Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
93c89587
Commit
93c89587
authored
Dec 13, 2023
by
Paul
Browse files
Split onnx tests
parent
d2532d0e
Changes
490
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
477 additions
and
0 deletions
+477
-0
test/onnx/parse/max_test.cpp
test/onnx/parse/max_test.cpp
+20
-0
test/onnx/parse/maxpool_dilate_test.cpp
test/onnx/parse/maxpool_dilate_test.cpp
+24
-0
test/onnx/parse/maxpool_notset_test.cpp
test/onnx/parse/maxpool_notset_test.cpp
+24
-0
test/onnx/parse/maxpool_same_upper_test.cpp
test/onnx/parse/maxpool_same_upper_test.cpp
+24
-0
test/onnx/parse/mean_fp16_test.cpp
test/onnx/parse/mean_fp16_test.cpp
+32
-0
test/onnx/parse/mean_integral_test.cpp
test/onnx/parse/mean_integral_test.cpp
+29
-0
test/onnx/parse/mean_invalid_broadcast_test.cpp
test/onnx/parse/mean_invalid_broadcast_test.cpp
+10
-0
test/onnx/parse/mean_single_input_test.cpp
test/onnx/parse/mean_single_input_test.cpp
+17
-0
test/onnx/parse/min_test.cpp
test/onnx/parse/min_test.cpp
+20
-0
test/onnx/parse/mod_test.cpp
test/onnx/parse/mod_test.cpp
+18
-0
test/onnx/parse/mod_test_different_dtypes.cpp
test/onnx/parse/mod_test_different_dtypes.cpp
+18
-0
test/onnx/parse/mod_test_fmod.cpp
test/onnx/parse/mod_test_fmod.cpp
+18
-0
test/onnx/parse/mod_test_fmod_different_dtypes.cpp
test/onnx/parse/mod_test_fmod_different_dtypes.cpp
+18
-0
test/onnx/parse/mod_test_fmod_half.cpp
test/onnx/parse/mod_test_fmod_half.cpp
+18
-0
test/onnx/parse/mod_test_half.cpp
test/onnx/parse/mod_test_half.cpp
+10
-0
test/onnx/parse/multinomial_autoseed_dyn_test.cpp
test/onnx/parse/multinomial_autoseed_dyn_test.cpp
+55
-0
test/onnx/parse/multinomial_dtype_error_test.cpp
test/onnx/parse/multinomial_dtype_error_test.cpp
+10
-0
test/onnx/parse/multinomial_dyn_test.cpp
test/onnx/parse/multinomial_dyn_test.cpp
+61
-0
test/onnx/parse/multinomial_generated_seed_test.cpp
test/onnx/parse/multinomial_generated_seed_test.cpp
+14
-0
test/onnx/parse/multinomial_int64_test.cpp
test/onnx/parse/multinomial_int64_test.cpp
+37
-0
No files found.
test/onnx/parse/max_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
max_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
input0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
}});
auto
input1
=
mm
->
add_parameter
(
"1"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
}});
auto
input2
=
mm
->
add_parameter
(
"2"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
}});
auto
l0
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"max"
),
input0
,
input1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"max"
),
l0
,
input2
);
auto
prog
=
optimize_onnx
(
"max_test.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/maxpool_dilate_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
#include <migraphx/op/pooling.hpp>
TEST_CASE
(
maxpool_dilate_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
input
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
,
4
,
3
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
{{
"mode"
,
migraphx
::
op
::
pooling_mode
::
max
},
{
"padding"
,
{
1
,
1
}},
{
"stride"
,
{
1
}},
{
"lengths"
,
{
2
}},
{
"dilations"
,
{
3
}}}),
input
);
auto
prog
=
optimize_onnx
(
"maxpool_dilate_test.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/maxpool_notset_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
#include <migraphx/op/pooling.hpp>
TEST_CASE
(
maxpool_notset_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
input
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
,
1
,
5
,
5
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
{{
"mode"
,
migraphx
::
op
::
pooling_mode
::
max
},
{
"padding"
,
{
0
,
0
,
1
,
1
}},
{
"stride"
,
{
2
,
2
}},
{
"lengths"
,
{
6
,
6
}},
{
"dilations"
,
{
1
,
1
}}}),
input
);
auto
prog
=
optimize_onnx
(
"maxpool_notset_test.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/maxpool_same_upper_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
#include <migraphx/op/pooling.hpp>
TEST_CASE
(
maxpool_same_upper_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
input
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
,
1
,
5
,
5
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
{{
"mode"
,
migraphx
::
op
::
pooling_mode
::
max
},
{
"padding"
,
{
0
,
0
,
1
,
1
}},
{
"stride"
,
{
1
,
1
}},
{
"lengths"
,
{
2
,
2
}},
{
"dilations"
,
{
1
,
1
}}}),
input
);
auto
prog
=
optimize_onnx
(
"maxpool_same_upper_test.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/mean_fp16_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
mean_test
)
{
const
std
::
size_t
num_data
=
3
;
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
half_type
,
{
1
,
2
,
3
}};
auto
data0
=
mm
->
add_parameter
(
"0"
,
s
);
auto
data1
=
mm
->
add_parameter
(
"1"
,
s
);
auto
data2
=
mm
->
add_parameter
(
"2"
,
s
);
auto
div_lit
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
s
.
type
()},
{
num_data
}});
auto
divisor
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
s
.
lens
()}}),
div_lit
);
auto
mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"div"
),
data0
,
divisor
);
divisor
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
s
.
lens
()}}),
div_lit
);
data1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"div"
),
data1
,
divisor
);
mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
mean
,
data1
);
divisor
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
s
.
lens
()}}),
div_lit
);
data2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"div"
),
data2
,
divisor
);
mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
mean
,
data2
);
auto
prog
=
optimize_onnx
(
"mean_fp16_test.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/mean_integral_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
mean_integral_test
)
{
const
std
::
size_t
num_data
=
10
;
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
int32_type
,
{
2
,
2
,
2
}};
auto
mean
=
mm
->
add_parameter
(
"0"
,
s
);
for
(
std
::
size_t
i
=
1
;
i
<
num_data
;
++
i
)
{
auto
data
=
mm
->
add_parameter
(
std
::
to_string
(
i
),
s
);
mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
mean
,
data
);
}
auto
div_lit
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
s
.
type
()},
{
num_data
}});
auto
divisor
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
s
.
lens
()}}),
div_lit
);
mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"div"
),
mean
,
divisor
);
auto
prog
=
optimize_onnx
(
"mean_integral_test.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/mean_invalid_broadcast_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
mean_invalid_broadcast_test
)
{
EXPECT
(
test
::
throws
([
&
]
{
migraphx
::
parse_onnx
(
"mean_invalid_broadcast_test.onnx"
);
}));
}
test/onnx/parse/mean_single_input_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
mean_single_input_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
data0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
,
2
,
3
}});
mm
->
add_return
({
data0
});
auto
prog
=
migraphx
::
parse_onnx
(
"mean_single_input_test.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/min_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
min_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
input0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
}});
auto
input1
=
mm
->
add_parameter
(
"1"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
}});
auto
input2
=
mm
->
add_parameter
(
"2"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
}});
auto
l0
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"min"
),
input0
,
input1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"min"
),
l0
,
input2
);
auto
prog
=
optimize_onnx
(
"min_test.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/mod_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
mod_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
input0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
int32_type
,
{
3
,
3
,
3
}});
auto
input1
=
mm
->
add_parameter
(
"1"
,
migraphx
::
shape
{
migraphx
::
shape
::
int32_type
,
{
3
,
3
,
3
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"mod"
),
input0
,
input1
);
auto
prog
=
optimize_onnx
(
"mod_test.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/mod_test_different_dtypes.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
mod_test_different_dtypes
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
input0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
int16_type
,
{
3
,
3
,
3
}});
auto
input1
=
mm
->
add_parameter
(
"1"
,
migraphx
::
shape
{
migraphx
::
shape
::
int32_type
,
{
3
,
3
,
3
}});
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mod"
),
{
input0
,
input1
});
auto
prog
=
optimize_onnx
(
"mod_test_different_dtypes.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/mod_test_fmod.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
mod_test_fmod
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
input0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
,
3
,
3
}});
auto
input1
=
mm
->
add_parameter
(
"1"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
,
3
,
3
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"fmod"
),
input0
,
input1
);
auto
prog
=
optimize_onnx
(
"mod_test_fmod.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/mod_test_fmod_different_dtypes.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
mod_test_fmod_different_dtypes
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
input0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
,
3
,
3
}});
auto
input1
=
mm
->
add_parameter
(
"1"
,
migraphx
::
shape
{
migraphx
::
shape
::
int32_type
,
{
3
,
3
,
3
}});
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"fmod"
),
{
input0
,
input1
});
auto
prog
=
optimize_onnx
(
"mod_test_fmod_different_dtypes.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/mod_test_fmod_half.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
mod_test_fmod_half
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
input0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
half_type
,
{
3
,
3
,
3
}});
auto
input1
=
mm
->
add_parameter
(
"1"
,
migraphx
::
shape
{
migraphx
::
shape
::
half_type
,
{
3
,
3
,
3
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"fmod"
),
input0
,
input1
);
auto
prog
=
optimize_onnx
(
"mod_test_fmod_half.onnx"
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/mod_test_half.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
mod_test_half
)
{
EXPECT
(
test
::
throws
([
&
]
{
migraphx
::
parse_onnx
(
"mod_test_half.onnx"
);
}));
}
test/onnx/parse/multinomial_autoseed_dyn_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
multinomial_autoseed_dyn_test
)
{
// runtime random seed
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
size_t
sample_size
=
12
;
size_t
categories
=
10
;
auto
input
=
mm
->
add_parameter
(
"input"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
1
,
10
},
{
10
,
10
}}});
auto
maxes
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"reduce_max"
,
{{
"axes"
,
{
1
}}}),
input
);
auto
cdf
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
input
,
maxes
});
cdf
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"exp"
),
cdf
);
cdf
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"prefix_scan_sum"
,
{{
"axis"
,
1
},
{
"exclusive"
,
false
}}),
cdf
);
auto
seed_input
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"random_seed"
));
// dynamic input only: must calculate alloc_shape as (batch_size, sample_size)
// read the runtime input dimensions
auto
dim_of
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"dimensions_of"
,
{{
"end"
,
2
}}),
input
);
// make an argument of (1, 0)
migraphx
::
shape
lit_shape
(
migraphx
::
shape
::
int64_type
,
{
2
});
std
::
vector
<
int64_t
>
data1
{
1
,
0
};
auto
l1
=
mm
->
add_literal
(
lit_shape
,
data1
);
auto
batch_arg
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"mul"
),
dim_of
,
l1
);
std
::
vector
<
int64_t
>
data2
(
2
,
0
);
// make an argument of (0, sample_size)
data2
[
1
]
=
sample_size
;
auto
l2
=
mm
->
add_literal
(
lit_shape
,
data2
);
auto
alloc_shape
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
batch_arg
,
l2
);
migraphx
::
shape
compile_shape
=
migraphx
::
shape
(
migraphx
::
shape
::
float_type
,
{
input
->
get_shape
().
dyn_dims
().
front
(),
{
sample_size
,
sample_size
}});
auto
alloc
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"allocate"
,
{{
"shape"
,
to_value
(
compile_shape
)}}),
alloc_shape
);
auto
randoms
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
alloc
);
auto
ret
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multinomial"
),
cdf
,
randoms
);
mm
->
add_return
({
ret
});
migraphx
::
onnx_options
options
;
options
.
default_dyn_dim_value
=
{
1
,
categories
};
options
.
print_program_on_error
=
true
;
auto
prog
=
migraphx
::
parse_onnx
(
"multinomial_autoseed_dyn_test.onnx"
,
options
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/multinomial_dtype_error_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
multinomial_dtype_error_test
)
{
EXPECT
(
test
::
throws
([
&
]
{
migraphx
::
parse_onnx
(
"multinomial_dtype_error_test.onnx"
);
}));
}
test/onnx/parse/multinomial_dyn_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
multinomial_dyn_test
)
{
// compile-time random seed
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
size_t
sample_size
=
100000
;
size_t
categories
=
5
;
float
seed
=
1.3
f
;
auto
input
=
mm
->
add_parameter
(
"input"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
1
,
categories
},
{
categories
,
categories
}}});
auto
maxes
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"reduce_max"
,
{{
"axes"
,
{
1
}}}),
input
);
auto
cdf
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
input
,
maxes
});
cdf
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"exp"
),
cdf
);
cdf
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"prefix_scan_sum"
,
{{
"axis"
,
1
},
{
"exclusive"
,
false
}}),
cdf
);
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
1
}};
std
::
vector
<
float
>
seed_data
=
{
seed
};
auto
seed_input
=
mm
->
add_literal
(
migraphx
::
literal
(
s
,
seed_data
));
// dynamic input only: must calculate alloc_shape as (batch_size, sample_size)
// read the runtime input dimensions
auto
dim_of
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"dimensions_of"
,
{{
"end"
,
2
}}),
input
);
// make an argument of (1, 0)
migraphx
::
shape
lit_shape
(
migraphx
::
shape
::
int64_type
,
{
2
});
std
::
vector
<
int64_t
>
data1
{
1
,
0
};
auto
l1
=
mm
->
add_literal
(
lit_shape
,
data1
);
auto
batch_arg
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"mul"
),
dim_of
,
l1
);
std
::
vector
<
int64_t
>
data2
(
2
,
0
);
// make an argument of (0, sample_size)
data2
[
1
]
=
sample_size
;
auto
l2
=
mm
->
add_literal
(
lit_shape
,
data2
);
auto
alloc_shape
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
batch_arg
,
l2
);
migraphx
::
shape
compile_shape
=
migraphx
::
shape
(
migraphx
::
shape
::
float_type
,
{
input
->
get_shape
().
dyn_dims
().
front
(),
{
sample_size
,
sample_size
}});
auto
alloc
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"allocate"
,
{{
"shape"
,
to_value
(
compile_shape
)}}),
alloc_shape
);
auto
randoms
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
alloc
);
auto
ret
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
migraphx
::
shape
::
float_type
}}),
cdf
,
randoms
);
mm
->
add_return
({
ret
});
migraphx
::
onnx_options
options
;
options
.
default_dyn_dim_value
=
{
1
,
categories
};
options
.
print_program_on_error
=
true
;
auto
prog
=
migraphx
::
parse_onnx
(
"multinomial_dyn_test.onnx"
,
options
);
EXPECT
(
p
==
prog
);
}
test/onnx/parse/multinomial_generated_seed_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
multinomial_generated_seed_test
)
{
// multinomial op. no longer generates its own randoms
auto
p1
=
optimize_onnx
(
"multinomial_generated_seed_test.onnx"
);
auto
p2
=
optimize_onnx
(
"multinomial_generated_seed_test.onnx"
);
EXPECT
(
p1
==
p2
);
}
test/onnx/parse/multinomial_int64_test.cpp
0 → 100644
View file @
93c89587
#include <onnx_test.hpp>
TEST_CASE
(
multinomial_int64_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
size_t
sample_size
=
10
;
float
seed
=
1.0
;
uint32_t
batch_size
=
1
;
migraphx
::
shape
::
type_t
dtype
=
migraphx
::
shape
::
type_t
::
int64_type
;
auto
input
=
mm
->
add_parameter
(
"input"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
,
10
}});
auto
maxes
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"reduce_max"
,
{{
"axes"
,
{
1
}}}),
input
);
auto
cdf
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
input
,
maxes
});
cdf
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"exp"
),
cdf
);
cdf
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"prefix_scan_sum"
,
{{
"axis"
,
1
},
{
"exclusive"
,
false
}}),
cdf
);
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
1
}};
std
::
vector
<
float
>
data
=
{
seed
};
auto
seed_input
=
mm
->
add_literal
(
migraphx
::
literal
(
s
,
data
));
// static size
auto
rand_dummy
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
batch_size
,
sample_size
}},
std
::
vector
<
float
>
(
batch_size
*
sample_size
)});
auto
randoms
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
rand_dummy
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
dtype
}}),
cdf
,
randoms
);
auto
prog
=
optimize_onnx
(
"multinomial_int64_test.onnx"
);
EXPECT
(
p
==
prog
);
}
Prev
1
…
10
11
12
13
14
15
16
17
18
…
25
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment