Commit 93c89587 authored by Paul's avatar Paul
Browse files

Split onnx tests

parent d2532d0e
#include <onnx_test.hpp>
TEST_CASE(group_norm_missing_attribute_error_test)
{
EXPECT(test::throws(
[&] { migraphx::parse_onnx("group_norm_missing_attribute_error_test.onnx"); }));
}
#include <onnx_test.hpp>
#include <onnx_test_utils.hpp>
TEST_CASE(group_norm_small_eps_half_test)
{
migraphx::program p = make_group_norm(
{1, 4, 2}, {2}, {2}, {1, 2, 2, 2}, {2, 3}, 1e-7f, migraphx::shape::half_type);
auto prog = optimize_onnx("group_norm_small_eps_half_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(hardsigmoid_default_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{1, 3, 4, 5};
auto input_type = migraphx::shape::float_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 0.2;
float beta = 0.5;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
auto prog = optimize_onnx("hardsigmoid_default_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(hardsigmoid_double_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{1, 3, 4, 5};
auto input_type = migraphx::shape::double_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 0.3;
float beta = 0.7;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
auto prog = optimize_onnx("hardsigmoid_double_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(hardsigmoid_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{1, 3, 4, 5};
auto input_type = migraphx::shape::half_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 0.2;
float beta = 0.5;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
auto prog = optimize_onnx("hardsigmoid_half_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(hardswish_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{2, 5};
auto input_type = migraphx::shape::float_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 1.0 / 6.0;
float beta = 0.5;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
auto hardsigmoid = mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
mm->add_instruction(migraphx::make_op("mul"), x, hardsigmoid);
auto prog = optimize_onnx("hardswish_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(if_else_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}};
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
std::vector<float> ones(s.elements(), 1.0f);
std::vector<float> rand = {1.3865, -0.494756, -0.283504, 0.200491, -0.490031, 1.32388};
auto l1 = mm->add_literal(s, ones);
auto l2 = mm->add_literal(s, rand);
auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
auto cond = mm->add_parameter("cond", sc);
auto* then_mod = p.create_module("If_5_if");
auto rt = then_mod->add_instruction(migraphx::make_op("add"), x, l1);
then_mod->add_return({rt});
auto* else_mod = p.create_module("If_5_else");
auto re = else_mod->add_instruction(migraphx::make_op("mul"), y, l2);
else_mod->add_return({re});
auto ret = mm->add_instruction(migraphx::make_op("if"), {cond}, {then_mod, else_mod});
auto r = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), ret);
mm->add_return({r});
auto prog = migraphx::parse_onnx("if_else_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(if_else_test_inlined)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}};
mm->add_literal(migraphx::literal(sc, {0}));
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
std::vector<float> ones(s.elements(), 1.0f);
mm->add_literal(s, ones);
std::vector<float> rand = {0.811412, -0.949771, -0.169276, 0.36552, -0.14801, 2.07061};
auto l2 = mm->add_literal(s, rand);
mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
auto re = mm->add_instruction(migraphx::make_op("mul"), y, l2);
mm->add_return({re});
auto prog = migraphx::parse_onnx("if_else_test_inlined.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(if_literal_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape cond_s{migraphx::shape::bool_type};
auto cond = mm->add_parameter("cond", cond_s);
migraphx::shape s{migraphx::shape::float_type, {5}};
auto* then_mod = p.create_module("If_1_if");
std::vector<float> data1 = {1, 2, 3, 4, 5};
auto l1 = then_mod->add_literal(migraphx::literal(s, data1));
then_mod->add_literal({});
then_mod->add_return({l1});
auto* else_mod = p.create_module("If_1_else");
std::vector<float> data2 = {5, 4, 3, 2, 1};
auto l2 = else_mod->add_literal(migraphx::literal(s, data2));
else_mod->add_literal({});
else_mod->add_return({l2});
auto ret = mm->add_instruction(migraphx::make_op("if"), {cond}, {then_mod, else_mod});
auto r = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), ret);
mm->add_return({r});
auto prog = migraphx::parse_onnx("if_literal_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(if_param_excp1_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("if_param_excp1_test.onnx"); }));
}
#include <onnx_test.hpp>
TEST_CASE(if_param_excp_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("if_param_excp_test.onnx"); }));
}
#include <onnx_test.hpp>
TEST_CASE(if_param_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape cond_s{migraphx::shape::bool_type};
auto cond = mm->add_parameter("cond", cond_s);
migraphx::shape ds{migraphx::shape::float_type, {2, 3}};
auto x = mm->add_parameter("x", ds);
auto y = mm->add_parameter("y", ds);
auto* then_mod = p.create_module("If_3_if");
std::vector<float> data1 = {0.384804, -1.77948, -0.453775, 0.477438, -1.06333, -1.12893};
auto l1 = then_mod->add_literal(migraphx::literal(ds, data1));
auto a1 = then_mod->add_instruction(migraphx::make_op("add"), x, l1);
then_mod->add_return({a1});
auto* else_mod = p.create_module("If_3_else");
std::vector<float> data2 = {-0.258047, 0.360394, 0.536804, -0.577762, 1.0217, 1.02442};
auto l2 = else_mod->add_literal(migraphx::literal(ds, data2));
auto a2 = else_mod->add_instruction(migraphx::make_op("mul"), y, l2);
else_mod->add_return({a2});
auto ret = mm->add_instruction(migraphx::make_op("if"), {cond}, {then_mod, else_mod});
auto r = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), ret);
mm->add_return({r});
auto prog = migraphx::parse_onnx("if_param_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(if_pl_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape cond_s{migraphx::shape::bool_type};
migraphx::shape xs{migraphx::shape::float_type, {2, 3}};
migraphx::shape ys{migraphx::shape::float_type, {3, 3}};
std::vector<float> datax = {1, 2, 3, 4, 5, 6};
std::vector<float> datay = {8, 7, 6, 5, 4, 3, 2, 1, 0};
auto lx = mm->add_literal(migraphx::literal(xs, datax));
auto ly = mm->add_literal(migraphx::literal(ys, datay));
auto cond = mm->add_parameter("cond", cond_s);
auto x = mm->add_parameter("x", xs);
auto y = mm->add_parameter("y", ys);
auto* then_mod = p.create_module("If_5_if");
auto l1 = then_mod->add_literal(migraphx::literal(ys, datay));
auto a1 = then_mod->add_instruction(migraphx::make_op("add"), x, lx);
then_mod->add_return({a1, l1});
auto* else_mod = p.create_module("If_5_else");
auto l2 = else_mod->add_literal(migraphx::literal(xs, datax));
auto a2 = else_mod->add_instruction(migraphx::make_op("mul"), y, ly);
else_mod->add_return({l2, a2});
auto ret = mm->add_instruction(migraphx::make_op("if"), {cond}, {then_mod, else_mod});
auto r = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), ret);
mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), ret);
mm->add_return({r});
auto prog = migraphx::parse_onnx("if_pl_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(if_then_else_multi_output_shapes_inlined_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}};
mm->add_literal(migraphx::literal(sc, {1}));
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
migraphx::shape s_trail{migraphx::shape::float_type, {2, 3, 1}};
std::vector<float> ones(s.elements(), 1.0f);
auto l1 = mm->add_literal(s_trail, ones);
std::vector<float> rand = {-1.01837, -0.305541, -0.254105, 0.892955, 1.38714, -0.584205};
mm->add_literal(s, rand);
auto x = mm->add_parameter("x", s_trail);
mm->add_parameter("y", s);
auto rt = mm->add_instruction(migraphx::make_op("add"), x, l1);
auto rt2 = mm->add_instruction(migraphx::make_op("add"), x, x);
mm->add_return({rt, rt2});
auto prog = migraphx::parse_onnx("if_then_else_multi_output_shapes_inlined_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(if_then_else_multi_output_shapes_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}};
migraphx::shape s{migraphx::shape::float_type, {2, 3, 1}};
migraphx::shape s_trail{migraphx::shape::float_type, {2, 3, 1}};
std::vector<float> ones(s.elements(), 1.0f);
auto l1 = mm->add_literal(s_trail, ones);
std::vector<float> rand = {-0.753997, 0.707831, -0.865795, 2.49574, 0.464937, -0.168745};
auto l2 = mm->add_literal(s, rand);
auto x = mm->add_parameter("x", s_trail);
auto y = mm->add_parameter("y", s);
auto cond = mm->add_parameter("cond", sc);
auto* then_mod = p.create_module("If_5_if");
auto rt = then_mod->add_instruction(migraphx::make_op("add"), x, l1);
auto rt2 = then_mod->add_instruction(migraphx::make_op("add"), x, x);
then_mod->add_return({rt, rt2});
auto* else_mod = p.create_module("If_5_else");
auto re = else_mod->add_instruction(migraphx::make_op("mul"), y, l2);
auto re2 = else_mod->add_instruction(migraphx::make_op("sub"), y, l2);
else_mod->add_return({re, re2});
auto ret = mm->add_instruction(migraphx::make_op("if"), {cond}, {then_mod, else_mod});
auto r1 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), ret);
auto r2 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), ret);
mm->add_return({r1, r2});
auto prog = migraphx::parse_onnx("if_then_else_multi_output_shapes_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(if_then_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}};
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
std::vector<float> ones(s.elements(), 1.0f);
std::vector<float> rand = {-0.266913, -0.180328, -0.124268, -1.23768, 0.312334, 1.18475};
auto l1 = mm->add_literal(s, ones);
auto l2 = mm->add_literal(s, rand);
auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
auto cond = mm->add_parameter("cond", sc);
auto* then_mod = p.create_module("If_5_if");
auto rt = then_mod->add_instruction(migraphx::make_op("add"), x, l1);
then_mod->add_return({rt});
auto* else_mod = p.create_module("If_5_else");
auto re = else_mod->add_instruction(migraphx::make_op("mul"), y, l2);
else_mod->add_return({re});
auto ret = mm->add_instruction(migraphx::make_op("if"), {cond}, {then_mod, else_mod});
auto r = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), ret);
mm->add_return({r});
auto prog = migraphx::parse_onnx("if_then_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(if_then_test_inlined)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}};
mm->add_literal(migraphx::literal(sc, {1}));
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
std::vector<float> ones(s.elements(), 1.0f);
auto l1 = mm->add_literal(s, ones);
std::vector<float> rand = {-1.26487, -2.42279, 0.990835, 1.63072, 0.812238, -0.174946};
mm->add_literal(s, rand);
auto x = mm->add_parameter("x", s);
mm->add_parameter("y", s);
auto rt = mm->add_instruction(migraphx::make_op("add"), x, l1);
mm->add_return({rt});
auto prog = migraphx::parse_onnx("if_then_test_inlined.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(if_tuple_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sd{migraphx::shape::float_type, {1}};
auto l1 = mm->add_literal(migraphx::literal(sd, {1}));
auto l2 = mm->add_literal(migraphx::literal(sd, {2}));
auto l3 = mm->add_literal(migraphx::literal(sd, {3}));
migraphx::shape sx{migraphx::shape::float_type, {1, 4}};
migraphx::shape sy{migraphx::shape::float_type, {3, 4}};
migraphx::shape sc{migraphx::shape::bool_type};
auto cond = mm->add_parameter("cond", sc);
auto x = mm->add_parameter("x", sx);
auto y = mm->add_parameter("y", sy);
auto* then_mod = p.create_module("If_6_if");
auto m1 =
then_mod->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 4}}}), l1);
auto add0 = then_mod->add_instruction(migraphx::make_op("add"), x, m1);
auto m2 =
then_mod->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3, 4}}}), l2);
auto mul0 = then_mod->add_instruction(migraphx::make_op("mul"), y, m2);
then_mod->add_return({add0, mul0});
auto* else_mod = p.create_module("If_6_else");
auto me1 =
else_mod->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 4}}}), l3);
auto mul1 = else_mod->add_instruction(migraphx::make_op("mul"), x, me1);
auto me2 =
else_mod->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3, 4}}}), l3);
auto add1 = else_mod->add_instruction(migraphx::make_op("add"), y, me2);
else_mod->add_return({mul1, add1});
auto ret = mm->add_instruction(migraphx::make_op("if"), {cond}, {then_mod, else_mod});
auto r0 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), ret);
auto r1 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), ret);
mm->add_return({r0, r1});
auto prog = migraphx::parse_onnx("if_tuple_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(imagescaler_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::half_type, {1, 3, 16, 16}};
auto l0 = mm->add_parameter("0", s);
auto scale_val =
mm->add_literal(migraphx::literal{migraphx::shape{migraphx::shape::half_type}, {0.5f}});
auto bias_vals = mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::half_type, {3}}, {0.01, 0.02, 0.03}});
auto scaled_tensor = mm->add_instruction(
migraphx::make_op("scalar", {{"scalar_bcst_dims", s.lens()}}), scale_val);
auto img_scaled = mm->add_instruction(migraphx::make_op("mul"), l0, scaled_tensor);
auto bias_bcast = mm->add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", s.lens()}}), bias_vals);
mm->add_instruction(migraphx::make_op("add"), img_scaled, bias_bcast);
auto prog = optimize_onnx("imagescaler_half_test.onnx");
EXPECT(p == prog);
}
#include <onnx_test.hpp>
TEST_CASE(imagescaler_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {1, 3, 16, 16}};
auto l0 = mm->add_parameter("0", s);
auto scale_val = mm->add_literal(0.5f);
auto bias_vals = mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::float_type, {3}}, {0.01, 0.02, 0.03}});
auto scaled_tensor = mm->add_instruction(
migraphx::make_op("scalar", {{"scalar_bcst_dims", s.lens()}}), scale_val);
auto img_scaled = mm->add_instruction(migraphx::make_op("mul"), l0, scaled_tensor);
auto bias_bcast = mm->add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", s.lens()}}), bias_vals);
mm->add_instruction(migraphx::make_op("add"), img_scaled, bias_bcast);
auto prog = optimize_onnx("imagescaler_test.onnx");
EXPECT(p == prog);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment