Commit 92b7306c authored by Cagri Eryilmaz's avatar Cagri Eryilmaz
Browse files

update notebook with smaller unet model

parent 2c3b9d5a
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "0c406267", "id": "cd7a3990",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Import MIGraphX Python Library" "## Import MIGraphX Python Library"
...@@ -10,17 +10,20 @@ ...@@ -10,17 +10,20 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 16,
"id": "c33a7caf", "id": "3930d7b8",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import migraphx" "import migraphx\n",
"from PIL import Image\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "679b7860", "id": "b350c333",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Fetch U-NET ONNX Model" "## Fetch U-NET ONNX Model"
...@@ -28,18 +31,179 @@ ...@@ -28,18 +31,179 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 2,
"id": "5303185a", "id": "02a7b7de",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File ‘unet_13_256.onnx’ already there; not retrieving.\r\n",
"\r\n"
]
}
],
"source": [
"!wget -nc https://github.com/cagery/unet-onnx/raw/main/unet_13_256.onnx"
]
},
{
"cell_type": "markdown",
"id": "a6cfe6e9",
"metadata": {},
"source": [
"## Load ONNX Model"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e05a13dc",
"metadata": {},
"outputs": [],
"source": [
"model = migraphx.parse_onnx(\"unet_13_256.onnx\")\n",
"model.compile(migraphx.get_target(\"gpu\"))"
]
},
{
"cell_type": "markdown",
"id": "80edb6f1",
"metadata": {},
"source": [
"## Print model parameters"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "fd5c3269",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['inputs']\n",
"{'inputs': float_type, {1, 3, 256, 256}, {196608, 65536, 256, 1}}\n"
]
}
],
"source": [
"print(model.get_parameter_names())\n",
"print(model.get_parameter_shapes())"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "270b2192",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"!wget " "def preprocess(pil_img, newW, newH):\n",
" w, h = pil_img.size\n",
" assert newW > 0 and newH > 0, 'Scale is too small'\n",
" pil_img = pil_img.resize((newW, newH))\n",
"\n",
" img_nd = np.array(pil_img)\n",
"\n",
" if len(img_nd.shape) == 2:\n",
" img_nd = np.expand_dims(img_nd, axis=2)\n",
"\n",
" # HWC to CHW\n",
" img_print = pil_img\n",
" img_trans = img_nd.transpose((2, 0, 1))\n",
" if img_trans.max() > 1:\n",
" img_trans = img_trans / 255\n",
"\n",
" return img_trans, img_print\n",
"\n",
"def plot_img_and_mask(img, mask):\n",
" classes = mask.shape[2] if len(mask.shape) > 2 else 1\n",
" fig, ax = plt.subplots(1, classes + 1)\n",
" ax[0].set_title('Input image')\n",
" ax[0].imshow(img)\n",
" if classes > 1:\n",
" for i in range(classes):\n",
" ax[i+1].set_title(f'Output mask (class {i+1})')\n",
" ax[i+1].imshow(mask[:, :, i])\n",
" else:\n",
" ax[1].set_title(f'Output mask')\n",
" ax[1].imshow(mask)\n",
" plt.xticks([]), plt.yticks([])\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "389ddc4d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(786432, 4, 3072, 12)\n",
"(1, 3, 256, 256)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAEACAIAAADTED8xAAC4S0lEQVR4nOy9d5xkR3UofKrqhg4z0z15dzbMzuYoaaUVK2mFtCAZBZCFRTDJMtFgg3nPYPhsP9uP5wS8Z/vZBmMbkw0iCwNCAZTT7kqr1ebV5tk0OXT3dLqhqr4/zr3V1bfDzgYJ+aEj/Wa7b99bVbfq5HPqFCkWixCClBLOBvo9hJCz3v8iASFESol/I+PB6/oHaPpqTe5RvURa+38VmiPAxX39syKbmvaL2Gkt0Be19VfgFXiZg3GuD+js8CVjijozUFxfdR0Zw1mvN++l0cULfNOXhp9dIESE4Yu6xJFm9TXVpa5+v/p6TpOpd1T7yCsS4BX4lYYqCRBRqZsAUlVz3lD317Pq4pEbanlSpOVZ8qeXUlLN5p6XlSioZfMXS+7NHpqL34jwj4gCqCc0moxcf+oVCfAK/ErDOdsAs4Ra0tSvRwhav7P5gy9DOKeB6Zz1JRYCjTxm8PKb29rxzF4iNZ/YWkH3igR4BX6lISoBLpAzNaHduhebdPcSa5+zf+taN9SF9HshEPHFRfTgWu9H3dV5WVkj5w3nrSzUUYFe4kn55UbTGg2jebzvZaIzRNyUTfSEWVqE59d73QCi+qxbpS9DYntFBXoFfqWhvhHcxFStvXM2jqdfIkSs6llqL7N/l0ZxlnOajUas9Jx6v0BoxMvrjkr3RzdPFakrZl8+ouAVCfAK/EpDMzdoxFRtovNBY1Z0IUR/VobdPFRedyQXhWWe9WXPr8HZuAQavWPdiWqUydekl9oklxcj1Hhx7YFzkl0ReEUCvAK/0jDbQFgT9omkdtGzpiIOvkjvjWI6+q8Xwo+bcJSL4v08b+dvhD03f7ARF28yhosoJyPNzoYf1zXYzg9m+ewrEuAV+JUGUiqV4LwU9CbssAn/uPAo21k3bVw4n75Y4bnmN9eKrAvv8VzhJfPGnGu08SUb2CsS4BX4lYbABjgPfetcef85ddRI051lF2dtv/b+uvy4yTAiQz2nHhuNQe/9pQmqzJ4xn9VsuLgpLbN3Z9V1TtZ2WrvFBz+8IgFegV9peLHSoaFaHW9CnXU5x0XxKZ1TCCJy82y84OcnoCJ3Nk+kmX07UM3kIl1ceAj2nB5sEic5vwE0d2edk+cq0tQrEuAV+JUGopdFuQjNNWacsyH9F0/9bSSOIveca5uRK+cnuBoNrFH7jRTi2gZn33vt5wjoPV7c1/zlwisS4BX4lYYgDgD1kiXP2y/UhC01h3NK2JzleBolyTQZ6ixbvlhwTibK+TU++xWp62aBxgbGhYxKNRgRL/pP593FLOFXQgK8NC7FV+C/IlQkQCOYTVaGjmG1dvostcyztnzecH68pDYv5TyMhNlns/6y4PySAF5snvLShajL5fK5BqibOLnqfo48HrnSBDkiOtVZx9nIlXmx4KzRlvOGJlym7kuddRhN8gih8UzWqjezxI0mg4+MpO49s+zoAqmibke/EirQK/AKNAJSLpcb/TZ7gptN2Kh5F43s75defZ+9tnOucqkuXHRZzxijlHLOhRCzuf/loIbVhQuM2TX3FCt4RQL8PwWmaY6Njf3sZz8bGxuj9JXFPTsYF5HFzlIONNJfz2pC6L/O3ihvMoDZGDNnvd48V6K6r+CbuihDqG0nEuSvq0lHHjEMY/fu3Z/5zGeGhoY+85nPzJ0796y6PtSTvc1Dco1yN2YptM9DrThXx+gsXTL404uYC/SrBrUIikqICAHVEiGEwnshhFoSWV0ZkmhAKSWEMMbwMwJUowhjbMeOHX/6p3+azWbb2tpM03yJX/+/KJx9U/wF0lzzm3WoGyo/Vybd5OYmLOo8/JvqA+KxjuUAwEPwfZ9zLiUIIRD/pZQAAgCUGNCapSHLDxqnlBJCASp4j79TShmjhFDDYIZhmqbp+963v/2dkZEx27bz+UI2m2s+fn22a5evuVg7p+vndxs0WK8LV1iiYvMCm/uVBUQdz/Mcx/F9X0qJDN7zPN/3Pc9T2C+EkBKkVAqPkBIJAFdCqAYR1wkBSgPGzxgjhEkZXGGMmaaJf6WUlEohhOt6SBsf//gnNm269plnnpmZmfE8H0nxFWgOxHXdczW3z8pKm5DpWb3CTaC22fNwFjXifLV9NUoKAAAhRKlUchyHc44SwPM813Vd10UC0ElCCCEEKD0HAGlA6gQQsuSAxxMCIcdnhFDLspLJZEtLSyKRsCzLMAylLOmTSSk1TTOUQpJzn1KClIUqk644zcY8aDS3jSyE2XjPZmO81b3nxQgCwCsS4JyAUur7fj6fLxaLqN+7rus4DuI9sn7EP9/nUgbqkJRSCEDlRwgBIIXgKBMAAABJAkJkRYUfAIAxlkql5szp7erqisViaAMEz1Sn+IcOH+m6Ll4XQlJKpZSEBEYI3hyxK166uXu5AnFdV/9+fnTWxP8zS8u9Ue+NHC/n4Uxo1EWjXiI3cM6npjL5fN51Hd/3yuVyyO+F0naQ8SszN9R/Ar+KQlMhZGgMVBxBCjWxu87OjqVLl/X19VmWpaG7IIQQwhQSUxoQEiH4QQKAojUppRB+5F0i3SElzNJyu1hBg4vuMtIfOSfCfkUCnAVwNvP5/NTUVDY7I4Tg3OfcD1Ud7nm+67q+74e8P/jAefCvEALJg3OOerxt24ZhUEqVUwgAhBAYwLJte82aNatXr47H47qDkjFmGCYhpFx2M5nMxMTE5OTkxMREsVhEPZYxGovZra2t6XS6s7Ozvb2zra3Nti2kXtTW8KWQFHVPVGhh/8rJhKgEaARNdPda9n9Wsj5XdnLRF2Y2fAJv8DxvcnJyenoalZzQxHVR+UECUPjNOWo+FeVHAX71fd91XcR7wzDQnFXE4Lpud3f3ddddN3/+fH1yLMuiFMbGxnfv3rVr166jR4+PjIyUSiXOealUopTath06iAKCsSwrHk92dXUtXDh/5cqVK1eunDdvXjweR/skMhX6K2MgOTIJdSew+Q1NoMm6N5ftF9cMCMy8VwigUZcAUMgXxsbGZmZmXNd1XcfzuOd5rud4rotE4Hk68nPOhZSSc18KgUq+FICfIaQHbF75ixAdkRIuvfTSG264obW1NSQYME1DSrlv37777rvvmWeeyWanGWOmaQFUogdSSsMwpJSMMQlCCkkZJYSS4B4ppYzF7PnzF1x22aWvetXGgYEBxqjneWoq1EujNGCMGUalXEijCWx+Q/PJbzzrLzkBqIloAnrHEYYR6aD2Su1Ts++rtovI9bM2G3HjzPJmQojv+1PT2bGxsVwu57ou6jae5zmu6wcmb2D28lDd8X1fcDR2fSGEkEICSEFAgCRCyQN9MMpUcBxn48aNb3zjG3XMsyxj37793/rWt559druUMhaLoRXu+z5ivOM4yNRt2yYa2w4aR1NASiklJdQwmBAiHo+vWrXyjW+8fd26dbX5QqgRUUpROjWfrgsEZRpdoOOo7p2zJ8tXCCB6MyHEcZzJycnRsYlcLqccmn4I5XK5XCohASjsD2lAcu4DFksVggtBAve/AFLnKFJEOM75r/3ar73mNa9R5qlpmsVi8Zvf/Obdd9/t+34ikSCEILKapqks1+np6Xg87rpuLBajjIFaAkIoIagSiVDTx8ETQigF27Zvu+22t771rah66VOEA0CPavPpukB4mRCAUVfoRBBXx7baQdfVfBpRAtR7n0j7taNsTgaq2eavPctJmZmZyWazmUzWcRylneOzlFBKaS6bRZmgQr8KjwWlzLCkAJ/zMO2HSyEkkQQkQBDlpZQBYGyYe553yy23IPZDwPjN48cH/8//+T/79u1LpdpisRjnPFBLpEQcj8hxAIjH4/o0CiHwbaWQlAI1jHg8DgCO4xaLM/l8/gc/+EE2m33/+99vGAZaLCTwnwpFYLVTWhcXdWyZzSTrC10XT5owwVr+24QjN28W4RUvUADIYjPZbG4ml81kC8WC4JILzrn0ue97vuDc8/3pTKZUKlEAKSQ6fASXQgpfcMM0k4kEY0wKUPq9kML1POFzCoRSQgEIo0JK4fvlcrlQKLzhDW9QvB8AbNt85pntn/70p2dmZtrbO/CiaVoQIDohELKb0G+DmGqapmnqiruUQkoA1M0w/CyFjMWsRKLbcZxMJvOzn93nut5HP/r7OkXhSF5s/eflAwbMLvFDCSyox+kb8f66/OOcyHSWvH82/dZ9Sl33PG86k8nmsplMpuQ4nHMQ3Pe5x2WAypwLAi73gIDnc8cpe74PEqQAIQWzzEQyGWatEZOafszgQnT1zKGMzWRz5WKxXCpLzsuuUy475Xx+OjN1yy233HTTTUoJsW3z0Ucf/8xnPiOlTCZbuAi0kdC/H6g3QIK4L6EUo8dCCCkEpUQG9wEAIZQAgEmZDZYEKbhAMgaAeDzBmJHL5R5++OEFC+a/5S1vQV8IIcQwjFOnTrW0tPT19dXuKLgoMnaW/jdorCycR6eN7qyjAtXep6trEbyZjdpDqlOvGvVVe49OXc1tj+ZysJGap3p0XXdqaiqby05nMmXHQeWGB0au8H0uQLa1taXS6d6+uZ7rOeVSYaYwPjY2k5shkpiWlWiJAwAaVJRQHwJ9vS2ZME0z3ZaQwItld2oyNz0+kctmh4eGr3/NdW9+85vVeGzbfPTRx/76r//GMAzLsoQUWLiyVuHEb0gbKp+Uc04IJUQlXFQlPoAE0zQt05RCuq7n+9y2bcaYaRrf+c53BgYGNmzYgDRAKW1vbz9+/HhPT4+SA7PXwusi2Xl7b+ou3Pm102gwr6hAUCqVMplMNpudmppyfY9z7nKf+9x3XSGE6wvGWFdvTzKZFACmwQzbirUkOrq7mcm4lCAJoxS9N1JWQrwAYFkWowDCA4NZ8aTVlhKGFbes0ydPrVi54t3vfreyQW3b3Lbt2U//zacZY5ZlEQJAGOdVDBhTG/AzeusNw5BCBBIA2RNUCUPFQcIPlBmEECZEiRBi27YQfGYm96UvfWnRokUdHR1o8adSqb6+vrGxsb6+vouCfy9nCJjEbERbc02pua6irUHkNqn/T/B/SYgkBGjwIfhKiJQEBAEJEgiA9pukhFCqa8VRoNHfUNuFYrE4OT01lZkem5wsu47neb7PfY+7rud7wvOEacd65s6Nx+M+58L3fc9zy2WnXC4UCq7H0SaVAI7jOo6H/JhLzEKQ6EjxZ4qJ1lbJjFKx5BYKx44eAeH//kc/Eo/HEfstyzx06Mhf/dVfSULiiYQEkkp3pNPtaq70wasMOTSLRZhhIaXEJDpCGCUGJQYlDCQhAIxQRg1GDUoohDEHAIjH457ntbd3HD8++I1vfEOJGs55d3c3CkZ9fXW6agR18aH5zXVvO+uz+p2zuadRL790CaDzKgkABAgwATWkQoAAMACQgAqtxATj0AspfM/HzBshBBdc4D9aboLv+0KAENzn4Hll2zL6F/a7npPNZienphzPlVxw33c9z+fS933uC8oYUDoxOYX5/GGOAyeECCE912eMcc8HgDC1LeTHAAKTpblvWuZUJlN2Xd/1Rk+fPnLw4J/+yZ/09HR7ng8AhsEmJ6f+4i/+olgstqXTqKOXy45hGOifIZpPRsvbIVKCYRjlUomapnLUUsYIThEAAUJDpQiDYp7vAUhCKLZsWRalDIB2dnY9+OCDl1566Y033ug4DgBIKVtbWx3HwUyklwgXfhlQsQFqKRLqKU9kFjZDIyB1hYAEKYFz4XPuce77nHM3SDtwXd9HRza4ru+5GHjyufB8H81U7gdeyCDnUWpDjYCUEnPrhYBE0lq9YonjONlcZnJqsuw42A53sQ/JhSDMIIyWy2UhBJCqbVwAAJJgDkLJ55h3JoRgTKnjRIIsFUvjExMdHWk375aL5VKpuH3bs+/5rTvXrF7tuB6E9uvf/u3fnjx5sru7m4uA8lV4GEJdH/Uf5aTHOUTej1miQohisUgZU/vFQnmHIoJgoAKJh9IgnS4ej5dKpa6uLiH8b3zjG6tXr+7p6UHHLmNMSun7vp6FWrvWdS1D/YMMQ351WX4j3NOfre16Nq7P2tYiw8brFyoBdDFU+6sQApMk0eHtBlgdgM+553qeK1Gz8LlwhB9sHxGBZ50QBgCUBHF9KSklRAKhlEjBQUlAoABMEhY622venABISYAKztOtsVUrl1Imp6enp6anMK3f933PdTF7zRfADCYZ9aSQwbZGiUHVAKeC6FYQtCKEWKaVz+cCvQrA930uhTRkeTqTyUx7JbeQLxw+fPj6a1998003I/YDgGmyr371648//kRPTze+nj57CtGVyI6gEWMMtOwdqe2xVPcD4EwKAKLmRbWTSCQcxymXy11dXYODg//xH//x8Y9/XOElY2xkZOTEiRO2bVPKTNO0bcuyLNO0LMuyLBPFFNOori6GwMVLI73oELhBRTg8KSWRQIGEuCXR6YbfpCSYXAJSSiBSALJklRngOrxULpddx3Xdkut4Lu5M8n0PpAAfNRd9FaUEQgnBCA9eoojCkkhimCR0YgRoTYIdhBKIxBknUgIwXFpsQWc8EPAnbEAKv6MtsXLFAACfymQmpiddx/F8n3Phedz1hBAgCaUmEwAyzBRAEYTcWYZvHwobIAajhBgWFVIwGuTYCCF87gshXMcrFouc+yNnzszt6nnve96jOz23bXv269/4RntHO2UmpURIX7n5heCUEkqD2JniqsEcUQIAhmFIAQRYZS8lIJ0r9h9MBd4gpSBEEkJReBAiGcNNZ4Rzv6+v74knnti4ceP111+P2r+UMpVuLx88Njo+BpQCEJA450AJZWhbGEHukGVZtmnFbMu0jHjMxiumZZosAEIrQQxQYUEg6rOUIAkQQIxDaw9IsGOujoPxnOJlEVBEHoZOqEDEkUGllGBMQgL3RJAG47glx3HKTrlcLpXLruPiDhDEcRnE/rmURGAbhBACEiQlREpGCIFwDtSYKsRwjhxChiOcHRAqqOC8s7115fIlQjrZbHZqegqlkM991/GCDbtAKGUSgAsBYUhVRakgEAXaMDA4RQjn3Oc+o5bKC3I8FwBc1+dcZHO5YrH4Z3/yP5LJpFJvxscn/vZv/xZNUtwNE+BE4NYUhDClBcl6wiH4W9lJTJTjEskswpWD2zUCEAJwe7Hn+fF4vK2t7Rvf+MaqVas6OztxTS3LXL5i+Y6deyQBABoQAHYhJfe450kAT0hUC4NJIYRIEJQCJdRklmEwy2amYVi2Zdt2zDJt2zatmGmZtmkahmkYhBmUUko0RkZBCiKJpFKqpi8+GKg+eh7H/EbHcUvlctkpl8uO47iu47mujwQghPBFgKlSSkIZAQIQbNkGIEAYUInLFb5FwLIpDQOZpEKdsxSLio81uQFk2GANrkgpQQJwr7M9vXr5EpeXZvK56enpsuNgMo/roJwShDJGmUBdR8P7it6vOTr1t2DMwPlBVSrYIOb7lFHP813HPXni5Aff975Vq1ai8oOs+XOf+/zY2Fi6Pc2YwZiBiTq6TqyUbxLuaVQ3KAJAjhLmQlcwXqlPutlAgnwkQghFwRZaF4Dr0tHRceLEiR/84Ae/+7u/i6/Jhdfd3d7b231meISxukoOI4RQXABaWSVCpJBSCCKELLseFEsyXEQCAoBIQhmllAKjxLIN02S2ZcdjsXgibtl2zI7ZlmWapsks0zQIrcvIpdZdfRHRxELAyTS2bnvWdd1SKchrFFz4oBQi3HGkmmQQTgGREgJkFxJAEEB1A4AKkJJwAGBBK+dZnkl3e18YECm97s62lSuWcMfJF3LT09OlchnDXLiXxfc5AGGUYgpnwM9CqA2I6iClpISWHBcAMEcaN0kKkFRQ3/NPnTx15ZVX3nbbG9xQ9bcs4yc/uefRRx9Nt7dTygCk73v4rkqbD726Ad4rI1iFDjAOAASQqyuVLAJ6I4QoRCEq5ycks+DxefPmPfDAA1dfffVll10WukHl4oFF4xOTnNftomJaCABJAIgAEAAUgAFIEahmppLZJGArwIFwzj3ulz0upQSZp5IAQectWIwxxizTsCzTshnSRjwej9m2bVumaRkG0w10fUXwX01uNCQD4+TwNBD0HxNCGBgMwt3aEDSgjRobQ9daME4CGjtEYxUFZbgLVREphA66+umlil4DrT3wiBCQIAIjQBuAekoAoUSQkL+oRgCIBCGBC97VlV6xfLHrlWeK2Uw2UygWPd/3PN91PSzbAIwBYb7G8mW1/hO5jhYxvroACZSUSyUQ0g1NfMdxgBLGWHZqMmEZH/ngBxllmHNmGMbx4ye++MUvtrS24vZ2xMUQKL49Cfh6eFVjB/pFZjBCJZIB0RxEut2sh4SVNEWhgVSEtIGen2Qyadv2XXfdtWLFCtM0MaKRakv09facOHmGMABCZUhFEoDhVgciK03LwGGNX6T6JdDwQeDy4TVCA4MFZzWQ5wQAXCmFxx1fioKjbDpCgBFpMMBiMLZtxeJ2PB5vTSbj8XgsZpumZZiMBa9cQRkkP4V/CiMNTKMFifzhZWqqnzdI7vd2d6xcucR3y7lcLjeTLRQKXpjYjBoLEEIZrWC6hvpBI+EV/CqEwGCEVJqelI7jmKaJqO84jud5lFHP80ZHRz/5h5+YO3eOGyo/nPuf+9znisViKp0O963XcQKia0WhNWgiUQiBnA/JhRCC2wMiqI9N1Tpnwh8p8jfGmBAcBQu6Pvv6+vbu3btly5YbbrhBhQXmz597Zmikvgx4kYAEdK29ArpgiMvB9YUslSWUpBQgJaOCUmowwzAN27ZisVgyEUuGVBGzbcsyGWOhjVGZ8IobVEpdZJwlca0BBDhDahzDs1FmVF+zvrmO2qeNBTgX3d2da1Ytdr1yLjdTKOSLxSKGEjDiG4SZGONCVtw9musasarGDhYgQRIZrAalnu97nkcpdbW9MrYRO3PmzGtvuOE1r9msKz/f/e73t2/f3tHRoav4MnBcooUaaDj6DTr/VlSh4gOMMcxiINWgqCISOoBA3gpCiGGY5bIfj1uu6yLV4Ztu37598+bNgTSWfltbsrOzfXR8mhAJUPG0koCT1zfS1KJEVqfJWqPNpr9vBETArtFZIzDpD1Vxl1OXi3wxDyRPQxWCUmqahmWbiXg8EY+1JJPJRCIWi8XilqH2H10YEKhrpDejnQaP6DeoW/DjWYlCozgAKYTf3d25etVyz83nsplCsTyTzwdbGF3P93zPF0CAMiOg/Grfjo7utVoQfpMEuO9bplUulYTgnoe7hH3f8wQX05NTnen0+977XpXSY5rGsWPHv/GNb7S2tqJnUOn0oSxBRKdq+jRWDgqnlVaDRAJhQE3dEyojVfQAFXwKQmNSAiHUNFmpJLCdbDYrpWxpabn11luvv/56rbQWoZQsXDh/YjIjJQEC6LhuviBnXeNmT6q1UB7J8CtQGawWIVIK/F1ilgChAEAoVryVACCkFBJ8V5TK5Wy2iOYqI5QyaprUti2jul+iEEGb+Dre1sqvUhlQsnKzDLzXECKuTvEkNJuqkY7oj5PQmABSh9nrAwuEmiTK8UQBuOC93enVKxb7vJzN5fLFUi4/4/quh5kOPudcUGYEo8bEHYjgdwB6/RL9rwTJhfR9P2bZ+WJJSoH6PyZO+443M5352P/8n53t7Zryw//5n79QLpdTqZTaagOa+zLEVcypxupwGASgBKjqHSWDKhUKIQEo8pBh0kRFUwr5uq4fhfFgwCovjLHe3t7169cvXbq0tbUVt6EhDQguOfgd7W1z5/WcOj3CwBSMBrZstZteSXsChOJ+NHIWFUCRq3YFFO2g+afwQiBGhF2gtUlCNBBYNkYCARBaKxQIoSBD60VI4BI8RxbK7kXOBZqltjP71s7jEeH7PZ3tq1Yt5547NTVVKhcKhQLu4VLFqyQBGoa0EJsRr7XIV5VJoJsB4UVJhCQSKKXFYgEAEPtRuZqYnLj913/9Va+6Uld+fvzjn6LyY5omC7X2EC9BY98hHQReTklIkMyj83Ia1k+EMGlChh5SCIlEz6JTj0spAASlDOtQMMYGBgYuv/zyFStWdHR0EEJisRjSp+d5MnCVEgBCKV2zcqnrlifHskwa4r9y9fVwvisbYqJZ+PpX2dSfCuH6QQVlA1FbX/MLnExVPwa+AlLlu1UsrV6P9fJPCHAhejo61qxaJgWfmp4ulkqlUskNkx2CLbwA1GCSa4geEgDUEwJVao+UAJIHqUteySkXS6VyuWwb1AkDC/n8zMDAwDvf+U7f5zhOw2BDQyNf/9rXWlpaMH1AzVo4+DpZrBAuEiEEZF1OSVgoAdQyKaWo2gGqK0LU97nnOR0dHatWrVq5ckVf3zzcHqCcsNg+2tZBX5Ry7udGRgbisVQPPTGZxUSUsM3I8oQ+HqLMzsodShbVwQ0N6mKdov+qdqpRV3+q8hnLswbOoErL4fkABLWWUKOoY1PqbsjqoplQ8z6kogNF6KdqcIAOP1C3BTQjVY8kVPYCmlJcU31QDQNI6YuujrbVq5YRIscnJmYKM47jYKJbyP65EJIYppBhTgNIiX4EkCChSuEJ4mEixHxBJHDXc1zXcR3XcYXPueCO6xICZiJWdsrc8z3HFT7/vd/93ba2Vsz3RMz78pe/nMlm0+m0aZoQrpmGl1TNT8izlTlISZiZogsNfRIUvyeaNkUpEC3sSCnl3Pc8P5FILF++7JJLLunv708mkyoxLph0LflUfzafyR595HF7LBuXorOvW8zpHpxxJAR9hKwNESzUPdD32JSBno2xhi9LAjOw/v2B1hO8r6y5JVSPCbakI7mmAp2zuhE+VVfladJawKw1g+NCANVZCZx7Xe3pNatXUComJianpqckSMdz0NMfuj2FEJIB4QJ3zGomQIUgIGQXEkOCUkjPcxzX8coOdz0f65xzIQX4vid8jxDiuq7v+SBldnr67W9/+7p1axH7AcCyjMcee/zRRx9taWmxw/INgditLGeVjg5AVJaOZhxXlBxFOej/iSRsalxZMkaEwJqhMGfO3Msvv3zVqlXpdJoxRghQagAEQTRKKxvKIlKXmMaJA4cyDzy6uC3BLFNMjHTnF0/O7ctyQkllEatM1fO2gMO3iKxyrR5QJRKr7eZaCKii5reznBBTWRVQ2iqJIPdZZZm6XqvMqNakrGo5KjFCQ7yRPBHc7elOr1qxjFLIZHJjY2OUUddzua94v4/VaqUEWq3cRxR99eKCc9/zHIzseg7nvhQSpBRScM4Fl1JI1KpQXRZCFAqFVatXv+Utb8aEHyklYzSTyX75y1+xLMuOxVD50RWSsOsq2c0YNQxDFUnH68pPj1+DHEzGQHOAQsXjKSklvu+7rm9Z1rp16zZu3LhgwQLTNJV2hHNCqWGayoSoTIW+jlSAaVq8ULRi1KbUdgU/c6alPZWzWoNFUesGMjB8NZW4CYboHUVUo+aYWdtarahRXyuKHN6jMZT6RnDksQuEuqh/sUACCM4Xzu1evnxASC+XK50+ddowmc+rKhZiSrDnebpeG2F1OP9CcM/3XMfhruc4jvB9KaUUvuQcEYQHB2LIYNcN54SA63LHcQglH/rQB23b9v3AgWgY7K67vj08PNza2hqzbX210HWDajcG2RQSW5alCnXWYHYANLRwASBIt9TA97njuB0dHVdcccVll13W3t6OtzPGVEFSxhieSHDW1fG5P2dp/+Aly18o+Qaj85g537RSpdKZeBtwuDBe/0sGI0Ix0JAEQ82KVKiqlkbrTqW6M6C/8BapS09SbUvUi0lXuguNbimkCWLpioH++XM594t5d3BwEB3DgvtSVLBfCMG573PftCzU+0mg4UgigUshCHDucdcrlx3cFSM4or4I95kFmwIE7r/hXPi+QBHDfeHz7HT2/e97//JlS11XKT/m7t177733XjsWN0yLUINoooyEXhohhF7kmVISpp1VuX1IaPIGrj2VDxfuSKaUAgjHKQHA/PkLNm581erVqxOJBABYVqVELqVMtd9o+UIFjQQyQYi29vRrP/YR3xOcey/8/NF9X/9e67JF9NZbw+XUlgZNF1rfftXNGAg0YdVCEPtVeKizcB2FovhQiyGIQQRk3epGoXyS57Yl8vyMhAYtycj067ZE045IaG9J7qfa2gb65+3c+dw//d//k0qlrr56Uzweb0u1Oq7jeR73uaiWABIAKBH4QQW4hPC457hlz/G46yJ+S4X0IeaH7J97ro+bZHhYBFpyMZPNXrnhyje8/laF/YQQ13W/9rWvhcY9i7yxWhh00qMiLqVgzAJVBSUCeHPokA0z7RluyimXS4wl1q5de8011/T396viuwCgtlZi7mdd002hXVgILPA84HxznxOgpklN07jkjbcNP7vj9N59Hb+2WZoxZWMiUELRrJqNDhM6OkIt6Kzr3ry1atICFaWuvgkvYnuG/jDRPAzqyjkNKKLP1d6JLRIZbmuvoeazvieRUnKfUFiyeMHU1OT/90cf27Vzd7FQGBhYtGjR4ssuW++65WKxCNpBXcjHfT8ISEkAwQVIyX21lcfxPFcKiUaClCAED7l/pdi/FMLh/vLVK0uF0rFjR13PxUZ8z0ulUr/zO79DKcW4r5TSsowf/eie/fv3q7gV+mEopa2trYSQIGVIS1+TUhqGgWo6hGqSLgGQAESYxkwpJZR6njczM0MIue6662644bU9PT1KLKCGpjLewnWpM8NCiFKphLu7SJhCxzkPKmpp+CCEZIax/m1v+vmnXpBll9oJKaRysuA/Cu8aMenKcitMlfWCsLP42gh/1D/N3DEXviXyJQZExc5067JlSynxP/mJ/75v/+5EIo0iHkBihUJl+AbMH9FXSgDiua6QxPU8oZU1l9wHHpVJCkINinuut2jl0l+77fX5QmH16dM7tj1z9PARIUShWPzdD35ozpxez/VIqJQPDQ1/5zvfQTSyDZNSwjnv6em54447Fi9eLKXM5XJHjx7dsWPHsWPHZFjhWYWuoN5K65ltlJJyuTwzM9Pa2vq6172uv78/mUzMnTsXNRwppe9zOusSn67rAkjDYJRSx3GF4KaJZRKBkMDgzuVyQohUqlV6Ts+yxcn+AS/vxlJUwn/hw8iiXiB96iOqWC23rrB55Xol0ZhArVUgw4TvSFP1eT/BxDMCkgjhJ+Lmov6BhX29lmX92Z/9yeFDh5OJtBTScZyurq6dO3elUumA1wruc09gDjshAJQxk0rpOS7HE1qEoAwIMRhjQjApuZASDWRfCCk4kSC48H3uup70fclloj296frNZc91XHfpmlW9c+f8x7996eThozfddNN1r36153rqfSml//Ef35yYmEDWyxiVks/p7f3IR35v4cKFmF/Q0921bNmSzddft2fP7nvuuffMmTOGaaIyE6hG+CFUkyilBAQhQEB6rlMqeu3tHW/7zbdcccUV8Xicc47SAykai15pS6BvadBJHeN6wjCoadqe5+XzecaMRCKJ+ycxJIxKmmVZtm0TAtIQlNo96y+bKpeUG5oQIogUgHk5RFaHjnQEq0YJEqS1adIDc6t5o0BqjbHaxIgPBqNiS1UPCngZlEU5C2DVHyl8xsjCBfMGFs1PxOOUyOHh4UceedSyLABSKpVaW1vXrl174MDBkZERy7KkkKZt2DEbnSP6XpGAiVJKpRRSCAJSSEJBSCBIF1JQSiRhwAVllApiWQR3uL7q1Zta0ylqGYnWFinEnp07p8YnBgYG7rzzTv3UCcsyn312+0MPPYT6NLJ20zDvvPPO/v5+7UAGIX1pmsarXvWqlStWfeuuu57bsYPWz14OuZIEPJpp/vz511577apVq4It+ZYpJaArFg+WPIcZJkQIns/nfd/HpO7W1pRhGCQ8q4+ETlg8p0wIwRgVQi5cs2Jy74H/wg4gANBrgzbS2vWvtdcDzk1CEiNVcgMaU61+sfa6ukIEByE7O1JLlyxKp9MgheA+NRjGiQDD9SDXrVs7d+7cF144ODQ0tGjRIs/zym4pk83Ytp1IxC07jqlvqAgFOj0eYieJEBJD0uE2SBwZBHp/+MF13Rf27xcUBpYtsVqsI4cPbX3iKe64H/rQh9raWlXODyGkWCx9+ctf9jwPlXjMwrj++uvWrl3nuk7tBHqe19Laeuedd05NT4+Ojgb7equP8ZJS5vN57nvLli29/vrrly1bhj8hdXFe2d4VUfGbuziVhWNZlhCipaWlra2NUoMxJiXn4Tk3tUhCCOlcMNc+fSYIA2saP4GK/l37spG11j+F/wUXI9pBxJLUm1Jj06+ruwOzh1SmVJ+TX74EiLh/tN3uUgiRsNjiRQvm9fUxRoXwcHY4h97eOa9//ev//d//vb09MW/evMsuW++6zpw5c8rlEuc8m8tmsxnTNvP5vOe5BjNbU2nLthPxeLq9Pch4ERLdQUJICHMiINQPArcPAOe+63qe75mGOXL6zKmTJxctWbxi5YonHn1s7PTQ++5895o1qxyncsaCZRk//vFP9uzZk4gngACm6c+dO/fmm28WoqGuzDlvbU2uWLFiaGjIMAyl9ACAEHxmZoZSum7d2ldfu2nhwoUAhDHGGEXXFmPUMEycLlkprtFkvgHfL7SLgBBi27ZlWZRS07QIIU2pBgCAUBJrbUn3duVLPiFaBLNuZ/UuNhmc/rV2IGd1Bp21/XBUBACMKpmr5yQrEqy+WNWcTpeBc1IRrtI7K1kutS1QEhbZoURKSdF9xqgQkkh/bk/3siWLWpMJNGWVsggAnPP/9t/+QEryk5/8ZPHixd3dXblcLhazOee5XPbuu380NTXZ0dEhpGhpTU5NTnZ3dU9NTc2Z09fV1dXZ1dXV1YVZmQ73fckxFVoo1A+9khwkF76QPoCwbMNO2IVS8eSxIyePHR46eeb6a1992+23Kb8nBIV0xn7wg+8zxqQkUkishXTttdfOmdPrOK7OIsMUX6w75HsemKZBCaWY5ExAcD+fz1uWddXGK6+77rre3l5U9Bkz0Iqh1AjT13BTJVWN1zB+rZpD6NrSiQEA8KAxqaXERta6SkcAyUyzoy2dL44TSoFQibo7BFqAUuVDVKg4Rqm+5VrzBhGcfiCSEgCgQhJCOHB8CML2SRgglDL0GxEioBIooBJA4j51IFJWEoXCFHvsFfOlz0EC1Jgvs3ykTvBCl1MV7YoQEJxSKn0/ZltLBhb3zZtLieT1TjwXQpim+Ud/9Ec333zTY489jtbb1NRUV1cXACxatEhKMTk56XN/eGTIMIxyqYxFZ4UQ27ZtI4TMmTOnt7d3Qf9COxajjAYbcFR2HBCQgkpQ21YcxwFCgAtG6OjI8KKFCz/4wQ8CYHZxAIZBf/jDH05OTuLbcC5cz0sk4jfccEOk0q0OSN6UUu77lBLDMHzfn5nJ4YNXXXVVR0cH+uZRUQmDWVH3DqnOpa0FVJZQEOlqLfpJ6TlWIaCUJuKJWqNFbzz42oD9nRMQooKl0esXYodUxQEAgkwJPa1JVt1w9lFW1gCNA0IjN+ifSTg7Ao0HQjjnXe1ty5cvS7W1CM6hcb/Iydavv3zdukuGhk4fOHBgx44dBw8eXLBg4erVqzdsuMJxnPGJ8a3PbBk6M5R38qZp5XIzPT29K1asKBQKExMTJ0+eHB4etiyru7s7nU4blmlalol1npFKSRBMwApVkksqYXhouKM99clPfEIV+Qmm0jCOHj3+i1/8AgB832fUQEZ73XXX9fcv9Dwf9PCQlACEc86ljxzX9/3JySkhxPT0dCqVvuWWW66++qqWlhYsl2JZQcWhujYuISSIf4eH2URAxTRA40GYG2EYlQIqkUeaLDTyNcu2As4Vsv5Gbnd9UPXuqXBCANzxUuHo4SsGcWl9eBUPQfXgkFpC8VBVUiHAcwAMtBv6kzIykuqh1ypktXMd2CtAAILyBiQozBZ9y1pVTUpBJV+0cP7SgX7DYIL7APKsVVXwbPR58+bPn79g7dq1u3fv/ulP73n44QdjsfjChQvL5VJvd28ilsjP5H3fz2az27Zta0ul+vr6lixZIoSYmpw8dfLksaNH++bN6+rqsiwbfeeGYcRitmmawCgFIrkQQpQKxeEzZxYt6v/EJz7R092j8j3D2ZDf+973CoWC73NCKBfC871CoXDttddqbDLwqAghJBcSgAvuea4Qolgsnjx5wrLM17/+9VdeucGyLN/3CaG2HcNws6Hq5EUhcGtSSnxfRA530RSeKlD5ds2nt4EaDwAgJZiGYRDK1Q6PqiFVLpCaTWHVZkYkBUC5vKRuy5LqrHutwepAdHVbUI39eo8EgIA0qIpCSxnx4iMLDChMAMgoxtddDxIWNwTMd8YdbaEdgaSHOR8iMMxxNNwy6crFS+bNm4c6OBCiWfNVUapIxreUmKgGc+b0LVjQf/PNtxw8+ML999//6KOPHz9+3LbtZCK5YNXCRCKBlS5z2exMLmea5rwQcjMzU1NTudxMR4flOOVisSQlFl4nmFAghSgUCr7vb968+X3ve19LS0sE+y2L7dq1++mnnwYAkERwKYF7vk8IMU2DEADgUhIhUKMTnItSqZzNZjOZDPrsd+58/tprN1166aWxWAw5vWGYiLpomNZOtZoZjS/6AAzC/ZOK6+vAWFBCt35zUVLRlIHwV5QeUgIzCCMEff8Q2N/1XUbVnh9EcT0fiejYH/xB/UHlMSOaRNOB8ScZFAbDFych/YBmAVT60Pi8jKhANZMcIbhabX6WoB7XpxMNH5AgBE/G7ZUrV3R1pOpq/LOEQF0hcvny5WvWrP3wh3//+PHjO3fu3Lt37+HDhzOZTHd3dyKROHz48MDAgGmaxULh0KFD3d3dnZ2dtKvL8/zR0dHOzk7TNJErc86xzAlIuWbNmne84x1r164FgMhZ04QQz/O//e1vu67j+z4q0wz3FjJ6990/WrVqVWdnh491pEGOjAyPj0/k88VcLud53vDw0K5dO8fHxz//+c+bQSwMkYxgonITkJUtQYhnwebgWtQnoZ8UtbnaBYKzqT0QHmevvmJ7nhAvaj5oLTlpH+r41s8JM5sRQDXVhpfqeXOrnLIAtXkggVEQ8dERIACC87a2tkvWLE8kEpxXMskajfisdpqUgNtfCKHLli1btWol5yKbzZ44ceLIkSOnT58eGBg4evToiRMnUqnU3Llzh4eHjxw92t3dTQh1HNdxnN7eXs5913UlyJZk8tJLL73xhhuuuOKKWCxWKpWIVoITwbKMhx9+eO/evUJIxhijJqWO47ilcklw/+c///m+fXtf85rNK1eu6ujoHBkZ/slP/jOfL/i+KBQK+Xw+l8vl8zP/7b99dN68eWF1E0zw1Fe6DnieJ4SPOT9SBlFbzrmO34HjhTKN60d1fREeMKO/V01cSBJCsfQdnkgppQhqswleiebqOm6FaYJSJaBiA+gvVaUd63nB1dKjRkGPAol+1v0sqMZHUp5/9sCTACB0bUNJIVnVmJRSaMocDSIMgVQCpbdBgKSEUCUxgYReN6m1R0Byv7szvXLliphlaDMu6rxJ8KTAWpdn41XKxxeYJSHzo5j1NTExcfz48dHR0cnJyUwmMzIyMjg46LhuS0urwViypWXB/Pm9vT2LlyxZvXp1X1+faQS1Ox3HCeNNAVBKC4X8H//xH73wwkHGDErp1NR0sVg0TRMLr2OFK8w7ilk2ZdSOx9OpVCwWxzRm27Yvv3z9u9/9npaWJHLxWruuiptICQCe7xeLBUqoZdvMYJlMJjwpVeFxgNPV9QODyVQJTqDhhGVVPEsYXKtWXgA0wvA87vv+3n1HcqUSDdc0crdOAJHlDK27iHKLl9B1iDc2q0vZBIKgDiFSMWQIihtLLLQh0QhWdepIGBuImDBq3NUSJygMpdvXAXFXrlXERQWLZTgzAoSY09O9asVig7EahI4YRgD1oyKNQBc++OIVlQC1/4ULFyJH5JxjCp3rurhguG8d08iQO2JYF+p5xwHgwIEX3v72t7/wwsEdO57fsWPH+MR4PB43DOZ5IAQYhpFIJBKJRFdHx8KF89etuyTV3lEoFFtakolEorW1tbe3t6+vT7U/CwkuAaBUyJfL5ZaWVsu0fIEn5FFUnACAEMCq5aGOhMMO3Pw8ekZ8wLU456rAhJSYNtJwzgNJxVjAzxvvWjwXlaSCLReoVSkmQsJaWoAbrAmICpYTtUMvGK5iPQSCLQVVjUKNICNa7XrNUaXMfN1ekWHhbCl53Lbn9/XNnz+Psai0naUzOuJYmD1gEDRibBBCbG3Hlo70OuqjeaoewfjDokWLKIXly1fcfPMtxwcHn3766Ycffnh8bMzzfNM0Y7HYwMDAjTfeePVVG+f19bmeV3Ycy7KTyaTKaoYa0qodc2WoAHgaUmdnJ2NGuVyeyc/E4nHDMDC/mjGDMVVjNNBapcRUWV5rFqtORLjrEio00Gg8wQwwxkhUUQF90urSc0iWzSgjfLD+49X3RFqOXgxXUVIM2AV8HEizdGhtU48et4oOMdz53+Q1cInVNllCobu7a8Hcvo5UKtyQ/suHWtau8FL/SXe0l0olx3FaW1sNw5CSO44DQJYuWdLf33/JJZdks9nnd+yYmJhIp9NXXXXVpk2bAGQulzNNK5ls0fGskfO+ESASJxIJ3/dzuczMzEwimcSD4FF0McYClhd2Ee6LOLsFpU+JGpTaGKSUSUyjIISYhgmavn6Bq6kzoAtpp7bZ2uawLwM1MVpx0YRCC/OQoaqICvo3QyMhIGEpBdbeIgAS8AASJArkNNIwzJa22MRkhgqIWWZfX29nZzqZTIR55Hizjm112E5IhFW58rpFPpspq71Nn/FQ5W22BsrHUi6XKSWpVArC/VmWFbPtOAC4rrtu7VrO+WWXXuq6LqXUtm3P82zbtpI2DV2ratdL3fE0AS6kL0QhN+N6ruu4ram2dDolpWSMeh66lVGzxwHLsBhSHagJfpHQlJMQbCcEtaMOh8e5kBKECFyChonlonV7HX2ieMhPxXmo/w2jzvhgHbNBW6k6E6KpIVpid01FKYCwCooEKgVIwA29RAsdGIEiUx0tCF8i2r9uIUTH1Pib7/tSCIOQRNKeP39eIm4nE3FKqpIIZg3nwCnPCahWQa1h34QQrIDi+7Ztm6ap3VxRkwzDaG1ttW1bhoc3FotFdCCiXt7IBz8bIIT4nGezOVR1WttiyWSSMRZOptQdAL7vcz6rrYkIyH9I4PMhqONhea/Q8YDpq34oIaVhRvNPX7QlisLs+wkK9tM6AjDYEBNaTjR4f4m8nIR2rdZWJZhfmSYVmaqe6wqrLuSKrYn4nDk9lmUmW5J4KkRkYZqz8IhOqXOUSNeNFMRa761+m67oQz1ZQSnNZrPZbLa3tzeZTKqbGwkKtDXxpB0ASCQSaFUrSot0fVYI9XjBGOvs7KSUYkWgqvptYYNqJ7SqOFQ7FXXnQUoR7hsGx3HwdL0arqwGIzFqETWBCSoLASXpcyjDyr61XYO2vrNS7iMOzboPEpDBAWmVZ3D20Uh6KdKhpZSWac2d02tYtC2VMBjTmNQvGXRdv9E9lFLP88bHxzzP7+3tPevRuagjYaVoQkhraytUH/l4HuNULkvVBfo3wwarxoNi5zx6AQDP8wGYnrmE74o7lbH2o36/2m38XxSMqvMV1WxWKiXWOkMhmG5acdfoNobGmCn6XE3K5s7pZIy2tbRZhi1rfacA6KoKLzbUEM5C7tX3NHlWhvWTI7/qHE7dOT09XSwW2tvTiURShvV01a+RXpS9aJom7lRGMqjV+Ou+QsQhBtXJPMiGGSOKSYeP4zRK3/dDg6riQlHSsv6cal1ja57HcT8xPo7B4/37946Ojq5cuXLu3D5X3/wJlFEJUt91RwieEENASqEfEhcq/BVjs2qqqxeLallk+kSp+ZKaLqAr5wTbJOpyNHNO//qiV/glIDrbU6ZlJpOJWCz2MvH5nFULR5QtFArDw8MAMHfu3Hg8XjerDMK1wRPHsAoDptMBBGkzEWKbDSDK8vCkewi5fl0TAu9E9nyxZhgHbBhGPp//gz/4g5tvvvmtb33rLbfcfM89P7Vt+6J08XKAypZIAIDg0AQIaVQLYNWUsIN6aKSURXVbMma3tSQt00wmk5oGD7W2dIQHvxhAwu2FOjrW2gaY/T81NUkp6+npMU2Tc19G4plhg0II3IyLeK/r9zSs/aabK7VCoLZNRGhFb0hCWkC3EmmJ3KmiMhGu32RWIyurnkLSLRaLv/M7v/Ozn90Tj8copadOnfr93//oggX9l156qdrcTMJdH+oN6r6gNvNRc6vy2Cx8YgohG91Q1WaNtxCqMa3GHKn+fCHKHQFJKXSk20yTtrW1/XI1RRKWhWp8S+CVk1KMj4+Nj4+nUune3l4aHmOhN0XCvby4RZ2EWwr1eVde89moHzqguq8c7UYI0eFKKQRXJX9n3/5ZQel4pmn+/d///aOPPtra2opTZ5r21NTUP/7jPwrBG2On1P5/uYMRcKyQf0CYP13h/YHChq/GSZhfGrIaXXfXLAQAAjwRT1iWGUvETcus9thAjXdCPwjtIkNzdR87xeHl8zO5XK6lpaWzswOAqlQZPfsID9jDZnWkV4xTCQFozKJqf0I6URp/GCMmKmVfERLuh1RoqnonhEhJhQBK67unGtFhRAig1LJt86mnnvjOd+5Kp9uklI7jlMsOAInFYg88cN+zzz6zcePVFSEQ1rkkhAS7LauMk8grC1JtuKsVIbWPBP9WKLwi6wCqnUxh7AMoANDw4NAqrq+3iViofp4NhyaBz3RWGi0hpLW1dWJiolgs/lLYP6k6B7cCEdRRN09MTGAqaFtbW+09UkosHIIGboTl6yDC04pm/9YyDNYiyaGuHxm5DOrb+ZgxOsuWzwNkuAX0H//xH2dmZmzbbm9v7+3t7ejoQF5QKBTuvvvuurmlLw2QEBr9OvumAh9W3Scq5rbSX7Ui6c2VMCmlYZiJRCKbnZqYmJg/f36tmK6rG1SYwfnG1XXuWzs8hdnqREQpgRA5OTmRSCSSyaTKDVYTIIRAVscY0+2/uiy2rtrdfEmwRyQbxHv9OdygzLmv+x8jvD/S+znNXq1FJKW0bfuee36yZcuWjo4ODLQRQizLFkLiDp7t27cXCgXDMKWMni+IA2/SY13k0a4QgAr70E2FiDMn8haqwfBv8BxoSFX7ympLpLLwZFjaseJTChU7CNuqRJKbgGUa8Visb+7cwcHBl9j5o9R0/BrklwsKVDJqAEjXdacz0xPjU6Pjo07Z4UJI4GtXr8aTgtRgUdEHAPS9zBKrcH5no5crtQdRX7dSpJQAUggpBG/gfHpRANm/67pf//rXTdNMJBJ4jhjaUOl0qlgsSCmGhoZHRkb6+/sDPaNGaSGRVqt+DD7VO2pSf88mE1ilyzT4tfaKwm0IcZgEBbtluLFIfahYBdWD1AhRf5fgWf1SIh5vSSbb2pL79u3LZrOtra2zt9V0472eyt7wqWoeoB6UhFJisLJfmhobPjMylBufch0H3LLFeYJxt1jIlbLf3vbUgmWr3vabb0ONH/2PKt5UV3GqO2xZyXWZ1WjRd6T/hH012s47m9moK52azKd+3bKs7du379ixI51Oo7Xjeb4QYJrMMFhra4vrerlc/uTJkwMDA0IKqI4TV/PnICcvQgCEEBrit0QmGz2MFJAAwrbUye/KvCG1SKJ3GrYTCeyEfUIQqW4YCdbf51z5D46mtbXVsizGyPLly5599tnNmzfXelQuIuh6oT4jyFOzmamjxwdHh0fivNxuGEtpOWEWYjKftGYYccD0Sdq9J8+3HT4qQ++KsnHP6fUJIZjpOftYrL6Qstqt+dIDUu9//uePkPh93+/s7Lz66muEkE888UShMBOLxRnLeZ47NDQEQIIdJqQhTf6yXqQW6iqiwWGdioJ13tnomVp2FbkuAQzGsAi4z/2BgYFMJvvkk09u2rTJMIxISB+q2U+jviqN1yi4dU0iKSUWshwaGjpy5EgxM91uGZe1kB4iLHeUeJNE5ADK4HlgGxA3zkzL54fc33zfmwkhnueposq1OuhsoPnN+lDVhKsQcpMHm0uDerywjrXQBFMR+ycmJh577PFEIuF5Xm9vz3ve895ksmXx4iWXXLLuH//xHxzHtSzLdd2JiQmsnC6EvqGwzjzUt8RqtqBrOECUDRYud22DUVHf6KXUI7XMESpu0OpBRD5rF7FmWIVjRR6RUhKQIKVtWclkAh1eQsj169fv3bv3oYcevPzyy3t750T8GE1eoPZ9oCLOgoyG6rkDQsAwmO/7x44dO3z4cKGQj8fjth3LF/NHR0fM+MzcljEOglJSdoyJfGzO3MQ4T31j35nX/9YHVq1c6bquYvznpIDVDjaUxQ2ZiLIBmkRwZ3NdN+8aPVLXMq6lFtR/xsbGUqk2ALjzznf39vYuWbKEMWNkZPiaa6558MEHYzE7m81MTU1y7st6DlmoNlVlJVkS1e9w36yyJ8PD50M8rR4kgBadC3ZlhXp8YDGH74L4qZ6rQyGaO5TCi1UbVIqWZJIZlT3BnPN169Z1dnY++eRTvb29GzZssG37wuP2tQ5ZwzB83z106MjBg4dc12ttbenp6WaUGkCnQR7OtBw/cvLOSykzDUKZTCRidnrY6PjB9mNveNu71qy7xCm7pmnBRRPcsi72B7+Frs/zUDJfJEBzHOta+z7fuHFjW1tbW1vbggULnnrqqeeff37t2rWpVMrzPEJkLpf1fV/U8XqhRkRUkk6Fk4YafFRlV6QAKgpQZU8GPVRfaTxlFRP5rHNrkAbsvxaUJGp+mwSglLZ3tEea9X2/r2/ubbfdtmvXrh/96EcrV65cu3ataZpqp5je8iwtSF2ooYFx+PDh/fv3AYhUqj0eT5imkUwmOOft6XRP2Umm2o8UphwxlTRsyexEwipBx93PjL7mN96yZu0at+xERPbsRZO6ufpx0EsYqRuUoh952bpMWodZGsSN2ml0p/5rLpd77rnnEolEPB5fuXLlk08+ccstt4yPjz/22GPFYnF6enrhwoVTU9OE0Hw+7/tegyGBZq1Wwkd19LHw/+Bz8xdUqk81RHWQ4GsDDaV6Zi6+BJBCxhKxeDxe+zKcC0rphg0bFi9evGXLlp07d65fv37NmjW2bbrubIM7Cu/Vi6GXZnBwcM+ePZ7ntbW1xmI2pcyyrHQ6TYiklE5lpqWA+fP78qe7jZgAgxErnpVtX3/04Obb3rR+zRqn7AGpBDouHEgkQx79GiFclC4iIEM4J7rVHzdNc8+ePcPDw/F4fPHixUePHuXcn5qaGh0d3bFjR7lcbmlpWbx48Z49ewzDmJmZUYl6Z20ZAJTtpy8fqoky1KrPY9gXCJUjlxGvKAVKCAVCQ0wjRIaqlVpPASCkFACCgKAgQAZfAQQhMtXWRmswSa0K57y9vf22295w8803HT169Ctf+coTTzzpOGXbNlVyea1RqxqJbCgxTWN0dPTee+999tlnbdtOpVKmaXEux8bGM5lMLGan06n29vb+Bf0tieTk8JkEL1rxmLTsstn2tcdeWP/qG9ZfdqlTdiUAgTp7FGvH3xyqxy8JqaA+ntqkY8wsLVSF2ZE7Gynf+q91ITJavCKEMAy6Y8d23/cA5Pz5fY8//qjjlD3fKxYKo8Mjy5cv//CHP3LppZdjtM73hcoW0Vi5DLWYyHQpRl8ZmxACVSUIrWkQAhoMFQAoAKZoSylBSgpAQVIQ6v/qZRKqJApRtxEJMriNEklB1JEAZ1Ow9FeKfCYSwKA0EY9DzYYvHZAL9vT0vulNbxoZGX7qqaf+7d++2NfXd+WVV/b399u2yXlV9XoIhZfWJrEsls3ObNu2dWhouL293bbtiYmJ7u7uTCbjul4ymSCE7NmzZ82a1QDglsqtqXRhYioRp8SOcbvl248c7b980/Wv2eyU3TA8cnE5ENpnIATXossvLlygBOCcb9++nTGaTCYAIJ1Op9NpSmipVMpms6Vi0bKslmQL7m47cODA7t27581fcIGcWwoBDfjdRQeiYS1+NkjUUaXhXAMqiE6xHooXItbSMjg4uHjxQCIZr9VEIxzL9/3u7p43v/nNU1PTzz///D333ON53pIlS9auXdvX1xeL2QCkVCpxzlOpNkwCg8DS9Z96asu+ffu6uroWL14MAFiIyvO8/v7+OXPmUErj8fi+fXvHxsbaWltPDJ4YWLy44BSXttuQaPnptuP23CW33XqLW3ZhFtyd1Li8avXLyE+Yt6PbALXcOnKxdp4bXakrLmbTZmTACEg2lNJMJnP48GHGWHd3txAinU4Xi0UpZblUdhxn2bJlhUIBAJLJJGPG6dOnfvGLX7z7Pe9V/c0GiSMooUszvQWFlurmurh0HmQTmYGLbwPEYvYXPve5O+/8rXnz5zYpiq9ACOG6oq2t7bWvfe3mzZuHh4f27dv/yCMP+z7HE3vS6fTp06fz+Zk3vvGNfX1zAeDQocOPPPKIaVorVqxIJJLZXPbkiRN4Gvu+fftM0/zwhz88b948Qkhvb6+UYvHiJclES7lUSADv6mzfdnjqVDnxofe8lQcHFl183oPuHcYopawxNl5MaKJBzfJxw2AnT56cnJxkjC1aNGDbsTNnhpLJpBCyWCr29PRceeWGfL7AGGtrawOQlLJSqazOhrpYoHb/vDQywcC9iLp7JzxST4IUJJQUQkvMwC20RDPkAYBIIQQYjI6PDY9PjD27/dkNG65sbYuHbuI6fhWd6JVpOHdu3/z584WQWHWHMZZIJIQQTz311Be+8IXly5cJIcbHx5cuWSYlOXL46PDo2MjISH4me+21m9785jc/88wze/bsOXLkyLJlSwGkbVvxeHJ6OvvC7l2dPV09rWw4L+/bNfjRj30MCBHiLGEUqGFR6i0ibih1j7Y3hQpRRztohKOzFAVNJKp6F51rRn5VV1TSkUrFs23rhRdecBynpaVt/vwFQogzZ4ZWrFhOKQwNDV9x5YZly1dOTEwmkjGsCQAArut4jgsCKjsLK152aMRZSHWMpe7rKKEE9Xh/3Vcm9fc3SqhWZJR1ggh9ESSADA/VASDxeGzLlu0DA4ue2779wAsHNm684lxbU3tBcE8thO92ww2vufzy9U888fjIyOiypSsnJiaGzgw5rusLYZrmhg0bXvva1yaTybVr1+7duxcrEwIAFut84YUXYpZlM+Jkhv/puw+87/c/mU6ltNMaz/J2OugaI6neUK8TSQQRXzI41x7VmDECcODAAUKIZZmmaabTadu2+/v7bTvW2dW54coNnPOJiYm+vr54PI79+D73PO/F49QvgTQItkTWE6CaL1dK0KlQW+lqOxVM09y/f//AooGJ8YmnnnrK98ubNm3inGN6WS27aoQxEc5qmuaZM8Pbtz8rpUgmW06fHspkMp7vz5kzx4rFZmZmLr/8cvTKSSld1507dw4ACMGLxcLw8Mjo6Fj/okX7n338sfvvu/Y337t27apy2Y2MITLFCuNFeGBWLU6rYmmROdXpQX/HJjp9kyu112VTN39kDiNeNX20SljhW7iud+zYMcaYbcfmzJnb29vz67/+6+vWrRsaGurv71+5cuUzzzxTLrtdXZ2xWAy9W4RUzpnELoGovs4SU6p7pRYBdKeW+qlWj4h8nj3BNJIA58m6PM+fmZlJJhOWbXue99GP/rd/+7d/27DhCvRunUeDyGUPHz584MCBnp7uVKqNMbNUdIUQx48fGxsbo5SahoE71gGgu7vrDW94fWdn16lTZ4rF/NGjx3yfL1068MyWbV/94jeuf80Nv/Hm33Ccs/D+iDJzftBccL80UIv0CPqrybDW0MzMzKlTpwAgFrM9z7Es641vfOP+/fs45wcPHerq6hoZGV27dm0ul8NEKUIAo+Z1QKnGLwLnrsuwzgMCLxDF9a5qvXrZpJShMKq9WSdcQiSlZN68hZRSxmhvb082m7vzzt/+m7/569tvv90wqOdFD79opLPiFSxE8/zzz+dyub6+vmw2KyXMmzevr68PADfvjksuCBDTNGKxmGGwYrFULBaE6CrkS8VSKRaLzZ8/b3Bw8Kf33tva0/N7//2jBKLFd2t5f91YVSNFvBGWk3BLQETZPVcboG5fdcNPMoyIqwFoBCDC9ISKWNMfNAxjamoyk8lQStvaWr797buKxdK73vkuIDTZkmhJJmZmZlatWrl165Z0Oo2+IEJkR3tnVTvoOKwYhlVenfCWEGeqf9JfM/JUXRkbIYPaRTwrhWDZlYabxIM+zoWH4b1zeufEYjYltLe3p7+/f2Ji4lOf+l8f//gfHjx4yDSZaUY3KDYCLMjxyCOPOI6TSqX27NnDGJs7d+7U1JTnuYQQTLfG2BmlNJVKFQqFbDbb3d0NIIXgpmli8YI9e/aMjo6+773vnT+/r3mWsqxOUrgQqMWzFxV0VIgAVJBM1CbeKbIZHh4plUpSyq6u7n//93/fvPk1u/fsmTdv3uLFixcsXCiE+NKXvvT9739/9+7d+XxeSkEp6+zsnOU7vtjCUKms5/pgRQVqwqhkA72zllILhQIQSCSSPvfT6fS6devWr19/0003ff3rX3/rW3/z9ttvf+tb37pq1UrDYEJIzhuGhxhjw8PDjz/+WDrdbtt2Nps1TbOjo8OyLM/zSqWybcVaWlpisRjnIhazy6USALiul06nmUGefmrroYNHfv32N7ium8/nd+7ctXbt2l//9aozfaGxbhDhRoQQy7LCes4EQHqer6fBkGgsBQAASxfqennd5ZnNxeYCR9fyIxivK9BCCDxJTW8HxRQG14eGhjzPY4zF4/Hu7u53vetd09PTmWyWMXbixIlvfP1rR48effvb397X1zc0NCSEiMVsJAANN0gYp20GwVw18AfWtW2IFhbAd1RTWvu5kYFRd5KNqv70hY80MQtvOSGkVCxw7nV0dADA8PDwW97ylueee+7AgQO/9Vu/9dnPfvaf/umffvKTn1xzzdU33XTTq151ZU9PL+4/xFMQVTuU0pmZmXvuuaezoyubzU1NTlu2ZRqmZdmU0I72Ds91ASCZTKRSbWXHSyQSk1OZhf3927c/u2LFiieffGLb1mc3b95s23apVDpw4MCxY8f+4R/+0bKs5k7rupqPbVuu627f/uy2bdtOnDgBAAsX9l9zzdWXXHIJbh2sOzEvjfavr6tOABHKlNqh8JHR4q/YztDQGbwnkUiMjo5u2fLUnj17Pc+/+pprPM/LZjKL+hf+2Z/+j0ceefSRRx4RQra1taXTqbNJAJ2NyvCClMFZFUTVEj+HDITm/WkkMRtdI9wQI6VS/3EsVfNYiQ1H30qfUEKIUy475UJPT3cq1frII4/ceOONfX1z/+///Ye//Mu/eN3rXvfCCy+MjY3dd999Dz30YF9f3+WXX75x48bVq1f39/cnk62EgO8H6+Q4juCQy+U9z6OEeK6fTCbcsuvYbjKRdJwySGmYbG7f3METp3bseH7Prj2vvu7qcrlg29b99z+wceNVvXN60aq7667vvP3t77jkkkvy+YKeaxSZiFrNBzNefvGLX/zjP/7Dtm3bSqWS+gnDdp/85CfXrbukXHZ0Bq9LxSZkcB6MP9JgLbMnYaKUuogvpZzUEQNPt1IA+PDwEF40TfPee+/9whe+0N3dff31m7u7upLJlnKpPLBwvmkay5YvLRaLnud1dHQmWxJYlbrCd2UVI5cyPBgUgp7RogQAwoEAoczAs23QwNRfPzzLF6paq2ct1BoAkXua0IPRaDFqn2/wFSQe6ASSEsI5z2azyWRi0aJFTz215ciRI7fffvvHPvaxdDp9xRVXpNPpsbGxcrlsmmxsbOzw4cPt7e3Hjx8fHBxcsmTZxo0bN2zYgEe+dXR0zJ07J5vNYbIGHlmXz+dt2wasgEmAUtrW1vqjH909NDRSzBceeuihP//zP/ved7/f2dm1ceNGQsjOnTu//vWvr1mz5n3vey+O1nEcVGbUTJHqMJx6NdM0S6XSX//1X3/xi/9WKhUty1LnxxBCXNf9yU9+snXr1v/9v//Pb/zGHeVyWZ999bk24bnubM9G4YmstI70+ld1v9T22ch6Ply83/d9y7IAJOdicnISDehyufyd73zn2LFjt91227p1l5w5c2Zg8ZKbbropOz0hpYzH4vl83nEczGZ3XR+RXiFZc9pGdYwEqfVSSJ9SRlnU76kPsq7irTcYkYRNhlFLAxetNih6V6QUnucND4+sX7++vb29ra3tscceW7FixbPPbm9vb08kErZtW5bp+/68efM+97nP/emf/un111//i1/84u/+7u/e9773fetb38IAFqV0/eWX+74fj8cJpZzzUqlULpeFEL7PY7FYzLaLhUKhUFi6dBljbPHigT/7sz995OHHjh07YVn2Y489+oUvfOFLX/rStdde+5d/+ZeGYQohDMOwbRsreOqzVmutWpY1NTX1vve971//9V8ty0ylUhiSU7cRQmKx2NTU1Ic//Hs//elPY7HYbOb6ok11A9ArSqiKcVKDSCNYtRe/ua47OTmJjUxPTw8NDZmmuXLlite97tdcxz1y+PD69ZclkwnHccbGxqSUb3nLW26++Wbf95vrLLIegCYtEVO573PuCnGeFa1n33uta7vKBiDaX2i8hCEJohlDlGuUUOBcxuzEU09ted/73rtoUX+xWPjh3T8aHBwEAjfffNPnPvdPTz/91ODgiblz57zlLW9ZtmzZ008//Xu/93vFYrGjo6NQKDz44C/e9a534gk8C+bPW7x40clTp0zT8F3que709HRXV5dpmYRSoNSOxTzPW7Vy+dVXvWrunLnf/OY3n97ydDLZsnfv3lSq7VWvetWtt966YsUKVcgNQvmOdX6CE7BDp6fiGYZhTE9P/s7vvP/JJ59sa2ullITZv365XEYixL0dhmEUi8VPfOIPlyxZvHLlqkhoWenfjdj/WUUB1LB89TkiAfQeEfX1fiNiBInf933P8xKJhJSSUuI4bqFQIOEWTWRV7e3t4+Njo2MjHR0dqVRqxep1IyNjJ0+d7ujo/O3ffk9wFi2gW48E2k7lnA78R1bVjQ4CA8ExFIQQAhRIeMq1VMODCoLpJ4ySqtdRn5toKKARmxKGCmTt+QCz41rKXqnWvQA454lE6/79+w8ePPT619+6bdu2jRs3Dg0Pu275C1/453e84x0f+MAHsNDSyMjI5z//+X/4h3+YnJycO3cupWTjxlf90R/9f5z7yMm44Buv2jg2PlYsFpnBOGeTk5OGYSzsX5hsSeTz+b179xaLhQUL5h05cuRfvvCvmelMf//CNWtWX3XVVZdeellnZ4fviwhSyjC8QCkN89WYHs2llHqe+/GPf+yJJ55oa2vDO+PxOFaGSqVS5XJ5enq6XC6HtTLN06dPfepTn/rqV7+GpKWvxKzm8lygVufRXw0LRNdWEY20IKUslUqUUixXjJfL5XI+n1dY0t7eDgADA4vHx8dHRoZN02TMWLpsuQR44YWDqVRaIzAdBWUYCNBRMELVBABtlXBEGEAOXyN680VyJzRiPQ0nS9FN1XAaZy8BAMFdPwRs2/785z//7//+b5OTU6l0ey43c9dd3/zhD37wta99bd68eb29vYSQoaGh48ePY9WdQqFw++23f+ITn0in047jmKaNUsW27RtvvPGee+4pFctxO+5zv1goZqanCYUtW7Zs3bq1VCrhcSk33fy6y9dfsWzZkvaOduSCpVK57oAVIPvHc3+V8mBZ1l/91WfvuednHR0dGO/E1pQMoZT29vZmMplcLodXbNt+4IEHfvzjH7/97W/Hw2DUzDTSRKGG2ddVcyNX8GJtdWsI6+likeoIU1SYig+Wy2Xf9zGhXwkoQgDVehww5iDecccdnZ2dZ86cOXDgQGtrWzrdUSwWh4aGDhw40NvbC+q8QOJXiiQIRRINfZEoLioFT2sqRUeounY2dN0Vqm3ciCionVvdfsBpvJjp0Dj7hXxh7ty5u3bt+vSnP/1Xf/VXP/npz7797S/u3rUbC2MdO3bshRdewFxzrK6RSCQ+8IEP/N7v/R66aEzTxGKAAMA5T6fTb3zjG3/x8wePHzsOICllE1MTmew0IeTWW29dtGhRf39/V1eXZZmCg+d7juM0wrm6gKIALYRYLPbzn//8i1/8YktLC4bY1Empym7GjV1tbW1CCGSZOO//8i//8rrXvQ6vq8bPaSSNoFbb0REC9bfIqS1K1uv3YyFr3DSHjyiFh3Ny5syZfD6PRFIsFltbW2+66aZ8Pp/P50dHR/P5fCKROHXqVLGYHxo6c9ll61WIAxX3cJB4Xlh9AsDbKKWEsApmS9AH+RJDVAWajVaqZpZIACyCEtoxYBjxeHxiYmLp8qWrVq+9667vWJb9p3/6P1YsX/r1r39969atk5OTMzMznudLCZZlWpZ5ySWXfOhDH7ruuusAJCH08OEjP/zh3e9///t6e+fgonLOE4nE7W/89dHRsYmJcUppS0tre3u6tbUVkRI1GUxu00/diyi+dQG7QER3XTeXy/7FX3yKENLS0oKIrpI9hQDLMtF9IYTkXLa0tHLOse6vZZm7d+/82c/uufPO31YUqCudjSZTQSNdP/JX/0loVdRDXBRCCClEUGwtxELk+rFYLJ1OA0Bg+0ohuPB9n3NhWebRo0c9z0NbP5fLfeQjH1myZOnBg4eKhWIuky2ViqZJr776Ks/zcrlcd3eX5znBq0lJgGBGASE+gCTAKBAJQgI6+ykhyuvPKEE3uwAIlPoI168FKQOKCmuhhCuLNkNQ1F7W2gONJlzv7mKkQwuBp7UxSuPxuOM4p06dXrlyxcjwmS984V+OHDn853/+5//7f//v4eHhQ4cOHTlyZGho2Pd5Z2fHpZdecvnll7e2tjqOc/jw4e9//wc//OGPhoeHX/e61/X19Smuhjx1zpxe3A2Dr6qfdH1+jFbXFtDM/Zu/+esjR47gUQYhryIqhOT7nASlayilRAhobW31PA+lhJTyu9/9zh13vEmdIKZbnBc+yRE467EAhBApRSlEfczgV9Xefd8XnAseNEIIoFjGB7FA/NjYWC6XQ7d1Ih5vb2+//PLLv/CFLySTyXg85nkuZviy4OBadfJIGEwKLUTd6NROXKkQ/C+F9yuoIoBa7Qpq0KuicgEAgO9zAKnUZdu2KWNDw8OGwTZt2lQsFu677/5t27a94Q1v+I3f+I1LL730+uuvV01xzsfHx5988omf/OSnv/jFL8bHJ+LxhGVZx48fv/rqjZGBRrgdhLhVyzKhGu0aoaBabymlZVl79uz54Q9/2NbWhvstMRyBqpGUkpBKeVBCJK43Hoc6PT2NJPT88zt37dp19dVB1XzdBmii8UfGX/d11FcRgp7Poz4EHIEQKUS5XHZ9Lx6Pt7S0yNDTheD7Pg+2nweK0NjY2K5du3ARhRCFQuH48eNDQ8NdXd3o9Fy0aFF7e7vrug899FB/f79hGHhSKiFEgkDOjj0HkSEiQ8ZfAUopyIq+ftZTqhqClJIArefB1+2B2gmEasRGOE8JQACEFL7nGwajVJXzBtu2TdMAKY8ePeaU+1772huSLcm9e/Z89atf/fa3vzMwsGhgYGDBgoXpdLpQyJ84cWL//v3Hjx8vlx3TNFpaWhOJJOf8zJkzke6EkMrbUEsAFHcCnQsfQf948C6ESCn/+Z//OZ/Pp9MpQghjDG8wDINSFjICYIwxRrCCC86hbduYcEEImZnJ3Xfffddcc43e0UUxAxDUyafN2ywWi77rxePx9takEEF1ayml73s6E/Fcd2py4sSJk48//vjevXsHT57A8tQoWw4ePLhu3SWpVGpiYuKqq67asGGDZVm7d+8+fPjw2972NgykVI6ppI2mviJIdZw7jxPTXjyoTwARPlTBFWSBAOgVMc2qulooAbCCPiFk8MTJUtm5auPVnR2dO3Y8Pz09fejQkYMHD3PuMUZd18NNApRS07QoJVKCaVhSuNPT06Dy0gR2iwXIMK5OwlNrpJRSCoLbNSmlQCQhVXxUt/crryep4D4Eequ0LHPbtq0PPfTztrY2ADTRAEAaRpAA19XVtWzZMvRQnTlz+uTJU6VSiXMfj9RtaWnBSDBj7Mknn8xms7iHE+pxoMj0Rj40ul+p+6CxgAgjkFLm8zNS8tbWVFtLq5TSd10lLoK/kgPI6enpwcHBoaGh3MzMyMjoT+75qed5sVhMF/gHDx684447urq6fO4vW7F8wcKFuVzuu9/9bjwe7+3t9X2fMSollxIkNaCSgkEACFBKKKWUUcoIoQRooLZLYKzhCcE6Fuk/1ad2CVpVagq4txV1L0JASAIgNLOh0h2QSKmH85EAaEVp5zhUhm4YRjLZokJLw8PD+Zns0qVLe3p69+3bd/LkyXy+IAQnBEzTF0KGOiihlEohPd+3LLu1tRVzWBQBEIyINAUhBBIAnDuP+cY3vuF5XjLZigEajA8QQizLuuGGG6677josFr169epCobB169Yf/vCHQ0NnPI8DSMuyTNPEyNrhw4cPHjy4YcMGXb86p7mtfSkRVJdo6FdBv43v+8lkMpGIS4kWgo8sX2V5uK47PHxm7769hw4dyufzsXg8kUjYtrVgwYLBwUHQ1BJM/zx8+PDy5ctf85rXDAwMtLS0bN269eGHH161alXdkmcI6lAnqmUlgSLvhoLifADb5JyzC/MgNSOAiMJECBFhqAVV5NpHGGPpVEodYgUA2Wx2587n+/rmrV+/ftWqlUNDw8PDo5npTKGYx6MXGWOxWKytra2joyPV1i6lnD9/vu8rC6+GDUgpteQTqGYYSE4Kg+u+l65Am4bxwgsvPPLII7Yd45wzZsjwCOFkMvne9763p6fnwIEDnPMbb7xRSvncc8/19PT8/u9/9HOf+6eTJwexXyykDAD5fP65557buHEjmgGNCCDC72vHSUInT+DYCZ08UK0ECiHQw9PS0pJOp4XAUID0Xd91XSECNb1QKBw+fHj79u2DJ457nmuYhsGMYrHgOGXbjs+bN+/EiRMyPBoMQvF+9913b9iwYc2aNfPmzTt69Ohdd93lOM6qVau0MQYaTi2EqyRJEOgiTV627uRAPRsvePFANAAlhIR4GBokdaY32j5USYXGBKDuCk1e3/M818W8l8aMTZqWiV2ro018X5w4cXJoaDiVSnV1dff1zfd9Xi6XOPeEEACEMSakKBVLuZnc9PR0MtlCgNTn+NUGeb1fSbAtqbH7RSddwzB+/OP/zOfzqVQqfF2JlaH+8A//MJVK3XfffX19fe9973vS6fann37q6aefNgx2zTXXvPvdd/793/99Pp8HANuOUTrDuQCQzzzzzAc+8IGIDlYLTfBA1qQzRHQeQkAIUSqVfJ8nk8l0Oi2l9DwXub7reK7jYXW3TCbz3HPPbdmyZWRkxDRN2zZNyxRCcsopY4QS1/VbWlra29txLxgyDt/3TdM8duzYZz/72ZtuumnXrl333HPP0aNHFy1aNH/+fCkllhpgjLIQQsxnJKiEF4Z7g2puFxPUxMlQaoXOiaa0pZSkaqj2AiFLJcHeNhWeJuHRiKgpKslQs7oSiCyWCo5bMpjh+1JKKcKj1f2yUyyNDo+MYmYlpQQk+uKE4zqe76tSyfPnLcAzQrU3jb6+DPNDKn2HUX38RwhJSP2d7OorpXRyauK+++61bRttXEKIaZoA4p3vfMemTZvGx8evvvrqoaGh3t6eXC7/+OOP/+IXD1x55ZVPPfXkrbfeesstt/zgBz+UEhgzTNPkvMwYPXToBXQj4pJE5KRiTnUXC8emW7rqr5pzznm5XPR9v6WlNRZPSC646wkpPM8tl0s+93yfu443ODi4devWbdu2DQ8PU0rxSL9YLIYKm2mYzGSEUkq5YfD+/v5cLoeTjwSAWaI7d+5E9yjClVdeaZomY8wwgjP8dAIIeLAM4oaE0NDNX4clN6d/Um9fS/QRUln0ingBAPW4rjRAoIHV1nqblQ2AEf66OY+1Y4rZ9pkzZxb1L1Lvo2Q3fiiVSqVSCcuJCiHRNSYAfe1+Z2fn3L6+Jh7uuqDmq4Lrsr4Q0Fs2TfOZbc8MDg7aduXVHKf82te+5pJLLtm3b9/AwEBPT8/TTz89NZXJ5/OPP/74xMTE1q1br7vuukcfffT6669/6qmnh4aG8fA8TBAaHR0dGRnBJLxaAoDGa6+cPFDj7MIXwZRYznkymUinY0JIz3U5avu+5zhl13MA5MGDB3/+wIPPPvtsJpMxDANRFucW9SXLsrjJGTcoC3QV0zTnzZt35swZIQRiM+ccYzu4R6xUKl122WUDAwOMMdM0EfsppTr248uFJkA0hPfLdfvUGMMVqNoSWdmyA4CxREIAk2p006ehPieJ53kDAwOe642OjbW3d0ruyQYAIEFyGVRHlVgT1fO8BQsWtKfTol4mfXPQc98ZYwTqcFkJSIQVoXz/Aw8ASHUGHgBJp9M333zz9773vba29Jvf/GbcA3769OmZmZmDBw8yxorF4unTpzs6Oiil11577Xe/+30Iz/kihOTzhVOnTq1evRoJQB8/CQGq5SdWzK2enCoa8H0fSxS2tbXFYjGfe+VyGYD6vu85rud5UopCIX/ghf2PPPLwtm3P5GcKlmXF43GlpiOm4lfOuSMdyn1mMBXswyNQh4eH0cZDIRAEDTjv6+vbtGlTLBYzTVMnAPU6MthYHBgFwevO7hCXCOeqvT+iAdY+W/d6VYMYn6uXndWwOC6+AXq4Y7HYLBFRcNHZ2bVgwfz9+/ZRIK1trYJLEnJ7qGy6FYiNUob1gEFKKbnP16xebVkW9nvW7nRjUUpJGWWMMooqaZQACCHCryhOlNHx8bEtW7Zg/B9RjnPvDW/4zb179/70pz+98cZf27lz5w033NDd3T04eKJYzGezGbwvlUrdeOOv9fcvAiA/+tF/cu6bpkUpwwSKU6dO1WJ5XcAMNtDWRsd7APB9v1QqSilbW9ri8Zjv+0657LkOvrXrekKIYqGwf/+++++/f8eOHeVyybKseCxWQdAQ+zHVSpEBAZx+iUEU7vu2Zdl2LJ/P+x6nlHLhI3/v7Z1z1carE4kWy4pZloFHGKOnRwZhQaDUoIQCobWx3pcFaHpBBGrSoTWHI24CnA32K/2bc2mZVv/CBcNDZ06dGpw3b15ra5sQKsM74P1CcjQOAICr4omEMEovveRS5fBu3ikigTq03TAMyzYZo+gIqsP+peRcQGhamKaxc9eOkZGhMHBBpRTd3V3r11/2yU9+MpPJnD59anj4DJ5v6bn+yMiw6zqxWJxzXi6Xr7vuukKhmM8X5s+ff+zYMcYMxkyfO0ICRk/1malV/ZXCI8KtCBHsR67PGG1ra7Utm/vCKZd93yuXy5JzKSXnHA+zePDBB/ft24eWazKRxF4Q0SmlRFPTlbUKoctS+cqEEKZh9vTMSaXK3POllJSxltaW+fPnL1q0qLUl5TpcCDAMizHKGJ4Yi9oOWp+GiofWnP01K+1fdxvUSs7apdR/jaCKmnNddFTYOoBWsFgjAB1lCCHFYpFSqrD/rMxM9c0MdvDgwWXLlu3evXt0dNRxvFQqBUClxv5RIkBoGAQLL6Gjs3PFihW8wdFJSlaK8MB0AGCMoVXNOR8aOnP48OGNGzeiDRp5XI/+YmuPP/6ElGAYBr697/PNmzcfOHDg9OnThJDR0VHOeSaTwV0jIyOjuHPf9/0FCxYYhpHL5XK53OrVq7GismmZjusAwPDwsHqFCAGAlr8ptQ1KEa6Pk4870bjwSuWS5OC6brGYF0IYlI6NjW3btu2RRx45cuSIEEIpPEotUZoP/qOKxyhlj4WH0eNXIUQymQTKCCGWYcbj8WRrC9bdME0TC2C5jkNak6GFSrFNrAUH4T4TWe98nVpR3ByLmtygz2ftV6jhm5Gm9B9J3Q0xAEAILZdny/sjIIRIJuO5XLZcLiNm4PaRjs5uhb6N2vR8f8WKFT09PY1K90gA7vuu66K/wjRNZN6Tk5M7djz/9NNP7dm7K5lMXnnlhrrkKkTV6ZT5mZnt27djAgylVAjR0tKyfv36v/u7v0NympycdF23WCxaluX7fiGfx+gHY2zTpk2EkKmpKSSA+++/n3NuYF4AIRMTE3VtX6WtqXnQTR1CiOd5uFUlnU6bpsk5Lztlwf1yqew6nu/7nHsTExNPPv74ww8/fPr0aXTv0FDh0/Vyxe+VBGCGQUO8R0owDMMwTUYppu1QSplpWZYVs2zLsgzLNC3TNEzLskzTYsQQUvq+b5oxlC7hexkAAKSy00p/5VkhTc1EgcbszqOFc4KgNmhYx04CgOMEsZVau2Q2upBtx7u7e3ft2hWLJVauXL1//958PlcoFtvT7clkkgBKACHCMJbyzwrBr9p4FSYn10pAzrnrur7vUsZicZsxls1mt27b8tRTT+3fv//06dPlUsnn/u23397R0eF5lSR1xC3BpY6ThmEcOXLw6NEjqMti+6tWrZ6amtqze3cymZSEzszMjI6OlstFw6BC+tlcllIihJgzZ84ll1xSLpdnZmY4l71z+jo6O8ZGx5hhUAKSkOPHj09MTHR2dioMUP5NGYa0CIAQUnCBrphQ4WHpdNowDO5zp1zm3Hcdx3HKggvP806ePPX44489/vjjI8PDpmkqlh+xcdUVRPQA+U3TYIwyFqjwRoj/hklpQCeGwQzTNg0TI2WGwUzTNC3LtizDNNGpILgkhIGkqPAoa0Kz8CuI20TbiaBWIy3jrFdqu9A1n3oDkACVSBhRKhAJH8Y949pmuXMDIYRlmYsWDZw6dfro0aMAsGLFisOHD+fzxbGx0Xg83t7eTgkJRD+tBMellK2trRs3bqxl/1JKzNcnBOKJOOf8wIH9jz/++NatW06cOImGCjor4vH4pZdeWjfNEN1OChhjO3ftLJdLra1tEGznl5dfvv6pp54EQtpa26amp4QQo6OjpVLJMAwh/EwmA0CklOvWrevt7ZmZmZmennZdv62tbW7f3NGRUYMxAGkwdurUqS996Ut/8id/go6gujt0OedSSALgum7ZKRvMaG9vR/eL6zi+53ueWywWuO9LIY4ePfrAAw9s3bo1k8kg6uvhJ12/J4QoBo/3oBvUNAzKGHpwAuxHqjBMRg1CKSAJGCbejw+apmVZpm3buH3M933BpRQAjOg+LSmrELFW89Fx6SVg6nX7qkMMakeYxD0NUkopi8ViIpFobqk0fx/TstasWZPL5bZt23bkyJFFixYuX778+PHBbDZXLBYLhUIymUwmk5Qxgjq1lDi569atW7RokWL/gTEkpOM6nHPbtguF/BNPPn7fffft2bMHAzcyEMrmwoULr7/++oMHD65YscJ1Pc451UokSCGVAaBebceOHXq6RCKRWLFixf3335dOpXp6ejAyOjMzUy6X8SjL6elp3IVz6623MmbkctMTExPzFyw0Taunu0dKqfxOlJLt258rFouYSq1v16oo/UA8zy2VS5Ztd7R3BKjvuo7j+J7nuR6mKpw6efKB++/fsmVLoVCwLCuRSACA7oDHv0qbV7xf/UWvJRaDCRA8CGYZjDHTMCk1gBCgxDAMw7CU3DBNMxaL4bNIAI7rSpBI1ahxSS1bQZcAdZVyEm5Aa2QbzJI2mlsIurai29P6TxXs0m0AQkgul4vFYiyoAXg+QCmN2fa8efM45ytXrtyzZ8+JEycKhUJ//6LJycmhoSHHcQqFQqFQsGMxxCd8G875q699dSwWKxaLqjXMdcF1vffee3949w+PHDlUKBRUykoymbz66qtf/epXr1y50nGcwcHjixYt8rmvq9cAUecXIaRQKOzbu1dKKYTEUPr8+fOXLFk6b9688bHxWCxmmAb1vVgshmlwlFKsoXDLLbe89rWvdRzn6NFjU1NTb3jDr09nst3d3ZRS3C8GAITQbDaTz+fb29t1y0fNarlcLpVKtml1dXZRg6kQlVMuu54HQubz+d27dz300IPPbd9eLpVs247H40rRR/tHZ/+RuKyO+qbi5KZpaMAYo4yZzCCESQDCKDMMRg00FRDvsRQStimEMBjjQmC6BAbXFJepK3UbYchLJgQiNomoV8veUEEL9DyoDU0IDRSpZl0KKRcvXnzo0MH29vbly5cePXp0bGysXHYWLRpYsWLF4OBgoVDgnOdnZlynnEgkbDtmmmYykdi06ZoI+3ddlzEyPjH2+c9//uGHH3YcB8LB+D5fuXL1x/7gY6tWryoVS67nPrdjZ1/f/FQq5boeSKo0DtT4JGCuKAGQlBmjQyNnhoaCjAwAIcSSJUtSqdQVV1w5PZ3t7u584dBBkxlzenqx9CVj7I477kilUldffbVpmkNDQ9/5zneuvPJVLS0JQqA93U4p5VzxGFko5GdmZjC6pEAI4TiO6zq2bXV1dTBCORdOyeGcu46Dxv1MLrfj+efvv//+/fv2e56LXF/X7BHdFV4qdNcVHkRx3NZsmrZpmKYZ8n7DMA2DMYNQwkyDUkYJg8B4IIQySpnBKO6QxkqsOHZKwTAYdyspeoxVzIC6LD+CGOrmiBBoRA9KvMh6AaxG6Ff7WX1QIku/J5AAnHPHcTCt6qzdNAEp5fT09Pz581etWvXYY4+uX7++v7//6NGjmUx2z549/f39y5cvn5ycPHPmjJTC971sNktp3jTNTZs2LVmyRDcAPM+TAENDZz71qU89//zzhsFImKwLUvb3L/yff/4/e3p6nbLT2tqayWb379+/+frrCGmQRaeBYbDjx4/lcrl4HJPgCWOst7f34MGDmzZtOnLk8NjYaHd39+mTpzo7u6SEZDLZ1taSyWSuu+66ZDJZKBS+//3vp9Pp66+/PpvNdnR0dHZ2RrrwPBdjeeiwwiwGNK7a2loBpFMuOzzcn8U5CDExPv7kk08+9NBDR48eFULYtm0YceWqb8Tv1Wel9ijGb1mWaZiGYaFdqwdxDcMglBDM2AlxWEpJKGOMUUaVpoRxOsQVxhilQQiC1STDv/yBhG5oXV4FBDAzM6MOfqp9Roe65KgL+sz0dGtr8vbbb9+y5el9+/atW7du+fLlx44NOo5z5MiR8fHx+fPnr1y58vTpU+PjY4RIzkUmk7nqqqtisVixUFaqi+/zYqHw2c989vnnnw/c2CSIaxqMffCDH1ywYEGpVMLTsDO57MjIyNq1ayP1ERAi7nZCyMGDBx2nHI/H8HIikejs7Dxw4MC11177tre9/cc//tHU5GS5WHrDG17/+JNPpdPpmZmZXC43Pj7e2tp63333FQr5j370vxuG6ThOPp9HvdH3fUKoEBWMp5ROTEwcOXJk8eLFtm3jnnTPc13XKZfL3PNRtTh9+vTjjz764IMPnj59GsMaJGDJFfcOEoBCd+XHjHD9EMnNQPMxTcZMw6hcUio+Gr64aV1KSQAoYxKdoZTg/SpqBoGSQxhjypOrBqnwgVTHAXT0iCCMDM//iuCYjl0RFl5rfzbqJTIAUu10iogggxBSKhZx3s81Ba0u+JwPDQ1v3rz5yiuvfPLJJ/fv3798+fJly5YdOXLEcZypqal8Pt/b29vT05NMJk6fPsO5k06nN2/e7HsV9u/7PqXk29/59tatW9ECQwZIKfU9/9dvu+2qq64CgFgshjX9Dh482NLSsmDBgroEEAEp5ZEjR9CDDiCFkK2trS0tLb7PR0fH+vsX3nnnnQvmzy8WipNTU9u3b7djdmtL8uChgxs2bHjyySdPnTr18Y//oZSwY8dzhUJx1apVpHp7UJin4HDO582b197enkqlCADnvuf55XKpXC5lM9nM9PTU1NQTjz/+9JYtmakpyzTRxiVaHBc/1DL7iiM/xHsdxdG/aaIKZJiMVUwCRH1KqQQIOIqK4BIiw73OKl6mqzeEBgRwgRjyUpoBtRChRkMKv1QqpNs7z8kGj1Bb1bMS8jMF7sv3vvf9e/fuz2azL7xwaNmyJWvWrDpy5MjMTI5zPjEx4bpue3v7wMDiY8eOXXLJJcuXrXScSuYcABw6fOAHd3+XUAAgmHpOKPV9sbB/0dvf9k7fEzGbcd8vl8vFYunZZ7Zesm5NPBYvl53IeEWQWV1hJ67rDg4Oqs2+AJBKpWKxWGdHFwGKuUk33vhr8Xhi+3PPXXvttYZhdPV0dXV3tbS2TE5OfvjDHx4fH//P//zPXbt2McYOH167YsVKTD6VQIAwQhgAVbuKW1panHKJUuKU3WKx4Hne8Jkze/fte+Lxxw+88AKePp1IJPQYlu7QVN4e5aDUDVndtDVNyzQsjRiCi0piUGowRoHSgJ+HfYGWJEtpONsECJGUUiCEUgZAQRKDMV+rQaKvfgQxdIiIBeWfAU3Rb46mdduJXJylqYBvrbQ4I5/Po4fhIhIlpXRoePjaa1/9jne844tf/KLjOAcOvLBgwfwVK1acOXNmZGRUCIEbf1taWubPn//617/BsmwMP5PQcf79739/cmLCsmyVYYty4N3vfjceBy8ld323UMyXS+VDhw599KMfnY0EI4TMzOSGh4cJQbcAI4T09PRs27bt1KnTmzZdWyoX+ubNIYTM5PNdXV3f/OY3P/CBDySSiXe9c1UsZnd1dj377LPf/OY3t2/fTgi55pprPM8rl0sSJNSsDYSFtLjve65TLBYdx9m1c+fdP/zhkSNHMO9SeTYVritQqK+r+IrfG2GqsyIAy7QtyzZqQFOlKKUMKMXa2ork1FD1AZAwpa0W5/6rA7410oDheV5ra6tOlAh1tTqdSHS9H2/D7MIg6b9YHB4e/t3f/d1jx479/Oc/F4KfOHEil8stWLDAtmMnTpzknM/MzKC34brrXo0HroT8gB45cujRRx81DAZQyS93HPe1rw126FqWlUq3zol3L1688IknnnBdZ9WqVZ62d7Yui8Jfp6cz2WzWMEwpJSFSCNnS0kIpff75HZy7d931jfb29ssuW3/FFRvS6fQHP/jBrq6uTDY3PZ0bGx164onHnnzyqcHBQSyxdsUVVyxYsKBcLqOXJ5ilcK4Q+zOZjOB8emry0KFDDzzwwM6dO4Xvo5dd6RjKxalx60rGTq2BG2g5homaumEwwzRNwzINS6eNClCKXh5CKBBCjYpdoRZRYYYakpSSMYZEUJlG7WRYqNbma3FDR6eITq/jYt3HI9d192DtzbVPRcyJiNRC+15KabS0tML5Zq6qN+ScV6qykWDtR0aG0+nU//pf/yuXy23Z8rRhsKmp6WKxtHBhf19f3+nTp8tOOZPJvPraVy9aNKBK7WEM677775uenrYsE1cNAByn3NPT+9u/fadtWZ7ndbV1pFItAASAPPLII6tXr0mn2896/CMAUErHx0eLxWI8bgeBcULj8fhHPvKR97//vd///vfa29P5fGH//n2GYdxxxx147uX09HQinnjuued27HgeY8OMsdbW1s7OTkIoVl1ARMJ5gSCA7XqeNzw8fOrkif+8++79+/d7nmeFhTOoSp+v1vUVAVBKq4JWFXe+RgZoD4RhXdMwI34hiikSlDHkI4QSSphh0PAMahIG5gkhstqjTwjq681S2V5K+XBx+zIMw/M8w7RsWa/1RvSqKAlC7wohhBApsXZJmOEohPB8cerUqaVLl372s5/9oz/64y1bnqaUlUrlwcHBhQsXdnV1joyP5GZyGzdebVsxPJ4NuxgbH3n44QcZMwgxJEjHdUBCe3v7Bz7w/uXLlhIik8l4R0c78oKJicmnn976iT/8JG4xgGrGo2oiKPZPKR0ZGXGckmUhkhEAiMfjyWRy4cIFH/zg72UymVjMopQ6jnP69JlisSSE6OrsGB4eXrlyhee5P/7xjwkhjNK4HSsVS+3tnULksEoKSIGZRYwxyzI8zz0xeOwrX/r357Zvd8pl27YT2iYVhf268hPx6zewcdG/WQFdUCgqCtQewwzxv8rG0AkAKpVuK2JB/xWzHSCcwwjoaFNXR9A/K65cq/2fVQmPeDDrghIR6m+jZgkhhtG0lHbd1nU7VXUgpJAySOxXBOD7/tTU1MjISF9f39///d/9xV/8xc9//nMMOExOTnZ2dRRKec/imzZt0rPfGGNPPfXU6dOnpZSFQj6eSC5ftuqaa6657LLL5s3rQwzA7Wn4gl/+8ldisdiGKzbUzSFFN3z1a8Po6CgJI/kAQMPwXy43k8vlyuXSxMTY6Ojo0aNHt27dtmrV6ssuu0wIMXfu3K9//au5XNZ1XbQhOzs7O9o7AIJNczgrhICUMplMApDvfve7d33rrpHh4Zhtx2IxpXZHeD+tTm2IKDxG6NTXEN5SnF5XdYzQO6RwnTEG9bYBkLACik4AyCl0AoCLxHTrGq8vB2CMVaVC1KUVnd8TzSTQdvEBgPRFkHCDbjKc0FKpNDExYRhGZ2fn3/7t3/7Lv/zLt771rYmJiWw2G4vHUqnU8mUrly5dqhOA4zgPP/Sw7/t9fX2bN2++5NL1CxcssmO2bduLF/czSqSUWJFTCP973/ve1772tb/8y79saW2pq/8o4177S8bHx6BaWURPaz6fP3Lk6JYtT09PT2JO/9q1aw3DbG9vF0IsW7bs93//o1/4wudzuVwymRRC9Pf3v/U337pr9+7du3eromsKs//pn/5p+/ZnKaG2bSv8ruX6rF5sqwKVEFbFw28w0zBMWnENBRSk7N0qNq/1AqHepYgQP6j0HtDitagYY8EyGe4pIdoNdXG6ViCoxiOPnJUk9AXSr0SuR/C2ttnI/RGb1mj0mLoj3GCFcyFlZVuLvo01OPRUSKEkANa9Gh8fj8fjlNCW1tY/+IOPXXnlq/71X//l2We3ZTOZ1lTbO97+DsaYKvzEGDt69OjOXTu7urr+5m/+ZvGSJVJQQhilxDCoaRiuW56YmDx9+vTevXsefvjh3bt3v+Pt77z55luC4x/D8sFQW02o8v5icnISglBDcPI3Vns9duzYY48+9MijDyEtLV2ydM/uXbe+/rZ0OvXNb36zu7urs7Pz3e9+786du48dOxqPxfr7++OJ+OLFi6emJkJKEwCSEJienhoaOm1btompNSEBKNTXGT+rF9BF9LcsC7MYsPBEQBGGqVpDe6Ci8DBVlooyykiQ3VABnfeHaf3aNprwHkII5ngSCErdInnI8EzVyiP1+KaOTqhl6LfJBm6VWtyLtKm3oF9pxLvPShtQd0+wzjKJqrsCAbprjF8EWr+UgnPJhQDJq6giyGQeGhoyTVsK4jrepmuuveLy9Q8/8uATTzw1b96Ca67ZpGpIEUKwAKXneYsWLdq7d++u3bu5L3zPLxRmMtnM1NRUJhP8pZQODAz88R//yVvf8jaQRCuMLpvb9EKITCYbbupDFYhIKTKZ6bu+9a2VK5e+7Tff/OCDDxcKhTvu+A3f9y+5dP3Q0NChQwd37HgOgFx77as/9alP/cmf/PHpU6enp6d9z3OcciaTwRQJKSXnvpSmENw2LYMxgzFas/1Kfdb5PdWCu5ZlGYZpMAspyDBNk1mGEbSnP466EiGEEszrCQrw06A+YUXOqEkOKQFQJGB8F29QvF3hjDr6PYJGs1dpLpbyc1YL4fygijp1WUOqNqoKCfqW9hoCQK4vpQyFhpQSIGAShULhxOCJgYEBIcXIyEgymXj962+/9dbbPM/zfa6zE9M0Ozs7Ozs6JyYmvvjv/w4AUnDGqGXZ8Xiira2ts7PzsssuW7FixerVqzF9zXV8tceKaMWMQPPugUbPvs9zuRyigdqnDwDPPvvsvff+7NJLP9nXt9C2nwKAFStWrFq1anRsYteuXatWrZqamrLt+BNPPPGa12z+9Kc/fc9Pfzp37tyJ8YnJycnx8fGZmRkhhApaCyFMZiCf1xUbnesrzUdP0VEEgFEt5O+GYRjM0p8yKjGywF9EgEQIoCIWarZKBk+Eh+KK8NSziDsEeVgFHyCoOEarK082YsBNfj0/qlDEqR6v/aDLBFnPsx8Bo8Kuq4lbVO3ZDQhANoDKECEsUBo4AwOjanp6amhoaNOmTZZlzczkC4US1l02DTMet3CRQILv+zfddNMll64rFPKu5wkhGDEsy44nYslkLJkMtqgSQlDndhwnqHE7a/B9D8u5qakRQhQKhb379mF8wLTY8ePHpZTTU1OZTHZo6Mzg4ODu3bsty7rxxl/78pe/ctlllyxbtvTjH/9D13Ec1z1x4kQmk8EoUuiVNxjD/AOG2ZcKXxXzNrQwlu7tCRV9wzAsg5mmaTCDGobBqKkhvW7pBs0CAGWUGoGzn2q50wrv1QfGGC4RVE7sqq/MKNSr/kYiNPBfFwIJQBkE3FvVchMi2EwihAgPQ4ZKjXIArQBGhVEEdidIKQWXlFAgXAgRi8VPnDj57e/c9aY3vaklmRSCC0ENwwBJDMOzbIuoWgKELlrUT5RBJrGii0AlB0NL4WCCviBQKwEqaF2pSBd5Yc/z0eUabtQCKWF6OlMulTzPffThhyyDlnK5llR7d++c6Uw2l5sZHBx0HGd8fNz3/e7u7nvvvf9Nb7rD831mmDP5/AsvHCoWgxi2bVmBas4q+w41Bs+wmnzE0NVuC9KW8bvBDMYMhv8EKT2UMQZh7Vlk8QSVH8zWZMEOT11TR36vCwG06CBQ8iEsoxGc4qI8nqDVkwqEA4BylcrGqQeNCInUqxTWCOR5+Y5qZULtTzrQkFujGcu54Jz7XHAh8AQRH2tqq0BPiFVqQoI5qeSnM4NRg1Ej4OtAAAjnfPHixSdPnPjMZz595OgRLnzP9xzHdV2vUCgAgFpuxmhAdTgW4Qvh4V4Txb2qgTJG1Y6ocFCyEpaqngLf933f03kYISyXy3V0dAgpjxw55jmu7/nLV6zq65t36tQpxtiJEyf27t0rhDhy5MjmzZsffPDB8fEJz/NL5XKxWDp8+DCa4IxSgxmMMtMI/JfovsTolf4hFothrUJbg1gsFrNjto0u03jMjsVidixm21bMNG1swDStcFuvyQwzICkDyyExyhhu8GWs6i/OEgnqlmP5qojDvuLYYeoU8cYYdoG8fzaPX5S8zNlAUFiUcyGCfQ4CuaLy5+h8VFci9c+MMTPUX5WqqiMZouarr7tuamrqU5/61N13353NZHGfe6lUys/k6ympqpdooW01ksj9LKz/ISUIXlVrTYHv+3i6iWEE6h+lZHx8vK+vz7TskusPjYx5Qr7lN99GKD158mQsFhsfH89ms8ePHx8fH583b146nf75z3++c+fOLVu2DA0NnThxAgdVsUlN0wxx3dawXwfEeCSGeDwej8cty7JjsVgsjuSBRBHQhW1jHICFrk8lWPR3VzNGq6HulYosCHm6riYp/FD8MbyzMufQmNPrE16x0KrzkOs+ovc7SxY+S9Ab1NuhIjx8QWjAhYicb1wLKFUjGN9kiEIIy7JuueWWeDz+1a9+9S/+8i9+8YtfTE5Oep43MTmhnVp+/qAGwHGXST3gIqilJQO7HwBgbGysq7Mz2dKSL5QOHxu88XU3X7Pp2onx8UwmQwiZmZmxLGtsbAzTuV/72tceO3ass7PzHe94h5RybGwMe6bVyk0F0xGLK1Dh+olEQl2Nx+NxlAL6HbaNhkHQeLirq0YMVvlYI39p6Pe8wOlVk0zP+3Sjc+nlxe4CwRAy2PMmpQSoRD0AIDjNGyCUmMgDACSWUpK4C1zlfqGTgEBgMat3CBRtKX3XT8aTt9x065NPPnH4yJF/PvLPixYt2rTp6ssvvzyVasWD8ZrzCdCSGoLvkkohAaTvIyX7nHMhJSWU0hollQghfAgL8QZvCTA1NR2LJxYtXHjgwP558xf89nveQ4k8efKkbdvZbLZQKBiMlYslSsiJE8evuGKDbcU2bryqra11y5YtxWJRcE7DnToBhzZNyzDsUAIYWliXMcM0LGYwwzAs09KivejgD+iHMGoYBlE+e0yKokG2Qq30U19rP0BgEoC2/0vNJQAIQgijTNCwVo021WoFEVSPUMOkI2qCflH9jSyrvjq6qJGaS0aHiNUReY2GFnz18NRnEm6Kjzp660GF6AkhIKkMiyBo9sCsgHMRi8Wuvvqanp7eAwcODA4OHj588P7773/729/+27/927Ztow7T5DVQMcPYmRCC+5V64lJPLwkO7qwrlIiU0jAM3/eFkJRCuVyemJi89tprh4eH3vmudy1cuLBQKBw7dmzOnDnHjh0rFoumYTiOAyCzuayU8sorN7a1tg0Onti+fTvOjqlVDEcCsE0zZtuo94eqkWWaSAA22shV8V3DwEOZEPRis6QG6WdPABBgfx3sDJ12LwWE2uaLLjrOFYyIqqAmCP+VsorOQgyjSmPTf1U7D4kGAbKiZhUeVkUIGRgY6OnsOn5icPD04Pj4+Je//OWBgYGVK1eixszCwA02rliI7rnHKxQM0Gw4RQPYl8KP8HG05kExM5QYlNK9e/b+xh1vvPLKDatXr8ZaQ4ODg6tXr37mmWeklIwy3/fLjtNtmlLK3t5e27Yee+yx0dFRADBNwwodoGZYhiQWlpTCYG5li4phWEbMNINCPZZlGizwGDFmBm57QoHiobpRnAYAXeFsRBj6/TSs4AlBNgNRq4xnkhMS+k4bJC3ra623LKvv1/m9Doo31V6PXFErWPcRNYCzthO5Xo8JBoM3NDZANHMzcOhTGjiLCaFID/ph1LMEWV0UDd07vuMyQhfOX9CWbhsdHR0aOvOtb37rQ7/7oda2NtMwmFbnDDS9E1cxdOEBpVQAlxIoqXiydRpGYqNBygNQBrncDOc+sn81Qkrpvv373vHOt69YsbxUKgGQ06dPZTKZrq6usbExQghlDKu1tbd3WJbV0pKcnJq+9957hRBSCMuMm2aF/SuHj2GadiAELMxhQOemZdqo1puWaZmWco4yZgT5+oQAJbQmhkWqXfvNCaB6EZTP+oKAhAUYz2n1mysnv1wwKK0kRQY0JwkBqk451o+kCa8F6FWxFkKAaiGLPNg0TRme9CbDvAnOucf9crksPZFqaYv3W5mJye9/7/uvfvW1CxYuTCQSFEsGqdWt0AMhgCpxpcqSIMGBAIq16yPh3MfjbA1iFItFx3HxJ8uyOC9KyYEYY+Pj+/YfaGtLxePxwcETX/7yl1esXEmpkc1m0ZmDGo4dsw2DJpKxe39wz8GDB33PMw0Wsy2mbU5H0ze0gWOmWVWTR6k9wSOh2kOQS1e7bmrRutaNQypsPkoGih3oTAGgSm5LGR7rSIioYfxVTwHQcCFqcaD2q35d/a3V71UvEeZV205dMXJWiPSrJAxRhbF0dCGB0VvxG8zGIzsbKg9U9sDNxH3f9zwPT2EAKQkhyZbk4NGjJ44dn9Pbu2hgoH9gUe+c3ra2VMy2DdOUNAjTAVApBBKAWnII8Z5o5cd06YGmBSHkhRdeKBQKyWRCCQfu+4JzQtljjz32ms2bR0dHn332WUrpypUrpzMZAEgkEqVi6VWvetUdb3rT8PAwIXRkZOS73/0uVvJpa21B1FeYrTv40ReqR8TCiJdKYzaVE0n35Cg8qDVnFQ2oG/Tl01FETci5Ik0jiLT//wBg1Wx94vAU3ipPcC2VR+Y0Qta1DgFlvCIRKGMgvJNQShllMSvm+96ZU6eOHz0qCYnH46lUqrurq3vunK6e7q7urs6OzpaWVtuKEWoQ3XUA6MKqJPApLPF9P5PJnBk6tXfv3i1btmzdutXzXEKSlFLU/jkhQkqDkF07dz7//PNr1qzp7e1dsXJlOp3GG6amptpa2zZs2IBV0X3f+9rXvnb48GEpJWMsHo8rvA/qKZsm+vDtWMw0LdOyUMfX0hxUOmeFzevBE6VjKFtIKR616K5zzdqv6hGAKPuPXCSUEu1441py0scm64WBdcW9Vh3Qu2uEMI1Av7+Rj6gWau/Xh41/DcZCTKqSSmdtvAoopbVUoY8ef8QQgy8EhprVyBhjABIkUEmIlGABpZQLUS6Xc9nssaNHC+VSySkDQDyRSKVSXZ3dvXN6u7s7Ozo6U6m2lpYW245jGgIQwn3fddxCoTA1NTU8Mnxi8MSx48dPnzmZy+V8n2PA1Pd9lVqD555LKV3f//73v3f99f+8efNmy7IymYzn+11dXddcffW73vWulStW5vP5zs7Oxx57/Gc/uwd3/KRTbVZg6Qaav2VZpmGZloUkYAbVqSoVezArIgy+0gjqq7+gbV7RMY+E+blQ7bGAapRV+DELRKl69pzExfnpJC8rMEhwYFakoFpDf7B+JSIZoAHvl1JyIbkQ3EcDWFY4v2bVAVCQHhFSEg6hVsMMQwJYnHPcYD41PT42fujQITxtGwBY1a4oKiUQCShhfN8XggeZ3CDRLkUhVC6XY7EYMnhCiBRCcG4abM+e3f/xH9/4gz/4WKFQsG17fGzsxtfeMO+37ky2tmDmzf79+++++4fFYoFz1zBoa1trgPV2zLIsy2KWZVlmApUg0zRtq2qXuordhi+OGQoVDU2hO1Tn8yiSIPV0Hh3da0ki4sOpRoCqByP8PkJFSIWgIUMjORBBm1qIdKQbk5Gn9J8io9Lv1x+MNEKqdZbIaM/npPhzhcD2DQGgorvjioZ7i3k44qrH1dobhhGPx20puRRScKRSoR0timX8aKjTmaYppSGlFFLogW4A8DyvXC4nEgnGWCwWK5XKOELLsr72ta/Nndv3zne+EwCwwG06ncbiybt27frKV74yPDyM+RRdXV0xO4YpDJjGYBjo9LQrB5KaplmdIaKzfIX3OnfXyUC/IkM/eoTTXywefFYJQF+SGPBLDPWjTjo71yeFnK1SaYQ6NQizjJRVShkxguLs4eYsrVACw1gbpZQKIQitoIgQAiSRJHDIBv4TjcRJNQXh/YRStHrVMmP5csMwLMsslx0hBCEBOX36058+derUb/3Wb9m2NWfOHNM0cvn8ww8//LOf/SyTyeBhFvF4vK2tzbYtzGOIJRKWZZuGbVmmYZi2HWC/EXp4FOrrX0kN1BJAo686DejzT6olANTj/ZFlgtAFLmv4a1XLNe5/hQ+gVUig2jZU0oCdk2puHcGoJjKkLuLpOr0OdRFVHzNUTohpGk1ozhj0pmvHhJgZfMWqHJQyxqQQEsAgxPc8nALDMHwpmcEkMaUEQYEwCUIAoZQZTEhKg2gakUwQtY0DKwVge0G+RnjgDS4Sp1ICASKBQ+DWRYrE449MMx6L2cViiRDgnBuGKYT8yle+fP/9961evTqdSmWzmaPHjo2NjTHGOOeFQpEx1tHREY/HEolEPN6SSCTQ3jWCbB3Lsio1SyrHqIf5OU3wW+n6jdCdVnt41Qd9CRrhfe0y6bcpqIvfSLAgBRCC/gYyO25Yl43qqAXVuFf3cxP0a0QSpIZx152Ti6kC1SUkIYL9wbi6zDAq9EqIBMmEwN0kiJThxgQQQAQAFZIIaRgmABFCCOFRSqUgXDAhMJIVOK8oUy9GKsIApGGwgDlBUMGHiCDdiHOez+cJIbZtl0olzn2kWcZYLGaPj489+ugo1coSep5XKBSEkN3dPe3tHW1trYlEMh5rUY6gyAYAFu6HZNUb1XWkj5i5+k9Qz9vTCK0v+jo2gJDFhCC0QrnQgOm+nMFQWFs7dJ1SoR69kmppol9Ueo9uuzDGJGbShZMohZCUM8YUDQAAbrRkILkIfsLrnPuUGkKAlMAkFSLYh66PhxD04ap3kYjT2H6QHyG4Sh/CAnWo/WNBcxw5Yq0RbrxCuxkrwHV398ybN6+jvSNMZE5g7oYeC4PwHBejphhEI8WmifKj0ItWOzS1V65aMv1XtYJnpRy9o9qLwU/hj2p91SMRbk2qmW5t1+dBJ7XI1uRdoBpRGz148Y1gZe+Gxi6oRUUUJxSkoV5eQphbQXUVE0AQENUvwBgVoftUSoEEICWP9I55LWFTwVYyHFVgUXCCH/Ai57xYLLa2tiYSCTypTgiBxIBKC1oprusyxvr6+hYtGujs7IrHEpYVs+1KuR5UcHCohtqhU63b1FX96xq++oTo6zcbPD6/hVNjiKr+1dgjoVIPpC7NaAvxX8BDGpihMAuKjNB0ld1JCABgXh0JdxWFmBpcUTdzQB4NaB0AIZJSQhnxfUmIIHiWC7VQB9COxFLpdKFsqRy1qw1JhNs7cGCVt8MtB0IIQikTHCRgRI4R6nOez83EE4lEIuE4jnoRzBfinFPC2lpTixYNzJ+/oC2VisfiVrV/k6ha45qiTylRWxF17IdqHz+plgNQzXdBIwD9g74ujdYr8rnJnbWUpj2ICUoEQAqBpXHqiwuoF7GqRaFGrzAbmTBLuoo01cRKuQgSQIZZbmpGFALpPVG9OEewLS/4DQjhxAdCJJHhSd6EUiJBEkLwOHjkxGrjDoAUgSYjCQFN/Kp8EqmED2hVvbBwgwxr1yH9eJ7HOS8WCzRk+Zocg5aWlgXzF/Yv7G/v6EwkkuHRQxVFHwAUhrOwyieiMqNVBKBjdi0BqLmKTF0E78+Ds5JZq+Z1ewciCQUpgy30RFv3/+pg6Oyzdpoier8MXdHqq0I4tcNQPSvCUnv1eRsACAkEwCeEEIY3UmCMUcIopT4nQAAVd/yLH8LUf4FJnXpqtOo67KCSXIU2gG3bun2iyIkHW2l8L6zRCwDMYK0trXPmzJk7d25XR1c8njBN27R0nSc4KA4xX0dlGoa6qJZpoqYCanLXdG1HV/RJDWNuxD4jQGp4bSOyUXcSQqRm1IrKgd4Q5OkRQgiV1SkPUM31I73o9oDCrohtEBlJ5HGi6R0XV60iKhnuXEFUZzGclRPovB+U7sQMMAP2TwjhQFAvopQi3jJOKaWe5yn9Bxm2RgBMYTOcjQCkBiRMmFOUgA1g1jdlFE+sSKVSbW1tsVjMsmzLsCzLYvqOrRBCt6aefF8hAEIq8aMmBKAN+2WnN5NgNz19qTbPvKRg6LPfSGnTP6hjQ/X7ax+UMprKoqMgNoh5d1h8mwAAJcQnhPoSCGGU+gxrnfFA1QnYv0JcrMmuNrioQZIwaxcrJSrOJKXkUgIAxS2dIaYRgmeioEZvmKYVs2J2zLZs2zQtjJQxpk6WNnSjVssOrkJi/LGi41BKNKSXYW0pHaCa/esjjzDXJuw/8lNdcoqsqb6IlBAIN4+FElsSbEoChMU2IouuWAzUS0PQf9JHqH/Vm6rbbF3xciGgGpyVBFDaMCHEOIeC0hJCDUEpKhFHnnq9AEsC3GG+73PKBWWo/Pjc1zKpuSIANIVVs1JKISWVkgIlFELTDVQXSAAGYVKiYAq0dqXWYyUqhgXZqj2buIWFhPo9DeKdRMdpCLXEiMOHVhMA1ItzzXpWLwIQ7UyAl7LflyEYmBdZ0QKr43Bq2xQuJ9S4jNSDQivDr8d2SGj+IvqqxVYtqJZ1zkop5dTnlFJOOeemNHzua+k8QlYqWwUEEAwMgAhJgQAFqhFAwNsIAQCDGJRSoIRqhUaYdt4WpcHREkyr3IajMsKjJTSo4zhX2F/5AIGlXFcCQGN/eYQ8GvHXuqgc4ab6xbpXcGD61nhU4YLbwvZqNfW6jF+/QWf8tV3X/drkvWobnz0xR24zxkaG5y1YGJFBwT4VbfvpWRX9s/aKurJiPKpNhU8i3MUSoBpl3OCcY+a0MHxflSpSQiAggNAgx44Isn4KEkTIfAnaGhILwRJGKQU8EpoyiiemBCVsTcMMqnqxkOsDQODnD2O6auqVBqFPUWAUY7W2UBPCKswvPbO/ePBfdNhnAcMr5dxS0UwkiRA8NDQppViCU5GXTuWyikPUNSGCzRWEVJSTCONUV4QQyFYxOVk3dlHjET73OZeGGWxqrzJeJRFcaHvWdJ6qM1rQ9lIFMocyppIxGSN4XkhYpVklbyLGY5QLt7HrE6JoQL2+1GqHkHqBXgAIUtBJpcpsE/ZZl5s2ur8RI2zCTSNNSRkUW5UB25ASJAHciQrK0RxhiFTtp61Ojoi8Xd1nL5AjNJItjSAyFUZ379yxsZHevgWe5yGfxhOsLhAUEmClPcYqh9Eq9l/7WRkbygcnuODMp74PQDBFSJW1Ct6kmgCqjAql/4S6u56TA5g8pAIUIQGQ0LWllCIpsQISYVoYC8LockQO6LgedBf2GK5Q4PkC8v+UCq7eZTaOwVqYpcJz0cFItqYymel8Lpdqb4+MJvK5+eAiwoFUA60+qaWWAJD3Kzuh4oRmQjCGRxgJISQIPZIFEJwDrI82wiAVOiJyK8YsiPJUEkop0XalUK3GW4C4oRaneLZ6F0UAigOpl9axH3Qnj6SEQOQE0trpbf5rozvr/nreKrIOFUKvx3dnM9q61yOIEbltlrQUabkROUXWjhBiCKCdXd2jYxM6AVwgEM3RhuyO1hxVFMFafWZpmKgjpZRCgoGpP1KCCItVBwRAyP/f3pUux5HjaIB51SnJluxWT8/GxL7/S+wRsbHPsT0zbcuyZV1VlRexP0AywSOzUrLbbfUY7VBXZTFJ8AI+gCBpjjbWYjOrKdqefqyUUpnii3H5OdrYd169Up7DErNsOMq8KHIQOp3REfh9ZmcjofAFJUeDZQ8y6/x9IfQteA3E1jejnIiq1Um1vPt4/eHtm5963SdnnDe2ZuyC88U/aj2cUIB2HQpgmBvOApb4nojYl0pmrcpcwgTujiYAiCJyDRsKWYkgso1rbkBx/k/JoeMky3I7DUw8KIDQaT5kJxsDAgCIsQbwwh8Eh4QZB28kujw5CIIpFNM0fpDGSZAPpew6h/YBOCzF3L6ZzDyW2XNoTvox2R8/TzZj8nX5EN1KsNb64vztr7/+utlsF4vFMwDcGMk5ACI4AsQYGtC8MC4ZR1rSYDC3JtJAhATSVEhbXQpJzArEDMBc8uxQkGPSopQBvos4n4G9uHaMoLqujzvUWduYUggolGSAG/nzV+yFHzRG6BbCsqx88+b8/fvf/va3f0cBGdMSwr48jQilIHQbYpx0dy4giX/cZ/LIBLsRIX9GGsxQ8PWPKR0AFDojAwDMfU0iHol8dw0AOB+s1QYcGKfRQ3SJaaDESp+o+zDWA9EbZJIU8EeVA04i++RPwZRz7eAylx0RvBUTCn2eTDD2yhjDMRtzKB6E7qsTqWMJ2rYdNsSsN6e73e76/T/f/PRzj8hKPclQssM4lU3vTQAAQHPJZOL4SMY5iOhkLX/QfU/mVGm0D5FIuduwUZ5ZzZv0WH4zF+hpADArUcOhk25BlxlWxmRFDmBDDmZWqLWzek1TyLlnZzgyk25SYURexwASgWw8NzGmwYxLLCVF8lcYmQPyeXLMxcN6bNQGDMyZjfEECziJIcpEO8gckgxMN6bW+uP1tY1rQNAazi/e/Pbr/z0+PKxOTumZV3SYwRoAXDTn7DqOEcCNJO361IAZFvjmhloW/C6+mrc7ctNoDrZwg0w4lhRjWLcfhXjnmNZotyuIoYmI4KsCcPfN8Hya7gg3xIP+C4a+30ppa+rF0cS4/zb0vDZUSn2+uVksFoNPAwAAszc//fL+3T/LsiiqhbayVhYWlypkIQw5RcJPfPD4IFvKAOXNFc0GI8lSwKAjKSkHi8IAfTccGZ8ggr0y3oX7+0yqgM+U8Qoy56Ap5N8EhULIpsfg+RMGk0wW4NVAu/piaGoD+4QEnX5Rfkhi5mTmcSkyE7AwOMkSjPRFkHKsRESs67qu68vLSy+yTQMW1eLi4uL9u3/8/Mu/qbz6cvmEQq2LqpLVFYA4AGizhkJDrewGAOS7w4iIYQlDIEQEyIAITbSB2UTGWF/OGLFz5ciWvyzL7JaPsCJJiR6MsIkEtncTz1+6HnhZRES3t7fn5+dElHOv8cZZPkR8ud5uuv7dP9///JefIcsghaVi0EYGfwxyyBeC4NKTdWAicHwVKdQEBEpbU5dxPwEAsfGgFRKBkeaQZZqIACshXs1vzhAhAAY8qFQ2OHwY5BDZwC520oCQQOiHLYDRCYnRL5vFrV2AQU0JHehaKVgDjiwiO1VEWaGxZRnjD1r0gkw8Jj7jh872cjI4xusBxb0/cJ7yksdsy4fJUiYa/OgrY+JfKfXp06fNZpMXhe57TwPwuNFEJ2evdNd/uLp68/Ml/O7rIKbxeT5YcDxISnvSFSpUlkckIsBMelRlz3HTZOIofTsth4paLDTUbggT+kF/UlJK3d/fI+J6vdZ8MhX/YKcLmpFH9Or8/OOHq4/vP1xcXrrAhOkZCam5Loeg+xURyeSZMhxtWIH5y6fmAoMcgSL8zSgufxR3fUYCOHQa+GLeQf/hRRRuXFkW+MIG7YI3f5YRE0ETuQl2FFXLVg20aNDgwevTEgs9LJooekw7Jbk6qihgRHK7lkzWN8nexMPYIk3Wq2mapmlevXrltq2PSjsNdH5xgQBXV1djab4NKaX4ClzrpVdK5XlWBtLaBVpn4ui1QJzLr8EY/UF/bkLEruseHh7Ozs7kc6MBeKcICusTATXQ67c/vXv32/XVh5/evulwapaDL/6JiKAn0IAEqIl6E81J2sIcXhUGIkWkCVE5a5hPIBAOTjutFa/MM/DPMSdBwXDnlV2wTicJUq3o0s4AsG0UwvehNdAlCF2iNoGWGgMj7QRCLAkeEg57CcpjkRx8TYpPil/x00iFbN6CZ5KVoZ7mnyBKuYni9glecQ+DIuLmDcwSV1zXdbe3t6enp6FMPMrx5eUlAn18949cd0cTP5eGbeOGLeGVB7OtXgXkXlZKuchNJj6oRxbg1nefgfJ/b6vgh9XxexMR3d3dbbfbOFQ7vcF3mEYACHDx9uLmw9XV+6tXby/B9xFKqS9FGhlHC5GJfdBgf2C5qLUnxggHTyiL/kAu8q5asCsA8swVLe4VFsgeUTijyF/BhUF0STMAgjVcVyk7RlOA24fUAfoKELnLFo4JcnyKVEbWp6IXZOslNYz8mlYjKe0UJwtqMWGfyL44mpvUkEnZn3wlKNplcnd3t16vy7J0x0O5v7NkD4E6e/tzVizfv39HfYcpN/mQ1v0jDmPup7sSjdMSMt6Hq0zMvf3M/5SLNXCAx1m6Mkxf6I0hKgHmoX+O3p/TID/opZDW+v7+frVa8ZaSOEGeDExHRDJOSTABsZpeXZwXt58+vPvt9du3VVVa3zPyjfKkSVNP4E5TItC97nsEID7P1uYMAA5/W1mlgLfxmmVdjYhAZlXL1IS07gepL3OTkt4+9J5I8T+8wtFBw7KU8b3a1wFA+l74/7wANzhopdQfHglDwrFHvjaYEqt+RxifLwyGAUixZx6kQbDLR4/7VShS4BBJU8l4wOPEtbmx5JafY8k9pkDEQ3TiMs4wLp2t3s1mw5uoQAwY9/cJB2Npou3pqywvb64+vHr1arFd9yJOwQAet0GdvJlFIx2ANixZi7B7EMmU3SlG/gbfOB/5TYlbtEDsYLSHlvIEC9yv81viBdMEpJljwr4UcqN/vV670Z+kuRMAzcFSsFhvi7L4+PG6aOvTszO7VQVIkwE9ziogQnsMRGS8g/XlWNFqnDUK0QbJEPIeeJjnsvTFqwfN5YwH4do3CUQSTjAGRqPRM2gYqYU8hRDylqYwZwfj3DRObWcZUoQfR0sJxKpsJcdDLHrth7AeE5ZGUBUp5gPegyfTbcXK0HVWUqQiYl3Xu93u5OQksHqDEulpRyMiECgCUGX55vLy882nTx+uTk7PMpXpwbtJTi2HL6O5c55HPgACDDeuGdOavZwqI6Jea6BhNz0YG2+ij8MWkfhEdkM4UJ4j+70J8zx6irz1av7lgjqwkp/06hfW+hvQfr8/HA4nJycy8HGMvAlgTik0qwFgMLocURynQAiQXby+eHy8v/n0cblaLJcrYquX85G+INfYLGx4MCqFPAFc1uYWegCAvuuVUkVeuNxIsDRdn3gCyA/KHs1ARIovRhf4R+oKO2Gc4x8tA2BhWghwg/lmtJBsXiJUimw9yQRimLqFHpP4S4TU4zfkr1LOJVPKnwLRMILLuQMhmXKoY+TFdwo51gbxVEyiZcvGqCXj8r+7u0PEYLVLJpNM4tTRiGTAQdwWaOAQLtcnRbm4vv5w2DdnpyeAqC0EgmBAhPYiASp3XZdrIEbn7jiqGDsdbTVXyliFPZa4ngQE4ECW7CQUwGZiGIHfqY4N99VPHI6GsTEdVDkoKOBk+nPMpHsSz+SxzJNPplSrX5b8ENQ66M3kEJfvQtSzTLe3t2VZLpfLsdfjEp9/PwAhaoC8qH6+/OXm04dPH643p9t85EyhuEq2GuYnxvry1GU5pl3DBkM5yD9uaxCzYoyTH/TSCRG7rmN3J5+AP7+XhwngplTgGE1ICwAHRTQQArw6f7Ncra8/fMjz3cnZGaiMDJ4iQLMb0WQGaLYvAiMs4IPogiN3ImnhBL+ZGBLekeflDCeDtSFdhaypahGNMUscGkq13YSETms8oQei/jBtTAbUzDJex57P7OkAII0qCjKhKCJnY43L3I5qpDlcjWnUMYCXzJMbebfbPTw8nJ+f8+6Ro0XLgp677oMAQGhieqjXVC5WP//lr2Ve3VzftIc6N0eUK1QK7OqSuQIAEEERQdd1fOcFC34QoweE5EZzqATZz2KRFRHF8q1cxxUNBDIxxErga6uEsVk0kEDVX7nsLyNCRXAEj30/xIP48fFRa10UxePj4+3t7VOZHzTA0TdjVeCeG1mRZa/fXh72+0/XV4/396evXxd5TiSBl3ndOTeV3feohj0r6VLAGsFWFXjWpwzJinmOGAalFPGmHPISJ5HVHPJF1yjCNgrNpgssjekigionYfdROTpW0IAt+SCMEalw1GKRvTNdo2Q+slLB67Jo7im+t5PvqAWAtm13u52LepCDRA6DoNyve0sk9gTFYvHTX/9y+/n2+vp6tV5vtpthtxRi3/Vgt6ocz863R0GIzrHX5fw5mvO3pDlj4o8lrfvHmytA3L56C98xn4jY9/3j4yMirlYrd4RUnudnZ2d1Xd/e3mZZJheAJ+g5EyCeuyRGHSIQZWevzzfb00+fPn54/36zXlWLdU+atLeaK0cDEQZKYEx4yzTEYRQea1PGMZjt9qA1sW1CZlUl7PFpOSfY9iQWmugjiDkX6YdbWMzpFTMCzpKS/ilfhxYIV0EsLNQaDh0S0ZqGOwFsDuAqyA9iDqOiUdoPrhZx1yOalGQdnWPEa0n7/WPd7MuiLMsCoNd9j4iabcueyrI8Pz+v6/rz589FUWy326IoePuLZM99+Or3BJu21ppUll28edvsdzc3n+4e9icnp4Fi+sMJvzcM/odSlmWvL94eN2D+IELEuj7UdY1Iy8UCEfl2LPObMkEu7BFZLBZVVe33+6urq6qqzs7Oxuxj/K///l/3JYBZ7iFE/leYxBi+Y4GI6PHh4e7ujhWTXJ128kCcRXXELg9QNfjiZA7xJOy6vu81US8t5liHJPNPwnEeOvJQiUCViaw8p5DMdrqs4EkKIo6tA4ScCP6D7Ad5H2QlnsyClzafRC2kTnMaYCxnRGy7br/bke6KomArw4+OsZ4Q8E58Ylfh/f39/f39crkMpgF+4TrATNKAmmi1Wi8Wi8fd7v7hIVdquVxmeQ7fjSr4Qd8nIULf94fDoe/6LM9VgS6wVUIJpUy8jNbaSR8X67XdbjabzefPn//+979vt9uzszNv+kkNAOO22kzckgSjzKs5+J+o2T08PtxlWbleb/KM47ERef9jJjXwsOIbQcYjUnMaUgMAX7bXdT2Z8ObBrxq/Ersjkr/y225HcvDrhHQPIP6Ejk3ZAx4otz/NVImxbn/Ciz4D8fMjbEzqbULEvm93+x31HR9YH9TRaTOSu2HVoOj4CAXTF4RKZX3f39zc7Ha7s7MzFyn0u2sAr1pEQFQtV1W12O/3t3d3WZZxwCoC2dWop9GcgKcf9FKIx27XdXV9aNo6z/OqqrTWY6DLyRrpSU8SJ7i4uOj7/vr6mg/G2mw2fjDcCJoMKBZXR32O0glABIRqsV5Xq1VbN4+PjwCwWi2rquKzDYOcY4cuAE1L1iQD0UOeO/aWbPB2zARsBJg1gNrulbgP5sD6YEtnzL8U/CNNjeJ0rCPeeunJkcliVue07XxyHTqhsdu2a5q661o2ZNlUY3ifxCYB/2Ztx3QZSA0AwJeiYKayy8vLuq6vr68/ffr0TTWAJcU7BwCpXFbL5fJw2D8+3j883K/XJ6vlUuWZXJ7i2v0RfH4j+rrj7MURY9qmaev6gKj4Yh4iPkyEiMjGz5s5yy7T4yOCXyQXwG0migaNGsuy/OWXXw6Hg38y3AxxnkT5wROJgDmB8k7Qt2ecgyJNHeiiWrxerrqu293ePT7cL1erzWaT5TkAIIImrrQn/4RtQGNiO6BYKCKijcpxT8B5co8S+o5tJ/5jRRo0bNyG496b9EMiYvEmnns6JMokRufMEsjKmrcUEpFcIw/Dw1L7aFm3mzYBJASOB0PwdFdgzmndN03btkbkezXilMMZZ0CphvMZEw1hzhrUBKAws3MGAZTT9uZ06D+ceARkWXZ2/pq0PhwONzc3ALBYLpeLRa6UHvYahC9+J6LTet7M5ye9+7xrFV8ucfu0bds0DZEuy3K1WkE8af3wewhlCkAqbOlJja+1zim9jJempNdigoOktTDBogbCTG232+1mU7ftw8PD/uG+zPNytSrKhbEfIh5igJgUNu6Df6USTMj7wNIgfznTJcCBBn5iZ8UEfo2ZT1KQyaRV8HyKLK4nvDWoRBhwi2slTrDf7/lO3tVqleeZOFQ4UDQ44uHw+mxMr5qHaC9PGSYP8a0/nOAP1gABNuAtWj0RApRV9bqqdNce9ruHh4e2uyvLYrPZFEWJ6ADeV+DgScm/0ljzbc0nvvzVRvzXacHJ7In4hgatqW2b/f7Qtu1qteIzqtgZPZGBQkVIpAlQgH4EcocooK2GcLh7rgiXbGg0AgBNRgj6F2SM01GQOpF+qNBRdw0Pa2v0EBFk+WJ7ulyfNE3z+Pjw8eNHAFitVqvlsigKha4BTKFS2LhCA2EsPyAoPsrF8j28ErtE+IAY+VRqAJky6U6Jqk82O8LxVg00nlvtn5B8E+2M1tlv7cnwdAzOMcjE2QNjt7v6jWwVCCAidl17OBwY5ZdluVhUfM6f9i94HuOTJbi1Zv1msV1NRAiahO9LKmGwRvDwrlC2RzRADDNm0pPSj41R85yIAIqiODt7dXp62jTNfr+/+fyZtK6qar1eLxYLbnU5JqQYkDgEhlELYIxBOyC8X49rhgFCDQDo+Koc269DxY8J4Rg4xZlE+R8nlonGTvWRHvq+xTlN4WMYBKCu65qm6boOAPI83263eW7OcuWf+Mbl6fqmoRF7hZQPIGG0EWJ/AFeJn38XRvAsMnt3oaqqxWKhte7adr/fs7lcVhVvh1P2puE5WaKRM1+0BSQl2v/lyE3Ltm2bpm6aBhEXi8V6vXbj3rkB8zyv65qIJsKVYwEq0bLdxCcMYueASpmanhwH70j+xARIGxNPHyIBvk8akUl7S5qM7rlGI/Pc9ddFVVXLJRC1XXfY7+/u7vquKYt8sVxXi2VZln6TETcS+HIFiXDQAYmB7H4G8P6Hnu2LgtvBPBONAMFJ1MCKmMh3KRrEGsAev6lcAkK0bw+6fmw2uschsDGlIAAHaQd1Zf7laXickIAD0Ql03/V1U7dtqzUppaqqXCwWbsuH07uigrBYLA6HAyJmWRa4NpM62B855vBwp7mBtAvIt2zzF3bmRtqAenfmwwvRACg6hoY69XzrY55vtyfb7Qnptq7rx93+7v4BABaW8jxTiFoTQMp3BAAwCURsT/AoGMPBXtKQKLn7lMZfCFNOyp/BIJyiqd9DTkL72JyYg3xqGVGv+6Z5rOumbTtELMqyqqqyLOUJxLapE+USUVVVdV3zUfKReJ1uYgzyJcCU7AL/OKWhbPHrPAg0BxQG8n4mTZgKAR6dhhkmsSqWq2K13gJA27aHw2G3293e3iqFeaaWy2VZLYuiEBaSuON6rJSEzWse+/eACVifUHEJoxysBRfXZcLADVIaOODYTiWftsd8uyhtwCAQke77vqmbpm3apgWALIOqqtbrsyzPXRHzBwBDoKZpq6qKBw+ruICN4KtoZwRAimBPoA0DDpnnF6IB5lnV2qAaUEBFUVRVdXp6aoBpvd/vD3f3DwCYZVlZlmVZ8QFESilNWqECfUzSCm7AnvE1j/PnXLr8JZbJs8nOBAANWuu2beu6aZt9c9ihUtxum1ev8jxHzACISNNzGWUItN/vJ07yGXsxhRKTdTniZQgnwJgBEIByWbx8EuuHWDYk7ZvgiUwcCNd0Pc25i2ZHpgbnhEZALMqyrKrNKRBB27bNoa7r+uH+s+5agCzL8ywv8rIoikKhCsarCdsgQlRWmCOCQqSMBU90EIsQSw5hK3L365CdZqIqz9Cc5kUfvEh4xmiamdaI/BkNLrbYD5HAbVIl3bVt33f1rm3auuu1JgIsy2JRLbbbbZbnmT3ZziwoOSgtLAffbgn1qhwhiJjnikjv97vlcmlbZHRCyXwcOrBWAfc8kT27jk0A7iJXNgCAJrALYS9JA8ykELsCAMDQWQAcgL1er4F033dd19V1U9f1w8NB95r1Q5apPM/LslBZrlBlaHbcgfU+40sIzmO7ie8hQSITHQ9m4LNQo77r27brurqpm6bRhKhUledFUZysNuaIPiHgtJy0X6MRiCjP877vWQ88W+kplXHAswOQ5nPCnPCF73/85/8EE3SCVziGxeP008/HPqNPrlypTAJtM4ZfIVYd2vgQtDayUDHI1dR1fde1fJdg13VaazQXNOV5nhVFURRFnmW5UphliBmguefMiHQKpZ35AAQyPmJS9j9pEEiRPxSNiESKEPmwSiDSPWnttgF1fa+1Jq0VggLKsqwoCpVlWVFlWeb8Ak4UR3ZCbNIk7V3uJtkmadsGEeu6RsSqqsZaIDKr/JKE1SSHBzGu9YaZRjGK/mwaYD5pG7Fo5LomACiKIs9zF5aotSZWE13Xdd1+t3voeqIOSKMqlCqyPGPslKtM8W30mUKl2FvCo0b3vbNTUfiD3OQAGEbOUb/QsNLKEsEGyTK3mkj3Pf+FTvd9r7uetNbYKYWYZUqpLC+rxSLPsizLEBCzbJCJ1BORBoTnH5n2HCKisix5wZgP+flymrlTKpcTa1q6j/0amAFPJLQeNj1RxJiPJZky0FTImBvDNGgd8QBIQKTQrZAQotl5mmWgVFVWJZCyN0OZkdZr3fVd33dd1+z2+65DM8qRzYaM/ep5xvv0Mr6lDxDtpfaaL3FiYGL81p6KQwS+XM01LF8Vooi6viM9/Meco1KgUCEWWQ6IqizyssrRzEmlFIi7rch5k72zEhCsPnThbH6Dh/4Wy5tzy4RIYQxfRJ4cb3HA5QnRxp24x5MDwLKbkQ0ZHlhlQ+ZfXAPMJ771Q4NGe4GSUhmqXFVofdKkFQGh0hoIGG2Q5kujtCbqu05bIk2kNSD0RLrvM1RKIfVaa61oWJbWCnsFINAgLy3xvqasKBSiuToTWY4PZ43xE2CXfK9jP8R3S1VV8WFvSqlvw6wJhhsT4cFcD2Zbcq4n/VOYihAG32adkOsRBh0liQUBnMs+rEjwFqJb4zJvxA4Hm5tx3hNSDwA2es5ELAJHMKpMKUIkIlbnaIvQYulNm5szgZG6cdoF4HgoAdnI03yml9OENkKEE3I1eiAgc+9mnGdMsXxFi7Tcc7tuPrRzqj1JJhhyShGlDipExMVisdvt1uu1XCCbNk1jJSDrxV/FvlPbyX/EOoDV9MGz9EIgysmR8u7MopQ9NZ7Z0XIi1pgUiB1QvJkPyC7FD0NJ42AEa+uLRADQhAiDq9T5Kcmoa545fCmbBrMebk8SGKqKAGRA5WxnxRNbNkp89G03iN2TqVZmU/jx8XG93jyFryMkputgjCFrgJkAa8LNctSVYeUxknSeIW92JAIvRog0WtnGrKKyKPmp5Iafx7yIwRyQKHhmZVxHYAWB4gIdm4Cs8xltMhKvyEZAe9krOEHEIwNd0IqwYWjIgUQwDIfgOOXg1Zdlm4gMmwzccK+YiWSmq/X9cP0GJm1i5yQSySRJnw/FSgPRuWHSo47j5/b73Wq1okSsVFSFeaOXrHvUvQb4TW39H/SDZhERsTtuv99/9cwRvdMH526IGaMA1k8ok4AJ8GVt7B8AYf/FJT6J5viOXOZjam3CCRZ/9R3Pcxl2sHiMw5kuu/inwFqbx8lzXhzJamCezBoy+So5bHOywdJN0/ClLzNrJEfgRA8ODoNnVyxNR/vaaG6S1q/4l8yR5uX7/E56mXSkyl8yakfpG7qReA5o3dd1/XtUhdsnny+2J8iZ/CQvmkyUafa2+Rs8JcCPg8bIWJwjWVpnyODvGWNvrI6xLJFusVjoJmVPUuSHLqlj7TyRfyIlIdqVzrhG7uaROa6z4UVhQtiCYsdaYMI6i8BZKWA9b0Ol/Dqa5YKUsjW5ufRlWdZ13bYq2D2TrNEcYyBo3ud4gWZ258S7c8jCpNBHFJdrPC4Asa54ktKPvwYOtfj5tAf56JM4wRgEGqO4a8c+P0MhjMx5CgAYo5oR3mhavsS1iDNZLBaHQ42IeT56fsx028a/eh6FH/Tnoy9U6d8bVVXVtm3f62dM42l6mhF8zLYbcc4JiuQlDb7DIRFDHrl32Xs3Nm4ItPUbDvsbbXCacODBEAo5JrmnK47+cQPJHJLKZE4RTzNecWjtCQk3bS7HpRPZVktZkA7rWpDjZD+6VKwp3apTXPhYNeWD2GCtqrJpGqUq38062kRHK86/fnUN8AzBEytQEv+i1OnxFPQEpD7bGfInoTm+gW9PcfM+yT8xVikCgKIo6rr+urV+sg3wbOg/BzcfzSR4XeZDRInVMhZo/rLotE3MlKzmk4DmU2sXSOs5htaY4A9+kqpgQi6S8FeO2fETRceF+ix5vpaZSimoGiLyiRKLxdL9PqFPxoqTbfvDBvhBL4nyPC+Kom3br5bhsQQIfDk7Ggfls62rI/YDJnbNBjM4KZYSHi4bsmugJHmLbkQURF6I8sAckoJPq6bz3iSMk2NKY0w4OWNjjrAcs47kT0f9oYP4BwBEb/fX+CtkIgNH01jN4znziMjHRaEbVFaEnblOgymliPq27YKjtcacURANJDmcfmiAH/TyKMsyAJo8V3Qu/T+vOjs0Q1RCVQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<PIL.Image.Image image mode=RGB size=256x256 at 0x7FB4D632FCC0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"img = Image.open(\"./carsample.jpeg\")\n",
"img, imPrint = preprocess(img, 256, 256)\n",
"img = np.expand_dims(img.astype('float32'), 0)\n",
"print(img.strides)\n",
"print(img.shape)\n",
"imPrint.show()"
] ]
}, },
{
"cell_type": "code",
"execution_count": 47,
"id": "0ff3b336",
"metadata": {},
"outputs": [
{
"ename": "RuntimeError",
"evalue": "/code/AMDMIGraphX/cgMI/AMDMIGraphX/src/program.cpp:210: operator(): Incorrect shape {float_type, {1, 3, 256, 256}, {196608, 1, 768, 3}} for parameter: inputs",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-47-f3c35df36fc3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmask\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m'inputs'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Your first inference would take longer than the following ones.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m: /code/AMDMIGraphX/cgMI/AMDMIGraphX/src/program.cpp:210: operator(): Incorrect shape {float_type, {1, 3, 256, 256}, {196608, 1, 768, 3}} for parameter: inputs"
]
}
],
"source": [
"mask = model.run({'inputs':img}) # Your first inference would take longer than the following ones."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d32dde86",
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "ecdc9943", "id": "5aee3e76",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": []
...@@ -47,7 +211,7 @@ ...@@ -47,7 +211,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "c34d0012", "id": "faf946ff",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": []
...@@ -55,7 +219,7 @@ ...@@ -55,7 +219,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "ac3742a9", "id": "631ab59a",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": []
...@@ -63,7 +227,7 @@ ...@@ -63,7 +227,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "a5526b1f", "id": "814d8724",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": []
...@@ -71,7 +235,7 @@ ...@@ -71,7 +235,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "1eab2d51", "id": "7653a6f4",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": []
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment