Commit 93c89587 authored by Paul's avatar Paul
Browse files

Split onnx tests

parent d2532d0e
#include <onnx_test.hpp>
#include <migraphx/op/pooling.hpp>
TEST_CASE(qlinearaveragepool_notset_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.5}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {0}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.5}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {10}});
auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::int8_type, {1, 1, 5, 5}});
auto scale_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 5, 5}}}), sc_x);
auto z_pt_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 5, 5}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y =
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {2, 2, 2, 2}},
{"stride", {2, 2}},
{"lengths", {6, 6}}}),
fp_x);
fp_y = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {1, 1}}, {"ends", {2, 2}}}), fp_y);
auto scale_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 1, 1}}}), sc_y);
auto z_pt_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 1, 1}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearaveragepool_notset_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(qlinearconcat_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.5}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {2}});
auto sc_0 = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.5}});
auto z_pt_0 = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {1}});
auto sc_1 = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.25}});
auto z_pt_1 = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {0}});
auto t0 = mm->add_parameter("t0", {migraphx::shape::int8_type, {2}});
auto t1 = mm->add_parameter("t1", {migraphx::shape::int8_type, {3}});
auto scale_0_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {2}}}), sc_0);
auto z_pt_0_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {2}}}), z_pt_0);
auto fp_0 =
mm->add_instruction(migraphx::make_op("dequantizelinear"), t0, scale_0_bcast, z_pt_0_bcast);
auto scale_1_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3}}}), sc_1);
auto z_pt_1_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3}}}), z_pt_1);
auto fp_1 =
mm->add_instruction(migraphx::make_op("dequantizelinear"), t1, scale_1_bcast, z_pt_1_bcast);
auto fp_y = mm->add_instruction(migraphx::make_op("concat", {{"axis", 0}}), fp_0, fp_1);
auto scale_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), sc_y);
auto z_pt_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearconcat_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(qlinearconv_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::uint8_type, {1, 1, 7, 7}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.00369204697}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {132}});
auto w = mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::uint8_type, {1, 1, 1, 1}}, {0}});
auto sc_w = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.00172794575}});
auto z_pt_w = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {255}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.00162681262}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {123}});
auto scale_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 7, 7}}}), sc_x);
auto z_pt_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 7, 7}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto scale_w_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 1, 1}}}), sc_w);
auto z_pt_w_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 1, 1}}}), z_pt_w);
auto fp_w =
mm->add_instruction(migraphx::make_op("dequantizelinear"), w, scale_w_bcast, z_pt_w_bcast);
auto fp_y = mm->add_instruction(migraphx::make_op("convolution"), fp_x, fp_w);
auto scale_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 7, 7}}}), sc_y);
auto z_pt_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 7, 7}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearconv_test.onnx");
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
#include <migraphx/op/pooling.hpp>
TEST_CASE(qlinearglobalavgpool_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::uint8_type, {1, 3, 4, 4}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {128}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.025}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {64}});
auto scale_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 4, 4}}}), sc_x);
auto z_pt_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 4, 4}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y =
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}},
{"lengths", {4, 4}}}),
fp_x);
auto scale_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 1, 1}}}), sc_y);
auto z_pt_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 1, 1}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearglobalavgpool_test.onnx");
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
TEST_CASE(qlinearleakyrelu_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::int8_type, {64}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {0}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {10}});
auto scale_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_x);
auto z_pt_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y = mm->add_instruction(migraphx::make_op("leaky_relu", {{"alpha", 1.1}}), fp_x);
auto scale_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_y);
auto z_pt_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearleakyrelu_test.onnx");
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
TEST_CASE(qlinearmatmul_1D_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto a = mm->add_parameter("A", {migraphx::shape::uint8_type, {8}});
auto b = mm->add_parameter("B", {migraphx::shape::uint8_type, {8}});
auto sc_a = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_a = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {0}});
auto sc_b = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_b = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {128}});
auto sc_c = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_c = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {64}});
auto scale_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8}}}), sc_a);
auto z_pt_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8}}}), z_pt_a);
auto fp_a =
mm->add_instruction(migraphx::make_op("dequantizelinear"), a, scale_a_bcast, z_pt_a_bcast);
auto scale_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8}}}), sc_b);
auto z_pt_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8}}}), z_pt_b);
auto fp_b =
mm->add_instruction(migraphx::make_op("dequantizelinear"), b, scale_b_bcast, z_pt_b_bcast);
auto sq_a = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {0}}}), fp_a);
auto sq_b = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), fp_b);
auto fp_c = mm->add_instruction(migraphx::make_op("dot"), sq_a, sq_b);
auto sq_c = mm->add_instruction(migraphx::make_op("squeeze", {{"axes", {0}}}), fp_c);
auto scale_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1}}}), sc_c);
auto z_pt_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1}}}), z_pt_c);
auto c =
mm->add_instruction(migraphx::make_op("quantizelinear"), sq_c, scale_c_bcast, z_pt_c_bcast);
mm->add_return({c});
auto prog = migraphx::parse_onnx("qlinearmatmul_1D_test.onnx");
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
TEST_CASE(qlinearmatmul_2D_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto a = mm->add_parameter("A", {migraphx::shape::uint8_type, {1, 8}});
auto b = mm->add_parameter("B", {migraphx::shape::uint8_type, {8, 1}});
auto sc_a = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_a = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {0}});
auto sc_b = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_b = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {128}});
auto sc_c = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_c = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {64}});
auto scale_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 8}}}), sc_a);
auto z_pt_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 8}}}), z_pt_a);
auto fp_a =
mm->add_instruction(migraphx::make_op("dequantizelinear"), a, scale_a_bcast, z_pt_a_bcast);
auto scale_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8, 1}}}), sc_b);
auto z_pt_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8, 1}}}), z_pt_b);
auto fp_b =
mm->add_instruction(migraphx::make_op("dequantizelinear"), b, scale_b_bcast, z_pt_b_bcast);
auto fp_c = mm->add_instruction(migraphx::make_op("dot"), fp_a, fp_b);
auto scale_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1}}}), sc_c);
auto z_pt_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1}}}), z_pt_c);
auto c =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_c, scale_c_bcast, z_pt_c_bcast);
mm->add_return({c});
auto prog = migraphx::parse_onnx("qlinearmatmul_2D_test.onnx");
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
TEST_CASE(qlinearmul_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto a = mm->add_parameter("A", {migraphx::shape::uint8_type, {64}});
auto b = mm->add_parameter("B", {migraphx::shape::uint8_type, {64}});
auto sc_a = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_a = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {0}});
auto sc_b = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_b = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {16}});
auto sc_c = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_c = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {100}});
auto scale_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_a);
auto z_pt_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_a);
auto fp_a =
mm->add_instruction(migraphx::make_op("dequantizelinear"), a, scale_a_bcast, z_pt_a_bcast);
auto scale_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_b);
auto z_pt_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_b);
auto fp_b =
mm->add_instruction(migraphx::make_op("dequantizelinear"), b, scale_b_bcast, z_pt_b_bcast);
auto fp_c = mm->add_instruction(migraphx::make_op("mul"), fp_a, fp_b);
auto scale_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_c);
auto z_pt_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_c);
auto c =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_c, scale_c_bcast, z_pt_c_bcast);
mm->add_return({c});
auto prog = migraphx::parse_onnx("qlinearmul_test.onnx");
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
TEST_CASE(qlinearsigmoid_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::int8_type, {64}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {0}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.0035}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {-128}});
auto scale_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_x);
auto z_pt_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y = mm->add_instruction(migraphx::make_op("sigmoid"), fp_x);
auto scale_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_y);
auto z_pt_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearsigmoid_test.onnx");
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
#include <onnx_test_utils.hpp>
TEST_CASE(quantizelinear_axis_test)
{
migraphx::program p = make_quantizelinear_axis_prog();
auto prog = optimize_onnx("quantizelinear_axis_test.onnx", true);
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
#include <onnx_test_utils.hpp>
TEST_CASE(quantizelinear_int32_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("0", {migraphx::shape::int32_type, {5}});
auto l1 = mm->add_parameter("1", {migraphx::shape::float_type, {1}});
auto l1_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l1);
l0 = mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::float_type)}}),
l0);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto nearbyint = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto s = nearbyint->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, nearbyint, s, 0, 255);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::uint8_type)}}),
clip);
auto prog = optimize_onnx("quantizelinear_int32_test.onnx", true);
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
#include <onnx_test_utils.hpp>
TEST_CASE(quantizelinear_neg_axis_test)
{
migraphx::program p = make_quantizelinear_axis_prog();
auto prog = optimize_onnx("quantizelinear_neg_axis_test.onnx", true);
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
#include <onnx_test_utils.hpp>
TEST_CASE(quantizelinear_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("0", {migraphx::shape::float_type, {5}});
auto l1 = mm->add_parameter("1", {migraphx::shape::float_type, {1}});
auto l1_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto nearbyint = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto s = nearbyint->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, nearbyint, s, 0, 255);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::uint8_type)}}),
clip);
auto prog = optimize_onnx("quantizelinear_test.onnx", true);
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
#include <onnx_test_utils.hpp>
TEST_CASE(quantizelinear_zero_point_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("0", {migraphx::shape::float_type, {5}});
auto l1 = mm->add_parameter("1", {migraphx::shape::float_type, {1}});
auto l2 = mm->add_parameter("2", {migraphx::shape::int8_type, {1}});
auto l1_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto l2_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l2);
l2_mbcast = mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::float_type)}}),
l2_mbcast);
auto add = mm->add_instruction(migraphx::make_op("add"), round, l2_mbcast);
auto s = round->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, add, s, -128, 127);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::int8_type)}}),
clip);
auto prog = optimize_onnx("quantizelinear_zero_point_test.onnx", true);
EXPECT(p.sort() == prog.sort());
}
#include <onnx_test.hpp>
TEST_CASE(randomnormal_dtype_error_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("randomnormal_dtype_error_test.onnx"); }));
}
#include <onnx_test.hpp>
TEST_CASE(randomnormal_generated_seed_test)
{
auto p1 = optimize_onnx("randomnormal_generated_seed_test.onnx");
auto p2 = optimize_onnx("randomnormal_generated_seed_test.onnx");
EXPECT(p1 != p2);
}
#include <onnx_test.hpp>
TEST_CASE(randomnormal_shape_error_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("randomnormal_shape_error_test.onnx"); }));
}
#include <onnx_test.hpp>
#include <random>
TEST_CASE(randomnormal_test)
{
float mean = 10.0;
float scale = 1.5;
float seed = 0.0;
std::vector<int> shape_attr{2, 3, 4};
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::double_type, shape_attr};
std::vector<double> rand_vals(s.elements());
std::mt19937 gen(seed);
std::normal_distribution<> d(mean, scale);
std::generate(rand_vals.begin(), rand_vals.end(), [&]() { return d(gen); });
mm->add_literal(migraphx::literal{s, rand_vals});
auto prog = optimize_onnx("randomnormal_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
#include <random>
TEST_CASE(randomnormallike_test)
{
float mean = 10.0;
float scale = 1.5;
float seed = 0.0;
std::vector<int> shape_attr{2, 3, 4};
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::half_type, shape_attr};
std::vector<double> rand_vals(s.elements());
std::mt19937 gen(seed);
std::normal_distribution<> d(mean, scale);
std::generate(rand_vals.begin(), rand_vals.end(), [&]() { return d(gen); });
mm->add_parameter("input", s);
mm->add_literal(migraphx::literal{s, rand_vals});
auto prog = optimize_onnx("randomnormallike_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(randomnormallike_type_error_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("randomnormallike_type_error_test.onnx"); }));
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment