"vscode:/vscode.git/clone" did not exist on "5ba0c5f9020bdb980b998f934682f1805f9437f0"
Commit 9bff4331 authored by Paul's avatar Paul
Browse files

Merge

parents 214b313f 94a7f6ee
......@@ -76,3 +76,29 @@ struct test_reduce_mean_2 : verify_program<test_reduce_mean_2>
return p;
};
};
struct test_large_reduce_mean1 : verify_program<test_large_reduce_mean1>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 256 * 256 * 16}};
auto x = mm->add_parameter("x", s);
mm->add_instruction(migraphx::op::reduce_mean{{1}}, x);
return p;
};
};
struct test_large_reduce_mean2 : verify_program<test_large_reduce_mean2>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {1, 32, 262144}};
auto x = mm->add_parameter("x", s);
mm->add_instruction(migraphx::op::reduce_mean{{2}}, x);
return p;
};
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_select_module_add : verify_program<test_select_module_add>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape lit_s{migraphx::shape{migraphx::shape::float_type, {1}}};
auto literal_ins = mm->add_literal(migraphx::literal{lit_s, {6}});
// create batch submodules
auto create_submodule = [&](std::size_t batch_size, const std::string& module_name) {
auto* submod = p.create_module(module_name);
migraphx::shape sm_shape{migraphx::shape::float_type, {batch_size, 4}};
auto sm_input = submod->add_parameter("data", sm_shape);
auto broadcast_lit =
submod->add_instruction(migraphx::make_op("multibroadcast"), literal_ins, sm_input);
auto add_ins0 =
submod->add_instruction(migraphx::make_op("add"), sm_input, broadcast_lit);
auto add_ins1 =
submod->add_instruction(migraphx::make_op("add"), add_ins0, broadcast_lit);
submod->add_return({add_ins0, add_ins1});
return submod;
};
auto* batch1 = create_submodule(1, "batch_1");
auto* batch2 = create_submodule(2, "batch_2");
auto* batch3 = create_submodule(3, "batch_3");
auto* batch4 = create_submodule(4, "batch_4");
migraphx::shape s{migraphx::shape::float_type, {{1, 4}, {4, 4}}};
auto input = mm->add_parameter("data", s);
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {4, 4}}});
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {4, 4}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
auto sm_ins = mm->add_instruction(
migraphx::make_op("select_module",
{{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
{input},
{batch1, batch2, batch3, batch4});
auto ret0 =
mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), sm_ins);
auto ret1 =
mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), sm_ins);
mm->add_return({ret0, ret1});
return p;
}
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_select_module_conv : verify_program<test_select_module_conv>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
// create batch submodules
auto create_submodule = [&](std::size_t batch_size, const std::string& module_name) {
auto* submod = p.create_module(module_name);
migraphx::shape sm_shape{migraphx::shape::float_type, {batch_size, 3, 4, 4}};
auto sm_input = submod->add_parameter("data", sm_shape);
migraphx::shape weights_shape{migraphx::shape::float_type, {2, 3, 3, 3}};
std::vector<float> weights_data(2 * 3 * 3 * 3, 2.0);
auto weights = submod->add_literal(migraphx::literal{weights_shape, weights_data});
auto conv_ins = submod->add_instruction(
migraphx::make_op("convolution", {{"padding", {1, 1}}}), sm_input, weights);
submod->add_return({conv_ins});
return submod;
};
auto* batch1 = create_submodule(1, "batch_1");
auto* batch2 = create_submodule(2, "batch_2");
auto* batch3 = create_submodule(3, "batch_3");
auto* batch4 = create_submodule(4, "batch_4");
migraphx::shape s{migraphx::shape::float_type, {{1, 4}, {3, 3}, {4, 4}, {4, 4}}};
auto input = mm->add_parameter("data", s);
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(
migraphx::shape{migraphx::shape::float_type, {{1, 4}, {2, 2}, {4, 4}, {4, 4}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
auto sm_ins = mm->add_instruction(
migraphx::make_op("select_module",
{{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
{input},
{batch1, batch2, batch3, batch4});
auto ret = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), sm_ins);
mm->add_return({ret});
return p;
}
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_select_module_reduce : verify_program<test_select_module_reduce>
{
migraphx::program create_program() const
{
migraphx::program p;
// create batch submodules
auto create_submodule = [&](std::size_t batch_size, const std::string& module_name) {
auto* submod = p.create_module(module_name);
migraphx::shape sm_shape{migraphx::shape::float_type, {batch_size, 2, 2}};
auto sm_input = submod->add_parameter("data", sm_shape);
auto reduce_ins =
submod->add_instruction(migraphx::make_op("reduce_sum", {{"axes", {1}}}), sm_input);
auto squeeze_ins =
submod->add_instruction(migraphx::make_op("squeeze", {{"axes", {1}}}), reduce_ins);
submod->add_return({squeeze_ins});
return submod;
};
auto* batch1 = create_submodule(1, "batch_1");
auto* batch2 = create_submodule(2, "batch_2");
auto* batch3 = create_submodule(3, "batch_3");
auto* batch4 = create_submodule(4, "batch_4");
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {{1, 4}, {2, 2}, {2, 2}}};
auto input = mm->add_parameter("data", s);
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {2, 2}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
auto sm_ins = mm->add_instruction(
migraphx::make_op("select_module",
{{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
{input},
{batch1, batch2, batch3, batch4});
auto ret = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), sm_ins);
mm->add_return({ret});
return p;
}
};
......@@ -21,20 +21,21 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/memory_coloring.hpp>
#include "memory_coloring_impl.hpp"
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
void memory_coloring::apply(module& m) const
struct test_sin_half : verify_program<test_sin_half>
{
if(not enabled(MIGRAPHX_DISABLE_MEMORY_COLORING{}))
migraphx::program create_program() const
{
memory_coloring_impl opt(&m, allocation_op, verify);
opt.run();
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::half_type, {10}};
auto x = mm->add_parameter("x", s);
mm->add_instruction(migraphx::make_op("sin"), x);
return p;
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_trans_slice : verify_program<test_trans_slice>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", {migraphx::shape::float_type, {2, 384, 36, 64}});
auto transpose =
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), x);
auto slice1 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {0}}, {"ends", {12}}}),
transpose);
auto slice2 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {12}}, {"ends", {24}}}),
transpose);
auto transpose2 = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), slice2);
auto slice3 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {24}}, {"ends", {36}}}),
transpose);
mm->add_return({slice1, transpose2, slice3});
return p;
}
};
......@@ -25,6 +25,7 @@ import argparse
import numpy as np
import migraphx
import onnxruntime as ort
import sys
def parse_args():
......@@ -33,15 +34,13 @@ def parse_args():
'MIGraphX accuracy checker. Use to verify onnx files to ensure MIGraphX\'s output \
is within tolerance of onnx runtime\'s expected output.'
)
req_args = parser.add_argument_group(title='required arguments')
req_args.add_argument('--onnx',
type=str,
required=True,
help='path to onnx file')
req_args.add_argument('--provider',
type=str,
default='CPUExecutionProvider',
help='execution provider for onnx runtime \
file_args = parser.add_argument_group(title='file type arguments')
file_args.add_argument('--onnx', type=str, help='path to onnx file')
file_args.add_argument('--tf', type=str, help='path to tf pb file')
parser.add_argument('--provider',
type=str,
default='CPUExecutionProvider',
help='execution provider for onnx runtime \
(default = CPUExecutionProvider)')
parser.add_argument('--batch',
type=int,
......@@ -50,6 +49,9 @@ def parse_args():
parser.add_argument('--fill1',
action='store_true',
help='fill all arguments with a value of 1')
parser.add_argument('--fill0',
action='store_true',
help='fill all arguments with a value of 0')
parser.add_argument('--verbose',
action='store_true',
help='show verbose information (for debugging)')
......@@ -57,6 +59,12 @@ def parse_args():
type=float,
default=1e-3,
help='accuracy tolerance (default = 1e-3)')
parser.add_argument('--input-dim',
type=str,
action='append',
help='specify input parameter dimension \
with the following format --input_dim input_name:dim0,dim1,dim2...'
)
args = parser.parse_args()
return args
......@@ -111,42 +119,127 @@ def get_np_datatype(in_type):
def main():
args = parse_args()
use_onnx = True
if args.onnx == None:
use_onnx = False
if not use_onnx and args.tf == None:
print('Error: please specify either an onnx or tf pb file')
sys.exit(-1)
model_name = args.onnx
batch = args.batch
model = migraphx.parse_onnx(model_name, default_dim_value=batch)
custom_inputs = args.input_dim
input_dims = {}
if custom_inputs != None:
for input in custom_inputs:
input_dim = ''.join(input.split(':')[:-1])
dims = [int(dim) for dim in input.split(':')[-1].split(',')]
input_dims[input_dim] = dims
if use_onnx:
if not input_dims:
model = migraphx.parse_onnx(model_name, default_dim_value=batch)
else:
model = migraphx.parse_onnx(model_name,
default_dim_value=batch,
map_input_dims=input_dims)
else:
model_name = args.tf
if not input_dims:
model = migraphx.parse_tf(model_name, batch_size=batch)
else:
model = migraphx.parse_tf(model_name,
batch_size=batch,
map_input_dims=input_dims)
if args.verbose:
print(model)
model.compile(migraphx.get_target('gpu'), offload_copy=False)
model.compile(migraphx.get_target('gpu'))
params = {}
test_inputs = {}
for name, shape in model.get_parameter_shapes().items():
if args.verbose:
print('Parameter {} -> {}'.format(name, shape))
print(f'Parameter {name} -> {shape}')
in_shape = shape.lens()
in_type = shape.type_string()
if not args.fill1:
if not args.fill1 and not args.fill0:
test_input = np.random.rand(*(in_shape)).astype(
get_np_datatype(in_type))
else:
elif not args.fill0:
test_input = np.ones(in_shape).astype(get_np_datatype(in_type))
else:
test_input = np.zeros(in_shape).astype(get_np_datatype(in_type))
test_inputs[name] = test_input
params[name] = migraphx.to_gpu(migraphx.argument(test_input))
params[name] = migraphx.argument(test_input)
pred_migx = np.array(model.run(params)[-1])
pred_migx = np.array(migraphx.from_gpu(model.run(params)[-1]))
if use_onnx:
sess = ort.InferenceSession(model_name, providers=[args.provider])
sess = ort.InferenceSession(model_name, providers=[args.provider])
ort_params = {}
for input in sess.get_inputs():
ort_params[input.name] = test_inputs[input.name]
try:
pred_fw = sess.run(None, ort_params)[-1]
except Exception as e:
if any(input_dims):
print(
'Error: custom input dim may not be compatible with onnx runtime'
)
raise e
else:
import tensorflow as tf
def load_tf_graph(model_name):
with tf.io.gfile.GFile(model_name, 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
with tf.compat.v1.Graph().as_default() as graph:
tf.graph_util.import_graph_def(graph_def)
return graph
graph = load_tf_graph(model_name)
is_nhwc = False
graph_ops = []
for op in graph.get_operations():
graph_ops.append(op.name)
if 'Conv' in op.node_def.op:
if 'NHWC' in op.get_attr('data_format').decode('utf-8'):
is_nhwc = True
graph_ops_set = set(graph_ops)
tf_dict = {}
for name in test_inputs.keys():
# graph.get_operations() adds 'import/' to the op name
tf_name = f'import/{name}'
if tf_name not in graph_ops_set:
continue
x = graph.get_tensor_by_name(f'{tf_name}:0')
tf_input = test_inputs[name]
# transpose input for NHWC model
if tf_input.ndim == 4 and is_nhwc:
tf_dict[x] = np.transpose(tf_input, (0, 2, 3, 1))
else:
tf_dict[x] = tf_input
ort_params = {}
for input in sess.get_inputs():
ort_params[input.name] = test_inputs[input.name]
# assume last node in graph is output
# TODO: let user specify op name for output
y = graph.get_tensor_by_name(f'{graph_ops[-1]}:0')
pred_ort = sess.run(None, ort_params)[-1]
with tf.compat.v1.Session(graph=graph) as sess:
y_out = sess.run(y, feed_dict=tf_dict)
pred_fw = y_out
is_correct = check_correctness(pred_ort, pred_migx, args.tolerance,
is_correct = check_correctness(pred_fw, pred_migx, args.tolerance,
args.tolerance, args.verbose)
verbose_string = ' Rerun with --verbose for detailed information.' \
if not args.verbose else ''
......
......@@ -32,7 +32,6 @@
#include <migraphx/register_target.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/quantization.hpp>
#include <migraphx/ref/target.hpp>
#include <migraphx/load_save.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
......@@ -134,6 +133,11 @@ void set_offload_copy(compile_options& options, bool value) { options.offload_co
void set_fast_math(compile_options& options, bool value) { options.fast_math = value; }
void set_exhaustive_tune_flag(compile_options& options, bool value)
{
options.exhaustive_tune = value;
}
void set_file_format(file_options& options, const char* format) { options.format = format; }
void set_default_dim_value(onnx_options& options, size_t value)
......
......@@ -22,9 +22,12 @@
# THE SOFTWARE.
#####################################################################################
cd /onnxruntime
pip3 install -r requirements.txt
pip3 install -r requirements-dev.txt
# Add newer cmake to the path
export PATH="/opt/cmake/bin:$PATH"
export CXXFLAGS="-D__HIP_PLATFORM_HCC__=1 -w"
./build.sh --config Release --update --build --parallel --cmake_extra_defines ONNXRUNTIME_VERSION=$(cat ./VERSION_NUMBER) --test --use_migraphx
# pip3 install /code/onnxruntime/build/Linux/Release/dist/*.whl
export CXXFLAGS="-D__HIP_PLATFORM_AMD__=1 -w"
./build.sh --config Release --cmake_extra_defines CMAKE_HIP_COMPILER=/opt/rocm/llvm/bin/clang++ --update --build --parallel --cmake_extra_defines ONNXRUNTIME_VERSION=$(cat ./VERSION_NUMBER) --skip_tests --rocm_home /opt/rocm --use_migraphx --migraphx_home /opt/rocm --rocm_version=`cat /opt/rocm/.info/version-dev`
cd build/Linux/Release
#Add test launcher for onnxrt tests
../../../tools/ci_build/github/pai/migraphx_test_launcher.sh
......@@ -26,10 +26,12 @@
if [ -z "$ONNX_HOME" ]
then
ONNX_HOME=$HOME
# The onnx library uses ONNX_HOME, by default if it doesn't exist
# the path of " ~/.onnx " is used
ONNX_HOME=$HOME/.onnx
fi
model_dir=$ONNX_HOME/.onnx/models
model_dir=$ONNX_HOME/models
tmp_dir=$ONNX_HOME/tmp/
mkdir -p $model_dir
mkdir -p $tmp_dir
......@@ -42,7 +44,6 @@ models="bvlc_alexnet \
for name in $models
do
curl https://s3.amazonaws.com/download.onnx/models/opset_9/$name.tar.gz --output $tmp_dir/$name.tar.gz
curl https://download.onnxruntime.ai/onnx/models/$name.tar.gz --output $tmp_dir/$name.tar.gz
tar -xzvf $tmp_dir/$name.tar.gz --directory $model_dir && rm $tmp_dir/$name.tar.gz
done
......@@ -66,6 +66,7 @@ any_ptr get_queue_context(T&)
{
return {};
}
template <class T>
void wait_for_context(T&, any_ptr)
{
......@@ -87,6 +88,7 @@ void finish_on_context(T&, any_ptr){}
{
v = ctx.to_value();
}
inline void migraphx_from_value(const value& v, context& ctx) { ctx.from_value(v); }
#endif
......
......@@ -140,6 +140,8 @@ template <class T>
auto compute_shape_op(rank<2>, const T& x, const std::vector<shape>& inputs)
-> decltype(x.normalize_compute_shape(inputs))
{
if(inputs.empty())
MIGRAPHX_THROW("At least one input is required for " + x.name());
dependent_type<operation, T> y = x;
normalize_attributes(y, inputs[0].max_lens());
return any_cast<T>(y).normalize_compute_shape(inputs);
......
......@@ -57,7 +57,7 @@ echo "Dependencies are installed at $PREFIX"
rbuild prepare -d $PREFIX -s develop
# install onnx package for unit tests
pip3 install onnx==1.8.1 numpy==1.21.6 typing==3.7.4 pytest==6.0.1 packaging==16.8
pip3 install onnx==1.10.2 numpy==1.21.6 typing==3.7.4 pytest==6.0.1 packaging==23.0
# pin version of protobuf in Python for onnx runtime unit tests
pip3 install protobuf==3.20.0
......@@ -24,7 +24,8 @@
import string, sys, re
trivial = [
'std::size_t', 'instruction_ref', 'support_metric', 'const_module_ref'
'std::size_t', 'instruction_ref', 'support_metric', 'const_module_ref',
'bool', 'any_ptr'
]
headers = '''
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment