y_scale : tensor(float) Output Y's scale. It's a scalar, which means
a per-tensor/layer quantization.
Y_zero_point (optional) : T Output Y's zero point. Default value is
0 if it's not specified. It's a scalar, which means a per-tensor/layer quantization.
Outputs
Y : T
Output tensor
Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to 8 bit tensors.
*/
struct
parse_qlinearunary
:
op_parser
<
parse_qlinearunary
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearSigmoid"
,
"sigmoid"
},
{
"QLinearLeakyRelu"
,
"leaky_relu"
}};
}
void
check_inputs
(
const
op_desc
&
opd
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
if
(
args
.
size
()
<
4
)
MIGRAPHX_THROW
(
opd
.
op_name
+
": missing inputs"
);
const
auto
&
in_x
=
args
[
0
];
auto
sh_x
=
in_x
->
get_shape
();
auto
type_x
=
sh_x
.
type
();
if
(
type_x
!=
migraphx
::
shape
::
int8_type
and
type_x
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
opd
.
op_name
+
": unsupported input type"
);
}
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
opd
,
args
);
// X
const
auto
&
in_x
=
args
[
0
];
const
auto
&
in_scale_x
=
args
[
1
];
const
auto
&
in_zero_pt_x
=
args
[
2
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
in_scale_x
,
in_zero_pt_x
,
info
);
// Y = (op(dequantizelinear(x))
auto
op
=
parser
.
load
(
opd
.
op_name
,
info
);
auto
y
=
info
.
add_instruction
(
op
,
dquant_x
);
const
auto
&
in_scale_y
=
args
[
3
];
// zero_pt for Y is supplied as the last optional argument..
if
(
args
.
size
()
==
5
)
return
(
bcast_qdq_instr
(
"quantizelinear"
,
y
,
in_scale_y
,
args
[
4
],
info
));
// if no zero_pt: just broadcast the scale..
auto
bcast_scale_sigm
=
bcast_scalar_instr
(
y
->
get_shape
(),
in_scale_y
,
info
);
return
(
info
.
add_instruction
(
migraphx
::
make_op
(
"quantizelinear"
),
y
,
bcast_scale_sigm
));
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
Prev
1
2
3
4
5
6
7
8
9
…
20
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment