"docker/vscode:/vscode.git/clone" did not exist on "dff2c686c277f4f8de5f1cab5a486dbad70d7864"
Commit 93c89587 authored by Paul's avatar Paul
Browse files

Split onnx tests

parent d2532d0e
#include <onnx_test.hpp>
#include <migraphx/op/common.hpp>
TEST_CASE(averagepool_dyn_autopad_test)
{
// Pooling with dynamic input and auto padding. Default padding values will be overridden.
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", {migraphx::shape::float_type, {{1, 4}, {3, 3}, {5, 5}, {5, 5}, {5, 5}}});
auto ret = mm->add_instruction(
migraphx::make_op("pooling",
{
{"mode", migraphx::op::pooling_mode::average},
{"stride", {2, 2, 2}},
{"lengths", {3, 3, 3}},
{"dilations", {1, 1, 1}},
{"padding", {0, 0, 0, 0, 0, 0}},
{"padding_mode", migraphx::op::padding_mode_t::same_upper},
}),
l0);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4};
auto prog = migraphx::parse_onnx("averagepool_dyn_autopad_test.onnx", options);
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(averagepool_dyn_cip_error_test)
{
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4};
EXPECT(test::throws(
[&] { migraphx::parse_onnx("averagepool_dyn_cip_error_test.onnx", options); }));
}
#include <onnx_test.hpp>
#include <migraphx/op/pooling.hpp>
TEST_CASE(averagepool_dyn_test)
{
// Pooling with dynamic input and no auto padding
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", {migraphx::shape::float_type, {{1, 4}, {3, 3}, {5, 5}, {5, 5}, {5, 5}}});
auto ret =
mm->add_instruction(migraphx::make_op("pooling",
{
{"mode", migraphx::op::pooling_mode::average},
{"stride", {2, 2, 2}},
{"lengths", {3, 3, 3}},
{"dilations", {1, 1, 1}},
{"padding", {1, 1, 1, 1, 1, 1}},
{"padding_mode", 0},
}),
l0);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4};
auto prog = migraphx::parse_onnx("averagepool_dyn_test.onnx", options);
EXPECT(p == prog);
}
#include <onnx_test.hpp>
#include <migraphx/op/pooling.hpp>
TEST_CASE(averagepool_notset_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
auto ins = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {2, 2, 2, 2}},
{"stride", {2, 2}},
{"lengths", {6, 6}},
{"dilations", {1, 1}}}),
input);
auto ret = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {1, 1}}, {"ends", {2, 2}}}), ins);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("averagepool_notset_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
#include <migraphx/op/pooling.hpp>
TEST_CASE(averagepool_nt_cip_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
std::vector<int64_t> pads = {0, 0, 0, 0, 0, 0, 1, 1};
auto ins_pad = mm->add_instruction(migraphx::make_op("pad", {{"pads", pads}}), input);
auto ret = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {6, 6}},
{"dilations", {1, 1}}}),
ins_pad);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("averagepool_nt_cip_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
#include <migraphx/op/common.hpp>
TEST_CASE(averagepool_same_lower_test)
{
// auto_pad mode of SAME_LOWER with a static input shape is handled in parsing and
// padding_mode is set to default_ when the operation is created
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
auto ins = mm->add_instruction(
migraphx::make_op("pooling",
{
{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1, 1, 1}},
{"stride", {1, 1}},
{"lengths", {2, 2}},
{"dilations", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::default_},
}),
input);
auto ret = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {0, 0}}, {"ends", {5, 5}}}), ins);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("averagepool_same_lower_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
#include <migraphx/op/pooling.hpp>
TEST_CASE(averagepool_same_upper_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
auto ins = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1, 1, 1}},
{"stride", {1, 1}},
{"lengths", {2, 2}},
{"dilations", {1, 1}}}),
input);
auto ret = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {1, 1}}, {"ends", {6, 6}}}), ins);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("averagepool_same_upper_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
#include <migraphx/op/pooling.hpp>
TEST_CASE(averagepool_sl_cip_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
std::vector<int64_t> pads = {0, 0, 1, 1, 0, 0, 0, 0};
auto ins_pad = mm->add_instruction(migraphx::make_op("pad", {{"pads", pads}}), input);
auto ret = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"lengths", {2, 2}},
{"dilations", {1, 1}}}),
ins_pad);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("averagepool_sl_cip_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(batch_norm_1d_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", {migraphx::shape::half_type, {2, 3, 4}});
auto scale = mm->add_parameter("scale", {migraphx::shape::float_type, {3}});
auto bias = mm->add_parameter("bias", {migraphx::shape::float_type, {3}});
auto mean = mm->add_parameter("mean", {migraphx::shape::float_type, {3}});
auto var = mm->add_parameter("variance", {migraphx::shape::float_type, {3}});
auto eps = mm->add_literal(migraphx::literal{migraphx::shape::half_type, {1e-5f}});
auto usq_scale = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), scale);
auto usq_bias = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), bias);
auto usq_mean = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), mean);
auto usq_var = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), var);
auto x_sub_mean = add_common_op(*mm, migraphx::make_op("sub"), {x, usq_mean});
auto var_eps = add_common_op(*mm, migraphx::make_op("add"), {usq_var, eps});
auto rsqrt = mm->add_instruction(migraphx::make_op("rsqrt"), var_eps);
auto mul0 = add_common_op(*mm, migraphx::make_op("mul"), {usq_scale, rsqrt});
auto r0 = add_common_op(*mm, migraphx::make_op("mul"), {x_sub_mean, mul0});
add_common_op(*mm, migraphx::make_op("add"), {r0, usq_bias});
auto prog = optimize_onnx("batch_norm_1d_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(batch_norm_2d_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", {migraphx::shape::float_type, {2, 3, 4, 4}});
auto scale = mm->add_parameter("scale", {migraphx::shape::float_type, {3}});
auto bias = mm->add_parameter("bias", {migraphx::shape::float_type, {3}});
auto mean = mm->add_parameter("mean", {migraphx::shape::float_type, {3}});
auto var = mm->add_parameter("variance", {migraphx::shape::float_type, {3}});
auto eps = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {1e-5f}});
auto usq_scale = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), scale);
auto usq_bias = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), bias);
auto usq_mean = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), mean);
auto usq_var = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), var);
auto x_sub_mean = add_common_op(*mm, migraphx::make_op("sub"), {x, usq_mean});
auto var_eps = add_common_op(*mm, migraphx::make_op("add"), {usq_var, eps});
auto rsqrt = mm->add_instruction(migraphx::make_op("rsqrt"), var_eps);
auto mul0 = add_common_op(*mm, migraphx::make_op("mul"), {usq_scale, rsqrt});
auto r0 = add_common_op(*mm, migraphx::make_op("mul"), {x_sub_mean, mul0});
add_common_op(*mm, migraphx::make_op("add"), {r0, usq_bias});
auto prog = optimize_onnx("batch_norm_2d_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(batch_norm_3d_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", {migraphx::shape::half_type, {2, 2, 2, 2, 2}});
auto scale = mm->add_parameter("scale", {migraphx::shape::half_type, {2}});
auto bias = mm->add_parameter("bias", {migraphx::shape::half_type, {2}});
auto mean = mm->add_parameter("mean", {migraphx::shape::half_type, {2}});
auto var = mm->add_parameter("variance", {migraphx::shape::half_type, {2}});
auto eps = mm->add_literal(migraphx::literal{migraphx::shape::half_type, {1e-6f}});
auto usq_scale =
mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2, 3}}}), scale);
auto usq_bias =
mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2, 3}}}), bias);
auto usq_mean =
mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2, 3}}}), mean);
auto usq_var = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2, 3}}}), var);
auto x_sub_mean = add_common_op(*mm, migraphx::make_op("sub"), {x, usq_mean});
auto var_eps = add_common_op(*mm, migraphx::make_op("add"), {usq_var, eps});
auto rsqrt = mm->add_instruction(migraphx::make_op("rsqrt"), var_eps);
auto mul0 = add_common_op(*mm, migraphx::make_op("mul"), {usq_scale, rsqrt});
auto r0 = add_common_op(*mm, migraphx::make_op("mul"), {x_sub_mean, mul0});
add_common_op(*mm, migraphx::make_op("add"), {r0, usq_bias});
auto prog = optimize_onnx("batch_norm_3d_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(batch_norm_flat_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", {migraphx::shape::float_type, {10}});
auto scale = mm->add_parameter("scale", {migraphx::shape::float_type, {1}});
auto bias = mm->add_parameter("bias", {migraphx::shape::float_type, {1}});
auto mean = mm->add_parameter("mean", {migraphx::shape::float_type, {1}});
auto var = mm->add_parameter("variance", {migraphx::shape::float_type, {1}});
auto eps = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {1e-6f}});
auto x_sub_mean = add_common_op(*mm, migraphx::make_op("sub"), {x, mean});
auto var_eps = add_common_op(*mm, migraphx::make_op("add"), {var, eps});
auto rsqrt = mm->add_instruction(migraphx::make_op("rsqrt"), {var_eps});
auto mul0 = add_common_op(*mm, migraphx::make_op("mul"), {scale, rsqrt});
auto r0 = add_common_op(*mm, migraphx::make_op("mul"), {x_sub_mean, mul0});
add_common_op(*mm, migraphx::make_op("add"), {r0, bias});
auto prog = optimize_onnx("batch_norm_flat_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(batch_norm_invalid_bias_rank)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("batch_norm_invalid_bias_rank.onnx"); }));
}
#include <onnx_test.hpp>
TEST_CASE(batch_norm_invalid_rank)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("batch_norm_invalid_rank.onnx"); }));
}
#include <onnx_test.hpp>
TEST_CASE(batch_norm_rank_2_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", {migraphx::shape::float_type, {2, 5}});
auto scale = mm->add_parameter("scale", {migraphx::shape::float_type, {5}});
auto bias = mm->add_parameter("bias", {migraphx::shape::float_type, {5}});
auto mean = mm->add_parameter("mean", {migraphx::shape::float_type, {5}});
auto var = mm->add_parameter("variance", {migraphx::shape::float_type, {5}});
auto eps = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {1e-6f}});
auto x_sub_mean = add_common_op(*mm, migraphx::make_op("sub"), {x, mean});
auto var_eps = add_common_op(*mm, migraphx::make_op("add"), {var, eps});
auto rsqrt = mm->add_instruction(migraphx::make_op("rsqrt"), {var_eps});
auto mul0 = add_common_op(*mm, migraphx::make_op("mul"), {scale, rsqrt});
auto r0 = add_common_op(*mm, migraphx::make_op("mul"), {x_sub_mean, mul0});
add_common_op(*mm, migraphx::make_op("add"), {r0, bias});
auto prog = optimize_onnx("batch_norm_rank_2_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(binary_dyn_brcst_add_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("0", migraphx::shape{migraphx::shape::half_type, {4, 5}});
auto l1 = mm->add_parameter(
"1", migraphx::shape{migraphx::shape::float_type, {{1, 4}, {3, 3}, {4, 4}, {5, 5}}});
auto ret = add_common_op(*mm, migraphx::make_op("add"), {l0, l1});
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4};
auto prog = migraphx::parse_onnx("binary_dyn_brcst_add_test.onnx", options);
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(binary_dyn_brcst_attr_error_test)
{
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4};
EXPECT(test::throws(
[&] { migraphx::parse_onnx("binary_dyn_brcst_attr_error_test.onnx", options); }));
}
#include <onnx_test.hpp>
TEST_CASE(binary_dyn_brcst_mul_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", migraphx::shape{migraphx::shape::float_type, {{1, 4}, {3, 3}, {4, 4}, {5, 5}}});
auto l1 = mm->add_parameter("1", migraphx::shape{migraphx::shape::float_type, {4, 1}});
auto bl1 = mm->add_instruction(
migraphx::make_op("multibroadcast",
{{"out_dyn_dims", to_value(l0->get_shape().dyn_dims())}}),
l1,
l0);
auto ret = mm->add_instruction(migraphx::make_op("mul"), l0, bl1);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4};
auto prog = migraphx::parse_onnx("binary_dyn_brcst_mul_test.onnx", options);
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(binary_dyn_brcst_prelu_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", migraphx::shape{migraphx::shape::float_type, {{1, 4}, {3, 3}, {4, 4}, {5, 5}}});
auto l1 = mm->add_parameter("1", migraphx::shape{migraphx::shape::float_type, {4, 5}});
auto ret = add_common_op(*mm, migraphx::make_op("prelu"), {l0, l1});
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4};
auto prog = migraphx::parse_onnx("binary_dyn_brcst_prelu_test.onnx", options);
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(cast_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l = mm->add_parameter("x", migraphx::shape{migraphx::shape::half_type, {10}});
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::float_type)}}),
l);
auto prog = optimize_onnx("cast_test.onnx");
EXPECT(p == prog);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment