Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
9db8a28d
Commit
9db8a28d
authored
Oct 27, 2022
by
Paul
Browse files
Merge
parents
1f8aa24f
4b1c1c41
Changes
110
Hide whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
175 additions
and
228 deletions
+175
-228
test/verify/test_batchnorm_3d_per_actv.cpp
test/verify/test_batchnorm_3d_per_actv.cpp
+0
-68
test/verify/test_batchnorm_inference.cpp
test/verify/test_batchnorm_inference.cpp
+0
-53
test/verify/test_batchnorm_inference_2.cpp
test/verify/test_batchnorm_inference_2.cpp
+0
-53
test/verify/test_conv_bn.cpp
test/verify/test_conv_bn.cpp
+25
-4
test/verify/test_conv_bn_add.cpp
test/verify/test_conv_bn_add.cpp
+30
-13
test/verify/test_conv_bn_relu_pooling.cpp
test/verify/test_conv_bn_relu_pooling.cpp
+22
-2
test/verify/test_conv_bn_relu_pooling2.cpp
test/verify/test_conv_bn_relu_pooling2.cpp
+31
-13
test/verify/test_pad_large.cpp
test/verify/test_pad_large.cpp
+5
-3
test/verify/test_shape_alloc.cpp
test/verify/test_shape_alloc.cpp
+25
-4
tools/include/operation.hpp
tools/include/operation.hpp
+37
-15
No files found.
test/verify/test_batchnorm_3d_per_actv.cpp
deleted
100644 → 0
View file @
1f8aa24f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
struct
test_batchnorm_3d_per_actv
:
verify_program
<
test_batchnorm_3d_per_actv
>
{
const
size_t
d1
=
2
;
const
size_t
d2
=
4
;
const
size_t
d3
=
5
;
const
size_t
channels
=
2
;
const
size_t
batches
=
3
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
d1
,
d2
,
d3
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
,
d1
,
d2
,
d3
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
,
{{
"epsilon"
,
1.0e-6
},
{
"momentum"
,
0.8
f
},
{
"bn_mode"
,
migraphx
::
to_value
(
migraphx
::
op
::
batch_norm_inference
::
per_activation
)}}),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_inference.cpp
deleted
100644 → 0
View file @
1f8aa24f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_batchnorm_inference
:
verify_program
<
test_batchnorm_inference
>
{
const
size_t
width
=
3
;
const
size_t
height
=
3
;
const
size_t
channels
=
3
;
const
size_t
batches
=
4
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
height
,
width
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_inference_2.cpp
deleted
100644 → 0
View file @
1f8aa24f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_batchnorm_inference_2
:
verify_program
<
test_batchnorm_inference_2
>
{
const
size_t
width
=
14
;
const
size_t
height
=
14
;
const
size_t
channels
=
256
;
const
size_t
batches
=
1
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
height
,
width
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_conv_bn.cpp
View file @
9db8a28d
...
...
@@ -26,6 +26,8 @@
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn
:
verify_program
<
test_conv_bn
>
{
...
...
@@ -37,19 +39,38 @@ struct test_conv_bn : verify_program<test_conv_bn>
migraphx
::
shape
xs
{
migraphx
::
shape
::
float_type
,
{
1
,
3
,
224
,
224
}};
migraphx
::
shape
ws
{
migraphx
::
shape
::
float_type
,
{
64
,
3
,
7
,
7
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
64
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
xs
);
auto
w
=
mm
->
add_parameter
(
"w"
,
ws
);
auto
x
=
mm
->
add_parameter
(
"x"
,
xs
);
auto
w
=
mm
->
add_parameter
(
"w"
,
ws
);
// non-symmetrical tiling
auto
conv
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
,
{{
"padding"
,
{
3
,
3
}},
{
"stride"
,
{
2
,
2
}},
{
"dilation"
,
{
1
,
1
}}}),
x
,
w
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
conv
,
scale
,
bias
,
mean
,
variance
);
auto
rt
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
conv
,
usq_mean
});
auto
var_eps
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
return
p
;
}
};
test/verify/test_conv_bn_add.cpp
View file @
9db8a28d
...
...
@@ -26,21 +26,38 @@
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn_add
:
verify_program
<
test_conv_bn_add
>
{
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
module
&
m
,
migraphx
::
instruction_ref
x
,
std
::
size_t
channels
,
std
::
size_t
seed
=
1
)
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
module
&
m
,
migraphx
::
instruction_ref
x
)
{
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
scale
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
seed
)));
auto
bias
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
seed
)));
auto
mean
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
seed
)));
auto
variance
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
seed
)));
return
m
.
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
auto
bn_lens
=
x
->
get_shape
().
lens
();
auto
c_len
=
bn_lens
.
at
(
1
);
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
c_len
}};
auto
scale
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
c_len
)));
auto
bias
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
c_len
)));
auto
mean
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
c_len
)));
auto
variance
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
c_len
)));
auto
rt
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
m
,
migraphx
::
make_op
(
"sub"
),
{
x
,
usq_mean
});
auto
var_eps
=
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
m
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
return
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
}
migraphx
::
program
create_program
()
const
...
...
@@ -57,10 +74,10 @@ struct test_conv_bn_add : verify_program<test_conv_bn_add>
{
migraphx
::
shape
::
float_type
,
{
ochannels
,
ichannels
,
1
,
1
}},
2
));
auto
relu1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
x
);
auto
conv1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
),
relu1
,
w
);
auto
bn1
=
add_bn
(
*
mm
,
conv1
,
ochannels
,
1
);
auto
bn1
=
add_bn
(
*
mm
,
conv1
);
auto
relu2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
y
);
auto
conv2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
),
relu2
,
v
);
auto
bn2
=
add_bn
(
*
mm
,
conv2
,
ochannels
,
1
);
auto
bn2
=
add_bn
(
*
mm
,
conv2
);
auto
sum
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
bn1
,
bn2
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
sum
);
return
p
;
...
...
test/verify/test_conv_bn_relu_pooling.cpp
View file @
9db8a28d
...
...
@@ -27,6 +27,8 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn_relu_pooling
:
verify_program
<
test_conv_bn_relu_pooling
>
{
...
...
@@ -49,8 +51,26 @@ struct test_conv_bn_relu_pooling : verify_program<test_conv_bn_relu_pooling>
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
auto
bn
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
conv
,
scale
,
bias
,
mean
,
variance
);
auto
rt
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
conv
,
usq_mean
});
auto
var_eps
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
auto
bn
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
auto
relu
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
bn
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
{{
"mode"
,
migraphx
::
op
::
pooling_mode
::
average
},
...
...
test/verify/test_conv_bn_relu_pooling2.cpp
View file @
9db8a28d
...
...
@@ -27,22 +27,40 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn_relu_pooling2
:
verify_program
<
test_conv_bn_relu_pooling2
>
{
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
program
&
p
,
migraphx
::
instruction_ref
x
,
std
::
size_t
channels
)
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
module
&
m
,
migraphx
::
instruction_ref
x
)
{
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
channels
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
channels
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
channels
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
channels
)));
return
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
auto
bn_lens
=
x
->
get_shape
().
lens
();
auto
c_len
=
bn_lens
.
at
(
1
);
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
c_len
}};
auto
scale
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
c_len
)));
auto
bias
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
c_len
)));
auto
mean
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
c_len
)));
auto
variance
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
c_len
)));
auto
rt
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
m
,
migraphx
::
make_op
(
"sub"
),
{
x
,
usq_mean
});
auto
var_eps
=
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
m
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
return
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
}
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
...
...
@@ -59,7 +77,7 @@ struct test_conv_bn_relu_pooling2 : verify_program<test_conv_bn_relu_pooling2>
{{
"padding"
,
{
0
,
0
}},
{
"stride"
,
{
1
,
1
}},
{
"dilation"
,
{
1
,
1
}}}),
x1
,
w1
);
auto
bn1
=
add_bn
(
p
,
conv1
,
2048
);
auto
bn1
=
add_bn
(
*
mm
,
conv1
);
auto
x2
=
mm
->
add_parameter
(
"x2"
,
xs2
);
auto
w2
=
mm
->
add_parameter
(
"w2"
,
ws2
);
auto
conv2
=
mm
->
add_instruction
(
...
...
@@ -67,7 +85,7 @@ struct test_conv_bn_relu_pooling2 : verify_program<test_conv_bn_relu_pooling2>
{{
"padding"
,
{
0
,
0
}},
{
"stride"
,
{
2
,
2
}},
{
"dilation"
,
{
1
,
1
}}}),
x2
,
w2
);
auto
bn2
=
add_bn
(
p
,
conv2
,
2048
);
auto
bn2
=
add_bn
(
*
mm
,
conv2
);
auto
add
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
bn1
,
bn2
);
auto
relu
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
add
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
...
...
test/verify/test_
elu
.cpp
→
test/verify/test_
pad_large
.cpp
View file @
9db8a28d
...
...
@@ -27,14 +27,16 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_
elu
:
verify_program
<
test_
elu
>
struct
test_
pad_large
:
verify_program
<
test_
pad_large
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
x
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
4
,
3
,
3
,
3
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"leaky_relu"
,
{{
"alpha"
,
1.0
}}),
x
);
migraphx
::
shape
s0
{
migraphx
::
shape
::
float_type
,
{
586
,
3
,
224
,
224
}};
std
::
vector
<
int64_t
>
pads0
=
{
0
,
0
,
1
,
1
,
0
,
0
,
1
,
1
};
auto
l0
=
mm
->
add_parameter
(
"x"
,
s0
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"pad"
,
{{
"pads"
,
pads0
}}),
l0
);
return
p
;
}
};
test/verify/test_
leaky_relu
.cpp
→
test/verify/test_
shape_alloc
.cpp
View file @
9db8a28d
...
...
@@ -21,20 +21,41 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/reduce_mean.hpp>
struct
test_leaky_relu
:
verify_program
<
test_leaky_relu
>
/**
* @brief test_shape_alloc sets up a situation that could lead to an exception "convolution: Shapes
* are not in standard layout" if a "replace_allocate" compiler pass is not followed with
* "adjust_allocation". The last transpose instruction generates a shape with a stride of 1 in
* the 2nd index, a non-standard layout that should be reallocated by adjust_allocation.
*/
struct
test_shape_alloc
:
verify_program
<
test_shape_alloc
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
x
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
4
,
3
,
3
,
3
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"leaky_relu"
,
{{
"alpha"
,
0.01
}}),
x
);
auto
weights
=
mm
->
add_literal
(
migraphx
::
generate_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
11
,
8
,
1
,
1
},
{
8
,
1
,
1
,
1
}}));
auto
x
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
,
8
,
7
,
7
}});
auto
transpose1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"transpose"
,
{{
"permutation"
,
{
0
,
2
,
3
,
1
}}}),
x
);
// -> float_type, {1, 7, 7, 8}, {392, 7, 1, 49}
auto
reduce_ins
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"reduce_mean"
,
{{
"axes"
,
{
1
,
2
}}}),
transpose1
);
// -> float_type, {1, 1, 1, 8}, {8, 8, 8, 1}
auto
transpose2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"transpose"
,
{{
"permutation"
,
{
0
,
3
,
1
,
2
}}}),
reduce_ins
);
// -> float_type, {1, 8, 1, 1}, {8, 1, 8, 8}
auto
conv_op
=
migraphx
::
make_op
(
"convolution"
);
mm
->
add_instruction
(
conv_op
,
transpose2
,
weights
);
return
p
;
}
};
tools/include/operation.hpp
View file @
9db8a28d
...
...
@@ -32,6 +32,8 @@
#include <utility>
#include <unordered_map>
#include <migraphx/reflect.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/argument.hpp>
...
...
@@ -199,9 +201,12 @@ auto compute_op(rank<1>,
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
input
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
output_shape
,
input
))
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
)),
input
))
{
return
x
.
compute
(
auto_any_cast
(
ctx
),
output_shape
,
input
);
return
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
)),
input
);
}
template
<
class
T
>
...
...
@@ -220,9 +225,9 @@ compute_op(const T& x, context& ctx, const shape& output_shape, const std::vecto
template
<
class
T
>
auto
compute_op
(
rank
<
1
>
,
const
T
&
x
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
input
)
->
decltype
(
x
.
compute
(
output_shape
,
input
))
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
))
,
input
))
{
return
x
.
compute
(
output_shape
,
input
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
))
,
input
);
}
template
<
class
T
>
...
...
@@ -244,9 +249,11 @@ auto compute_op(rank<1>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
output
,
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
output
,
inputs
,
module_args
,
f
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
))
,
inputs
,
module_args
,
f
);
}
template
<
class
T
,
class
F
>
...
...
@@ -278,9 +285,17 @@ auto compute_op(rank<4>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
,
module_args
,
f
);
return
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
);
}
template
<
class
T
,
class
F
>
...
...
@@ -290,9 +305,11 @@ auto compute_op(rank<3>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
output
,
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
output
,
inputs
,
module_args
,
f
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
))
,
inputs
,
module_args
,
f
);
}
template
<
class
T
,
class
F
>
...
...
@@ -302,9 +319,10 @@ auto compute_op(rank<2>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
,
F
)
->
decltype
(
x
.
compute
(
output
,
inputs
))
F
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
))
{
return
x
.
compute
(
output
,
inputs
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
))
,
inputs
);
}
template
<
class
T
,
class
F
>
...
...
@@ -314,9 +332,12 @@ auto compute_op(rank<1>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
,
F
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
))
F
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
))
{
return
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
);
return
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
);
}
template
<
class
T
,
class
F
>
...
...
@@ -348,7 +369,8 @@ auto is_context_free_op(rank<1>,
const
T
&
x
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
input
)
->
decltype
(
x
.
compute
(
output_shape
,
input
),
std
::
true_type
{});
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
)),
input
),
std
::
true_type
{});
template
<
class
T
>
auto
is_context_free_op
(
rank
<
0
>
,
const
T
&
,
const
shape
&
,
const
std
::
vector
<
argument
>&
)
...
...
Prev
1
2
3
4
5
6
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment