Commit 8d7a8a6c authored by Artur Wojcik's avatar Artur Wojcik
Browse files

Merge branch 'develop' into uif2-initial

parents 25b33431 a09dc502
...@@ -22,14 +22,8 @@ ...@@ -22,14 +22,8 @@
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include <migraphx/onnx/op_parser.hpp> #include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp> #include <migraphx/onnx/pooling.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/instruction.hpp> #include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -39,76 +33,14 @@ struct parse_pooling : op_parser<parse_pooling> ...@@ -39,76 +33,14 @@ struct parse_pooling : op_parser<parse_pooling>
{ {
std::vector<op_desc> operators() const std::vector<op_desc> operators() const
{ {
return {{"AveragePool", "average"}, return {
{"GlobalAveragePool", "average"}, {"AveragePool", "average"},
{"GlobalMaxPool", "max"}, {"GlobalAveragePool", "average"},
{"MaxPool", "max"}, {"GlobalMaxPool", "max"},
{"LpPool", "lpnorm"}, {"MaxPool", "max"},
{"GlobalLpPool", "lpnorm"}}; {"LpPool", "lpnorm"},
} {"GlobalLpPool", "lpnorm"},
};
value handle_values(const op_desc& opd,
onnx_parser::node_info info,
const shape& in_shape,
value values) const
{
auto kdims = in_shape.ndim() - 2;
if(starts_with(opd.onnx_name, "Global"))
{
// if spatial dimensions are dynamic use dyn_global flag
if(in_shape.dynamic() and std::any_of(in_shape.dyn_dims().cbegin() + 2,
in_shape.dyn_dims().cend(),
[](auto dd) { return not dd.is_fixed(); }))
{
values["dyn_global"] = true;
values["lengths"] = std::vector<size_t>();
}
else
{
// works with static and fixed dynamic shape
auto m_lens = in_shape.max_lens();
values["lengths"] = std::vector<size_t>(m_lens.begin() + 2, m_lens.end());
}
}
if(contains(info.attributes, "ceil_mode"))
{
values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
}
if(contains(info.attributes, "strides"))
{
values["stride"].clear();
copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
}
if(contains(info.attributes, "kernel_shape"))
{
values["lengths"].clear();
copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
check_attr_sizes(
kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
}
if(contains(info.attributes, "dilations"))
{
values["dilations"].clear();
copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilations"]));
check_attr_sizes(
kdims, values["dilations"].size(), "PARSE_POOLING: inconsistent dilations");
}
// lp_order attribute
if(contains(info.attributes, "p"))
{
values["lp_order"] = info.attributes.at("p").i();
}
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode(info, "POOLING");
return values;
} }
instruction_ref parse(const op_desc& opd, instruction_ref parse(const op_desc& opd,
...@@ -116,148 +48,8 @@ struct parse_pooling : op_parser<parse_pooling> ...@@ -116,148 +48,8 @@ struct parse_pooling : op_parser<parse_pooling>
onnx_parser::node_info info, onnx_parser::node_info info,
std::vector<instruction_ref> args) const std::vector<instruction_ref> args) const
{ {
std::string mode = opd.op_name; return add_pooling_op(opd, std::move(info), args[0]);
const std::unordered_map<std::string, op::pooling_mode> mode_map = { };
{"max", op::pooling_mode::max},
{"average", op::pooling_mode::average},
{"lpnorm", op::pooling_mode::lpnorm}};
if(not contains(mode_map, mode))
{
MIGRAPHX_THROW(
"PARSE_POOLING: onnx pooling mode must be [\"max\", \"average\", \"lpnorm\"]");
}
operation op = make_op("pooling", {{"mode", mode_map.at(mode)}});
value values = op.to_value();
auto l0 = args[0];
auto in_shape = l0->get_shape();
assert(in_shape.ndim() > 2);
auto kdims = in_shape.ndim() - 2;
values = handle_values(opd, info, in_shape, values);
// count include padding, if count include pad is 1, we always use
// explicit pad
int count_include_pad = 0;
if(contains(info.attributes, "count_include_pad"))
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW("PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape");
}
count_include_pad = info.attributes.at("count_include_pad").i();
}
std::vector<int64_t> paddings;
float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
if(contains(info.attributes, "pads"))
{
values["padding"].clear();
copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
check_attr_sizes(
kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
}
if(paddings.size() != 2 * kdims)
{
paddings.resize(kdims * 2);
std::fill_n(paddings.begin(), 2 * kdims, 0);
}
if(values["padding"].size() != kdims)
{
values["padding"].resize(kdims);
std::fill_n(values["padding"].begin(), kdims, 0);
}
if(values["stride"].size() != kdims)
{
values["stride"].resize(kdims);
std::fill_n(values["stride"].begin(), kdims, 1);
}
if(values["dilations"].size() != kdims)
{
values["dilations"].resize(kdims);
std::fill_n(values["dilations"].begin(), kdims, 1);
}
// used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings;
if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
{
auto auto_pad = to_upper(info.attributes["auto_pad"].s());
// don't use the given padding sizes, if any
// values["padding"].clear();
if(in_shape.dynamic())
{
// set padding_mode to trigger auto padding at runtime
bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper)
: to_value(op::padding_mode_t::same_lower);
}
else
{
// Calculate auto padding
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
values["dilations"].to_vector<std::size_t>(),
in_shape.lens(),
paddings);
values["padding"] = paddings;
// default padding_mode indicates that padding sizes are not calculated dynamically
values["padding_mode"] = migraphx::op::padding_mode_t::default_;
}
}
std::vector<int64_t> slice_start;
std::vector<int64_t> slice_end;
tune_padding_size(values, paddings, count_include_pad, slice_start);
if(not slice_start.empty())
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape");
}
// calculate expected output shape
orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
orig_padding.insert(orig_padding.begin(), 2, 0);
op::pad pad{orig_padding, 0.0f};
shape padded_shape = pad.compute_shape({l0->get_shape()});
// make an op just to get its output shape
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// compute slice_end information
slice_end.resize(slice_start.size());
std::transform(out_lens.begin() + 2,
out_lens.end(),
slice_start.begin(),
slice_end.begin(),
[](auto i, auto j) { return i + j; });
}
values["padding"] = std::vector<size_t>(paddings.begin(), paddings.end());
check_asym_padding(info, l0, paddings, values, count_include_pad, pad_val);
op.from_value(values);
auto l1 = info.add_instruction(op, l0);
if(not slice_start.empty())
{
std::vector<int64_t> axes(kdims);
std::iota(axes.begin(), axes.end(), 2);
l1 = info.add_instruction(
make_op("slice", {{"axes", axes}, {"starts", slice_start}, {"ends", slice_end}}),
l1);
}
return l1;
}
}; };
} // namespace onnx } // namespace onnx
......
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
*/ */
#include <migraphx/onnx/op_parser.hpp> #include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/ranges.hpp> #include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp> #include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
...@@ -36,90 +37,56 @@ namespace onnx { ...@@ -36,90 +37,56 @@ namespace onnx {
/* /*
********************************************************************************* *********************************************************************************
* Reference: see QLinearGlobalAveragePool in * * Reference: see QLinearAveragePool and QLinearGlobalAveragePool in *
* github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md * * github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
********************************************************************************* *********************************************************************************
*/
QLinearGlobalAveragePool consumes an input tensor X and applies struct parse_qlinearpooling : op_parser<parse_qlinearpooling>
Average pooling across the values in the same channel. This is
equivalent to AveragePool with kernel size equal to the spatial
dimension of input tensor. Input is of type uint8_t or int8_t.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
channels_last : int
Inputs
X : T
Input data tensor from the previous operator; According to channels_last, dimensions for image case
are (N x C x H x W), or (N x H x W x C) where N is the batch size, C is the number of channels, and
H and W are the height and the width of the data. For non image case, the dimensions are in the form
of (N x C x D1 x D2 ... Dn), or (N x D1 X D2 ... Dn x C) where N is the batch size.
x_scale : tensor(float)
Scale of quantized input 'X'. It must be a scalar.
x_zero_point : T
Zero point tensor for input 'X'. It must be a scalar.
y_scale : tensor(float)
Scale of quantized output 'Y'. It must be a scalar.
y_zero_point : T
Zero point tensor for output 'Y'. It must be a scalar.
Outputs
Y : T
Output data tensor from pooling across the input tensor. The output tensor has the same rank as the
input. with the N and C value keep it value, while the other dimensions are all 1. Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to signed/unsigned int8 tensors.
*/
struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool>
{ {
std::vector<op_desc> operators() const { return {{"QLinearGlobalAveragePool"}}; } std::vector<op_desc> operators() const
// basic type checking for QLinearGlobalAveragePool Operator
void check_inputs(const std::vector<instruction_ref>& args) const
{ {
if(args.size() < 5) return {{"QLinearGlobalAveragePool", "average"}, {"QLinearAveragePool", "average"}};
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: missing inputs"); }
const auto& in_x = args[0]; void check_inputs(const op_desc& opd, const std::vector<instruction_ref>& args) const
const auto& zero_pt_x = args[2]; {
const auto& zero_pt_y = args[4]; const auto& in_x = args[0];
const auto onnx_name = opd.onnx_name;
if(in_x->get_shape().ndim() <= 2) if(in_x->get_shape().ndim() <= 2)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: input dimensions too small"); MIGRAPHX_THROW(onnx_name + ": input dimensions too small");
auto type_x = in_x->get_shape().type(); auto type_x = in_x->get_shape().type();
if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type) if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: unsupported input type"); MIGRAPHX_THROW(onnx_name + ": unsupported input type");
const auto& zero_pt_x = args[2];
if(type_x != zero_pt_x->get_shape().type()) if(type_x != zero_pt_x->get_shape().type())
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: mismatched type: input zero point"); MIGRAPHX_THROW(onnx_name + ": mismatched type: input zero point");
if(type_x != zero_pt_y->get_shape().type()) if(args.size() == 5)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: mismatched type: output zero point"); {
const auto& zero_pt_y = args[4];
if(type_x != zero_pt_y->get_shape().type())
MIGRAPHX_THROW(onnx_name + ": mismatched type: output zero point");
}
} }
instruction_ref parse(const op_desc& /* opd */, instruction_ref parse(const op_desc& opd,
const onnx_parser& parser, const onnx_parser& parser,
const onnx_parser::node_info& info, const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const const std::vector<instruction_ref>& args) const
{ {
int channels_last = if(contains(info.attributes, "channel_last"))
parser.parse_value(info.attributes.at("channels_last")).template at<int>(); {
if(channels_last != 0) int channels_last =
MIGRAPHX_THROW( parser.parse_value(info.attributes.at("channels_last")).template at<int>();
"QLINEARGLOBALAVERAGEPOOL: channels_last (N x D1..Dn x C) is not supported"); if(channels_last != 0)
MIGRAPHX_THROW(opd.onnx_name + ": channels_last (N x D1..Dn x C) is not supported");
}
check_inputs(args); check_inputs(opd, args);
// Input: X // Input: X
...@@ -128,21 +95,18 @@ struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool ...@@ -128,21 +95,18 @@ struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool
const auto& zero_pt_x = args[2]; const auto& zero_pt_x = args[2];
auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, scale_x, zero_pt_x, info); auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, scale_x, zero_pt_x, info);
// Output Y = globalaveragepool(X) // Output Y = pooling_op(X)
auto op = migraphx::op::pooling{migraphx::op::pooling_mode::average};
auto lens = in_x->get_shape().lens();
std::vector<size_t> lengths(lens.begin() + 2, lens.end());
op.lengths = lengths;
op.padding = std::vector<size_t>(lens.size());
auto out_y = info.add_instruction(op, dquant_x);
const auto& scale_y = args[3]; auto out_y = add_pooling_op(opd, info, dquant_x);
const auto& zero_pt_y = args[4];
auto out_quant_y = bcast_qdq_instr("quantizelinear", out_y, scale_y, zero_pt_y, info); const auto& in_scale_y = args[3];
// zero_pt for Y is supplied as the last optional argument..
if(args.size() == 5)
return (bcast_qdq_instr("quantizelinear", out_y, in_scale_y, args[4], info));
return out_quant_y; // if no zero_pt: just broadcast the scale..
auto bcast_scale_y = bcast_scalar_instr(out_y->get_shape(), in_scale_y, info);
return (info.add_instruction(migraphx::make_op("quantizelinear"), out_y, bcast_scale_y));
} }
}; };
......
...@@ -39,15 +39,17 @@ struct parse_scatternd : op_parser<parse_scatternd> ...@@ -39,15 +39,17 @@ struct parse_scatternd : op_parser<parse_scatternd>
const onnx_parser::node_info& info, const onnx_parser::node_info& info,
std::vector<instruction_ref>& args) const std::vector<instruction_ref>& args) const
{ {
std::string reduction = "none";
if(contains(info.attributes, "reduction")) if(contains(info.attributes, "reduction"))
{ {
if(info.attributes.at("reduction").s() == "add") reduction = info.attributes.at("reduction").s();
return info.add_instruction(migraphx::make_op("scatternd_add"), args); if(not contains({"none", "add", "mul", "min", "max"}, reduction))
if(info.attributes.at("reduction").s() == "mul") {
return info.add_instruction(migraphx::make_op("scatternd_mul"), args); MIGRAPHX_THROW("PARSE_SCATTERND: unsupported reduction mode " + reduction);
}
} }
return info.add_instruction(migraphx::make_op("scatternd_none"), args); return info.add_instruction(migraphx::make_op("scatternd_" + reduction), args);
} }
}; };
......
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -21,46 +21,72 @@ ...@@ -21,46 +21,72 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp> #include <migraphx/onnx/op_parser.hpp>
#include <migraphx/clamp.hpp> #include <migraphx/ranges.hpp>
#include <migraphx/gpu/device/nary.hpp> #include <migraphx/instruction.hpp>
#include <migraphx/gpu/device/pad.hpp> #include <migraphx/make_op.hpp>
#include <migraphx/gpu/device/tensor.hpp> #include <migraphx/tune_axis.hpp>
#include <migraphx/gpu/device/launch.hpp> #include <optional>
#include <migraphx/float_equal.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace gpu { namespace onnx {
namespace device {
// generate unique output stream y, given input stream x;
//
// case unsorted:
// input x: [2, 1, 1, 3, 4, 3], attr_sorted = 0;
// output(s):
// y: [2, 1, 3, 4] --- the unique output
// y_indices: [0, 1, 3, 4] --- first incidence, in terms of indices of x
// x_rev_indices: [0, 1, 1, 2, 3, 2] --- x seen in terms of indices of y
// y_count: [1, 2, 2, 1] -- count at each y_index. sum = len(x)
//
// case sorted:
// input x: [2, 1, 1, 3, 4, 3], attr_sorted = 1;
// output(s):
// y: [1, 2, 3, 4] --- the unique output
// y_indices: [1, 0, 3, 4] --- first incidence, in terms of indices of x
// x_rev_indices: [1, 0, 0, 2, 3, 2] --- x seen in terms of indices of y
// y_count: [2, 1, 2, 1] -- count at each y_index. sum = len(x)
argument struct parse_unique : op_parser<parse_unique>
pad(hipStream_t stream, argument result, argument arg1, float value, std::vector<std::int64_t> pads)
{ {
std::size_t nelements = arg1.get_shape().elements();
hip_visit_all(result, arg1)([&](auto output, auto input) {
using type = typename decltype(output)::value_type;
using hip_index = typename decltype(output)::hip_index;
type device_val = pad_clamp<host_type<type>>(value);
gs_launch(stream, result.get_shape().elements())(
[=](auto i) __device__ { output.data()[i] = device_val; });
hip_index offsets; std::vector<op_desc> operators() const { return {{"Unique"}}; }
std::copy(pads.begin(), pads.begin() + offsets.size(), offsets.begin());
gs_launch(stream, nelements)([=](auto i) __device__ { std::vector<instruction_ref> parse(const op_desc& opd,
auto idx = input.get_shape().multi(i); const onnx_parser& parser,
for(std::size_t j = 0; j < offsets.size(); j++) const onnx_parser::node_info& info,
{ std::vector<instruction_ref> args) const
idx[j] += offsets[j]; {
} int64_t sorted = 1; // default = sorted.
output[idx] = input.data()[i];
}); if(contains(info.attributes, "sorted"))
}); sorted = parser.parse_value(info.attributes.at("sorted")).at<int>();
return result;
} std::optional<int64_t> axis;
if(contains(info.attributes, "axis"))
{
auto n_dim = args[0]->get_shape().ndim();
axis = parser.parse_value(info.attributes.at("axis")).at<int>();
axis = tune_axis(n_dim, *axis, opd.op_name);
}
migraphx::argument data_arg = args.back()->eval();
auto opr = axis ? migraphx::make_op("unique", {{"axis", *axis}, {"sorted", sorted}})
: migraphx::make_op("unique", {{"sorted", sorted}});
auto u_opr = info.add_instruction(opr, args.at(0));
auto i_y = info.add_instruction(make_op("get_tuple_elem", {{"index", 0}}), u_opr);
auto i_y_idx = info.add_instruction(make_op("get_tuple_elem", {{"index", 1}}), u_opr);
auto i_x_idx = info.add_instruction(make_op("get_tuple_elem", {{"index", 2}}), u_opr);
auto i_count = info.add_instruction(make_op("get_tuple_elem", {{"index", 3}}), u_opr);
return {i_y, i_y_idx, i_x_idx, i_count};
}
};
} // namespace device } // namespace onnx
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/ranges.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
value handle_pooling_values(const op_desc& opd,
onnx_parser::node_info info,
const shape& in_shape,
value values)
{
auto kdims = in_shape.ndim() - 2;
if(starts_with(opd.onnx_name, "Global") or starts_with(opd.onnx_name, "QLinearGlobal"))
{
// if spatial dimensions are dynamic use dyn_global flag
if(in_shape.dynamic() and std::any_of(in_shape.dyn_dims().cbegin() + 2,
in_shape.dyn_dims().cend(),
[](auto dd) { return not dd.is_fixed(); }))
{
values["dyn_global"] = true;
values["lengths"] = std::vector<size_t>();
}
else
{
// works with static and fixed dynamic shape
auto m_lens = in_shape.max_lens();
values["lengths"] = std::vector<size_t>(m_lens.begin() + 2, m_lens.end());
}
}
if(contains(info.attributes, "ceil_mode"))
{
values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
}
if(contains(info.attributes, "strides"))
{
values["stride"].clear();
copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
}
if(contains(info.attributes, "kernel_shape"))
{
values["lengths"].clear();
copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
check_attr_sizes(kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
}
if(contains(info.attributes, "dilations"))
{
values["dilations"].clear();
copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilations"]));
check_attr_sizes(
kdims, values["dilations"].size(), "PARSE_POOLING: inconsistent dilations");
}
// lp_order attribute
if(contains(info.attributes, "p"))
{
values["lp_order"] = info.attributes.at("p").i();
}
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode(info, "POOLING");
return values;
}
instruction_ref add_pooling_op(const op_desc& opd, onnx_parser::node_info info, instruction_ref l0)
{
std::string mode = opd.op_name;
const std::unordered_map<std::string, op::pooling_mode> mode_map = {
{"max", op::pooling_mode::max},
{"average", op::pooling_mode::average},
{"lpnorm", op::pooling_mode::lpnorm}};
if(not contains(mode_map, mode))
{
MIGRAPHX_THROW(
"PARSE_POOLING: onnx pooling mode must be [\"max\", \"average\", \"lpnorm\"]");
}
operation op = make_op("pooling", {{"mode", mode_map.at(mode)}});
value values = op.to_value();
auto in_shape = l0->get_shape();
assert(in_shape.ndim() > 2);
auto kdims = in_shape.ndim() - 2;
values = handle_pooling_values(opd, info, in_shape, values);
// count include padding, if count include pad is 1, we always use
// explicit pad
int count_include_pad = 0;
if(contains(info.attributes, "count_include_pad"))
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW("PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape");
}
count_include_pad = info.attributes.at("count_include_pad").i();
}
std::vector<int64_t> paddings;
float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
if(contains(info.attributes, "pads"))
{
values["padding"].clear();
copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
check_attr_sizes(
kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
}
if(paddings.size() != 2 * kdims)
{
paddings.resize(kdims * 2);
std::fill_n(paddings.begin(), 2 * kdims, 0);
}
if(values["padding"].size() != kdims)
{
values["padding"].resize(kdims);
std::fill_n(values["padding"].begin(), kdims, 0);
}
if(values["stride"].size() != kdims)
{
values["stride"].resize(kdims);
std::fill_n(values["stride"].begin(), kdims, 1);
}
if(values["dilations"].size() != kdims)
{
values["dilations"].resize(kdims);
std::fill_n(values["dilations"].begin(), kdims, 1);
}
// used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings;
// TODO: add parsing for dilations
if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
{
auto auto_pad = to_upper(info.attributes["auto_pad"].s());
// don't use the given padding sizes, if any
// values["padding"].clear();
if(in_shape.dynamic())
{
// set padding_mode to trigger auto padding at runtime
bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper)
: to_value(op::padding_mode_t::same_lower);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
values["dilations"].to_vector<std::size_t>(),
in_shape.lens(),
paddings);
values["padding"] = paddings;
// default padding_mode indicates that padding sizes are not calculated dynamically
values["padding_mode"] = migraphx::op::padding_mode_t::default_;
}
}
std::vector<int64_t> slice_start;
std::vector<int64_t> slice_end;
tune_padding_size(values, paddings, count_include_pad, slice_start);
if(not slice_start.empty())
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape");
}
// calculate expected output shape
orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
orig_padding.insert(orig_padding.begin(), 2, 0);
op::pad pad{orig_padding, 0.0f};
shape padded_shape = pad.compute_shape({l0->get_shape()});
// make an op just to get its output shape
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// compute slice_end information
slice_end.resize(slice_start.size());
std::transform(out_lens.begin() + 2,
out_lens.end(),
slice_start.begin(),
slice_end.begin(),
[](auto i, auto j) { return i + j; });
}
values["padding"] = std::vector<size_t>(paddings.begin(), paddings.end());
check_asym_padding(info, l0, paddings, values, count_include_pad, pad_val);
op.from_value(values);
auto l1 = info.add_instruction(op, l0);
if(not slice_start.empty())
{
std::vector<int64_t> axes(kdims);
std::iota(axes.begin(), axes.end(), 2);
l1 = info.add_instruction(
make_op("slice", {{"axes", axes}, {"starts", slice_start}, {"ends", slice_end}}), l1);
}
return l1;
}
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -68,6 +68,7 @@ dnnl::memory::data_type to_dnnl_memory_data_type(shape::type_t t) ...@@ -68,6 +68,7 @@ dnnl::memory::data_type to_dnnl_memory_data_type(shape::type_t t)
case st::int32_type: return dt::s32; case st::int32_type: return dt::s32;
case st::int8_type: return dt::s8; case st::int8_type: return dt::s8;
case st::uint8_type: return dt::u8; case st::uint8_type: return dt::u8;
case st::fp8e4m3fnuz_type: MIGRAPHX_THROW("fp8e4m3fnuz unsupported in DNNL");
default: MIGRAPHX_THROW("Unsupported data type"); default: MIGRAPHX_THROW("Unsupported data type");
} }
} }
......
...@@ -340,7 +340,6 @@ struct cpu_apply ...@@ -340,7 +340,6 @@ struct cpu_apply
{"reduce_min", "reduction_min"}, {"reduce_min", "reduction_min"},
{"reduce_sum", "reduction_sum"}, {"reduce_sum", "reduction_sum"},
}); });
extend_op("concat", "dnnl::concat"); extend_op("concat", "dnnl::concat");
extend_op("contiguous", "dnnl::reorder"); extend_op("contiguous", "dnnl::reorder");
extend_op("convolution", "dnnl::convolution"); extend_op("convolution", "dnnl::convolution");
...@@ -376,6 +375,12 @@ struct cpu_apply ...@@ -376,6 +375,12 @@ struct cpu_apply
// Apply these operators first so the inputs can be const folded // Apply these operators first so the inputs can be const folded
for(auto it : iterator_for(*modl)) for(auto it : iterator_for(*modl))
{ {
// skip lowering if input has fp8 as one of the inputs since oneDNN doesn't have fp8
// supported yet.
if(std::any_of(it->inputs().begin(), it->inputs().end(), [](const auto& i) {
return i->get_shape().type() == migraphx::shape::fp8e4m3fnuz_type;
}))
continue;
if(it->name() == "pow") if(it->name() == "pow")
{ {
apply_pow(it); apply_pow(it);
...@@ -383,6 +388,12 @@ struct cpu_apply ...@@ -383,6 +388,12 @@ struct cpu_apply
} }
for(auto it : iterator_for(*modl)) for(auto it : iterator_for(*modl))
{ {
// skip lowering if input has fp8 as one of the inputs since oneDNN doesn't have fp8
// supported yet.
if(std::any_of(it->inputs().begin(), it->inputs().end(), [](const auto& i) {
return i->get_shape().type() == migraphx::shape::fp8e4m3fnuz_type;
}))
continue;
if(it->name() == "pooling") if(it->name() == "pooling")
{ {
apply_pooling(it); apply_pooling(it);
......
...@@ -126,7 +126,6 @@ add_library(migraphx_gpu ...@@ -126,7 +126,6 @@ add_library(migraphx_gpu
fuse_ck.cpp fuse_ck.cpp
fuse_mlir.cpp fuse_mlir.cpp
fuse_ops.cpp fuse_ops.cpp
gather.cpp
gemm_impl.cpp gemm_impl.cpp
hip.cpp hip.cpp
kernel.cpp kernel.cpp
...@@ -140,7 +139,6 @@ add_library(migraphx_gpu ...@@ -140,7 +139,6 @@ add_library(migraphx_gpu
nonzero.cpp nonzero.cpp
pack_args.cpp pack_args.cpp
prefuse_ops.cpp prefuse_ops.cpp
pad.cpp
perfdb.cpp perfdb.cpp
pooling.cpp pooling.cpp
reverse.cpp reverse.cpp
...@@ -168,12 +166,10 @@ endfunction() ...@@ -168,12 +166,10 @@ endfunction()
register_migraphx_gpu_ops(hip_ register_migraphx_gpu_ops(hip_
argmax argmax
argmin argmin
gather
logsoftmax logsoftmax
loop loop
multinomial multinomial
nonzero nonzero
pad
prefix_scan_sum prefix_scan_sum
reverse reverse
scatter scatter
...@@ -263,6 +259,8 @@ check_library_exists(MIOpen "miopenHiddenSetConvolutionFindMode" "${MIOPEN_LOCAT ...@@ -263,6 +259,8 @@ check_library_exists(MIOpen "miopenHiddenSetConvolutionFindMode" "${MIOPEN_LOCAT
check_library_exists(MIOpen "miopenFindSolutions" "${MIOPEN_LOCATION}" HAS_FIND_2_API) check_library_exists(MIOpen "miopenFindSolutions" "${MIOPEN_LOCATION}" HAS_FIND_2_API)
# Beta API for automated GEMM tuning # Beta API for automated GEMM tuning
check_library_exists(roc::rocblas "rocblas_gemm_ex_get_solutions" "${ROCBLAS_LOCATION}" HAS_ROCBLAS_TUNING_BETA_FEATURE_API) check_library_exists(roc::rocblas "rocblas_gemm_ex_get_solutions" "${ROCBLAS_LOCATION}" HAS_ROCBLAS_TUNING_BETA_FEATURE_API)
# rocblas FP8 API
check_library_exists(roc::rocblas "rocblas_gemm_strided_batched_ex3" "${ROCBLAS_LOCATION}" HAS_ROCBLAS_FP8_BETA_API)
set(MIGRAPHX_USE_FIND_2_API "${HAS_FIND_2_API}" CACHE BOOL "") set(MIGRAPHX_USE_FIND_2_API "${HAS_FIND_2_API}" CACHE BOOL "")
...@@ -292,10 +290,18 @@ else() ...@@ -292,10 +290,18 @@ else()
message(STATUS "rocBLAS does not have User Tuning Beta API") message(STATUS "rocBLAS does not have User Tuning Beta API")
endif() endif()
if(HAS_ROCBLAS_FP8_BETA_API)
target_compile_definitions(migraphx_gpu PUBLIC -DMIGRAPHX_USE_ROCBLAS_FP8_API -DROCBLAS_BETA_FEATURES_API -DROCBLAS_NO_DEPRECATED_WARNINGS)
message(STATUS "MIGraphX is using Beta API of rocBLAS for FP8 computations")
else()
message(STATUS "rocBLAS does not have Fp8 Beta API")
endif()
target_link_libraries(migraphx_gpu PUBLIC migraphx MIOpen roc::rocblas) target_link_libraries(migraphx_gpu PUBLIC migraphx MIOpen roc::rocblas)
target_link_libraries(migraphx_gpu PRIVATE migraphx_device migraphx_kernels) target_link_libraries(migraphx_gpu PRIVATE migraphx_device migraphx_kernels)
if(MIGRAPHX_USE_COMPOSABLEKERNEL) if(MIGRAPHX_USE_COMPOSABLEKERNEL)
target_link_libraries(migraphx_gpu PRIVATE composable_kernel::jit_library) target_link_libraries(migraphx_gpu PRIVATE composable_kernel::jit_library)
target_compile_definitions(migraphx_gpu PRIVATE MIGRAPHX_USE_COMPOSABLEKERNEL=1)
endif() endif()
add_subdirectory(driver) add_subdirectory(driver)
......
...@@ -54,6 +54,11 @@ vectorize vectorize::elements(std::size_t axis, ...@@ -54,6 +54,11 @@ vectorize vectorize::elements(std::size_t axis,
const std::vector<shape>& inputs, const std::vector<shape>& inputs,
const std::vector<std::size_t>& sizes) const std::vector<std::size_t>& sizes)
{ {
// disable vectorization for fp8 types
if(std::any_of(inputs.begin(), inputs.end(), [&](auto ishape) {
return ishape.type() == migraphx::shape::fp8e4m3fnuz_type;
}))
return {1, axis};
if(std::all_of( if(std::all_of(
inputs.begin(), inputs.end(), [&](const auto& s) { return s.lens()[axis] == 1; })) inputs.begin(), inputs.end(), [&](const auto& s) { return s.lens()[axis] == 1; }))
return {1, axis}; return {1, axis};
...@@ -86,6 +91,11 @@ vectorize vectorize::elements(std::size_t axis, ...@@ -86,6 +91,11 @@ vectorize vectorize::elements(std::size_t axis,
vectorize vectorize::elements(context& ctx, std::size_t axis, const std::vector<shape>& inputs) vectorize vectorize::elements(context& ctx, std::size_t axis, const std::vector<shape>& inputs)
{ {
// disable vectorization for fp8 types
if(std::any_of(inputs.begin(), inputs.end(), [&](auto ishape) {
return ishape.type() == migraphx::shape::fp8e4m3fnuz_type;
}))
return {1, axis};
if(inputs.empty()) if(inputs.empty())
return {1, axis}; return {1, axis};
std::size_t n = std::max_element(inputs.begin(), std::size_t n = std::max_element(inputs.begin(),
......
This diff is collapsed.
...@@ -22,11 +22,14 @@ ...@@ -22,11 +22,14 @@
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include <rocblas/internal/rocblas-types.h>
#include <rocblas/rocblas.h> #include <rocblas/rocblas.h>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/gemm_impl.hpp> #include <migraphx/gpu/gemm_impl.hpp>
#include <migraphx/reduce_dims.hpp> #include <migraphx/reduce_dims.hpp>
#include <migraphx/generate.hpp> #include <migraphx/generate.hpp>
#include <migraphx/time.hpp> #include <migraphx/time.hpp>
#include <type_traits>
using microseconds = std::chrono::duration<double, std::micro>; using microseconds = std::chrono::duration<double, std::micro>;
...@@ -34,6 +37,20 @@ namespace migraphx { ...@@ -34,6 +37,20 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace gpu { namespace gpu {
/*
Regular rocBLAS API takes compute_type as `rocblas_datatype` enum value v/s "ex3" BETA API takes it
as `rocblas_computetype` enum value. `rb_compute_type` is faciliator to implictly cast integer enum
value to required type that can be used inside `common_args` generator.
*/
struct rb_compute_type
{
int type = 0;
rb_compute_type(rocblas_datatype t) : type(static_cast<int>(t)) {}
rb_compute_type(rocblas_computetype t) : type(static_cast<int>(t)) {}
operator rocblas_datatype() const { return static_cast<rocblas_datatype>(type); }
operator rocblas_computetype() const { return static_cast<rocblas_computetype>(type); }
};
// Convert rocBLAS datatypes to equivalent Migraphx data types // Convert rocBLAS datatypes to equivalent Migraphx data types
rocblas_datatype get_type(shape::type_t type) rocblas_datatype get_type(shape::type_t type)
{ {
...@@ -46,7 +63,7 @@ rocblas_datatype get_type(shape::type_t type) ...@@ -46,7 +63,7 @@ rocblas_datatype get_type(shape::type_t type)
case shape::uint8_type: return rocblas_datatype_u8_r; case shape::uint8_type: return rocblas_datatype_u8_r;
case shape::int32_type: return rocblas_datatype_i32_r; case shape::int32_type: return rocblas_datatype_i32_r;
case shape::uint32_type: return rocblas_datatype_u32_r; case shape::uint32_type: return rocblas_datatype_u32_r;
case shape::fp8e4m3fnuz_type: case shape::fp8e4m3fnuz_type: return rocblas_datatype_f8_r;
case shape::tuple_type: case shape::tuple_type:
case shape::bool_type: case shape::bool_type:
case shape::uint16_type: case shape::uint16_type:
...@@ -183,12 +200,17 @@ struct gemm_impl ...@@ -183,12 +200,17 @@ struct gemm_impl
{ {
output_type = rocblas_datatype_i32_r; output_type = rocblas_datatype_i32_r;
} }
compute_type = output_type; compute_type = rb_compute_type{output_type};
if(compute_fp32) if(compute_fp32)
{ {
if(arg_type == rocblas_datatype_f16_r) if(arg_type == rocblas_datatype_f16_r)
compute_type = rocblas_datatype_f32_r; compute_type = rocblas_datatype_f32_r;
} }
if(arg_type == rocblas_datatype_f8_r)
{
assert(get_type(input_shapes[1].type()) == rocblas_datatype_f8_r);
compute_type = rocblas_compute_type_f32;
}
auto a_lens = input_shapes[0].lens(); auto a_lens = input_shapes[0].lens();
auto b_lens = input_shapes[1].lens(); auto b_lens = input_shapes[1].lens();
...@@ -217,23 +239,52 @@ struct gemm_impl ...@@ -217,23 +239,52 @@ struct gemm_impl
void run(context& ctx, const std::vector<argument>& input_args, int32_t solution_idx = 0) const void run(context& ctx, const std::vector<argument>& input_args, int32_t solution_idx = 0) const
{ {
if(strided_batched) #ifdef MIGRAPHX_USE_ROCBLAS_FP8_API
if(rocblas_fp8_available() and
std::any_of(input_args.begin(), input_args.end(), [](const auto i) {
return i.get_shape().type() == migraphx::shape::fp8e4m3fnuz_type;
}))
{ {
auto common_args = create_strided_batched_args_common(ctx, input_args); if(strided_batched)
rocblas_invoke(&rocblas_gemm_strided_batched_ex, {
common_args, auto common_args = create_strided_batched_args_common(ctx, input_args);
rocblas_gemm_algo_solution_index, rocblas_invoke(&rocblas_gemm_strided_batched_ex3,
solution_idx, common_args,
gemm_flags); rocblas_gemm_algo_standard,
solution_idx,
gemm_flags);
}
else
{
auto common_args = create_gemm_ex_args_common(ctx, input_args);
rocblas_invoke(&rocblas_gemm_ex3,
common_args,
rocblas_gemm_algo_standard,
solution_idx,
gemm_flags);
}
} }
else else
#endif
{ {
auto common_args = create_gemm_ex_args_common(ctx, input_args); if(strided_batched)
rocblas_invoke(&rocblas_gemm_ex, {
common_args, auto common_args = create_strided_batched_args_common(ctx, input_args);
rocblas_gemm_algo_solution_index, rocblas_invoke(&rocblas_gemm_strided_batched_ex,
solution_idx, common_args,
gemm_flags); rocblas_gemm_algo_solution_index,
solution_idx,
gemm_flags);
}
else
{
auto common_args = create_gemm_ex_args_common(ctx, input_args);
rocblas_invoke(&rocblas_gemm_ex,
common_args,
rocblas_gemm_algo_solution_index,
solution_idx,
gemm_flags);
}
} }
} }
...@@ -331,7 +382,6 @@ struct gemm_impl ...@@ -331,7 +382,6 @@ struct gemm_impl
num_matrices, num_matrices,
compute_type); compute_type);
} }
/** /**
* Helper method to create that subset of a long rocBLAS argument list that is common * Helper method to create that subset of a long rocBLAS argument list that is common
* to multiple "gemm_ex..." calls. * to multiple "gemm_ex..." calls.
...@@ -366,6 +416,7 @@ struct gemm_impl ...@@ -366,6 +416,7 @@ struct gemm_impl
ldd, ldd,
compute_type); compute_type);
} }
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API #ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
/** /**
* Find best rocBLAS solution: Get list of solutions and try them all, returning the index * Find best rocBLAS solution: Get list of solutions and try them all, returning the index
...@@ -481,8 +532,8 @@ struct gemm_impl ...@@ -481,8 +532,8 @@ struct gemm_impl
rocblas_int b_stride = 0; rocblas_int b_stride = 0;
rocblas_int c_stride = 0; rocblas_int c_stride = 0;
rocblas_int d_stride = 0; rocblas_int d_stride = 0;
rocblas_datatype compute_type = rocblas_datatype_f32_r;
rocblas_datatype arg_type = rocblas_datatype_f32_r; rocblas_datatype arg_type = rocblas_datatype_f32_r;
rb_compute_type compute_type = rocblas_datatype_f32_r;
rocblas_datatype output_type = rocblas_datatype_f32_r; rocblas_datatype output_type = rocblas_datatype_f32_r;
bool strided_batched = true; bool strided_batched = true;
bool is_3inputs = true; bool is_3inputs = true;
......
...@@ -34,10 +34,11 @@ struct module_pass_manager; ...@@ -34,10 +34,11 @@ struct module_pass_manager;
namespace gpu { namespace gpu {
MIGRAPHX_GPU_EXPORT bool mlir_enabled(); MIGRAPHX_GPU_EXPORT bool mlir_enabled();
MIGRAPHX_GPU_EXPORT bool mlir_attention_enabled();
struct MIGRAPHX_GPU_EXPORT fuse_mlir struct MIGRAPHX_GPU_EXPORT fuse_mlir
{ {
context* ctx = nullptr; context* ctx = nullptr;
bool enable_extra = false; bool enable_extra = false;
std::string name() const { return "gpu::fuse_mlir"; } std::string name() const { return "gpu::fuse_mlir"; }
void apply(module_pass_manager& mpm) const; void apply(module_pass_manager& mpm) const;
......
...@@ -66,6 +66,10 @@ struct gemm_softmax_gemm ...@@ -66,6 +66,10 @@ struct gemm_softmax_gemm
} }
static bool is_ck_supported_type(shape::type_t t) { return contains({shape::half_type}, t); } static bool is_ck_supported_type(shape::type_t t) { return contains({shape::half_type}, t); }
static bool is_mlir_supported_type(shape::type_t t)
{
return contains({shape::type_t::float_type, shape::half_type}, t);
}
}; };
} // namespace gpu } // namespace gpu
......
...@@ -40,6 +40,8 @@ struct context; ...@@ -40,6 +40,8 @@ struct context;
MIGRAPHX_GPU_EXPORT bool get_compute_fp32_flag(); MIGRAPHX_GPU_EXPORT bool get_compute_fp32_flag();
MIGRAPHX_GPU_EXPORT bool rocblas_fp8_available();
} // namespace gpu } // namespace gpu
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
......
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -21,41 +21,58 @@ ...@@ -21,41 +21,58 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#ifndef MIGRAPHX_GUARD_RTGLIB_PAD_HPP #ifndef MIGRAPHX_GUARD_JIT_SCATTER_HPP
#define MIGRAPHX_GUARD_RTGLIB_PAD_HPP #define MIGRAPHX_GUARD_JIT_SCATTER_HPP
#include <migraphx/argument.hpp> #include <migraphx/gpu/compiler.hpp>
#include <migraphx/reflect.hpp> #include <migraphx/make_op.hpp>
#include <migraphx/op/pad.hpp> #include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace gpu { namespace gpu {
struct context; template <typename Derived>
struct scatter_compiler : compiler<Derived>
struct hip_pad
{ {
op::pad op; compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
template <class Self, class F>
static auto reflect(Self& self, F f)
{ {
return migraphx::reflect(self.op, f); const auto inputs =
to_shapes(std::vector<instruction_ref>{ins->inputs().begin() + 1, ins->inputs().end()});
hip_compile_options options;
options.set_launch_params(op.to_value(), compute_global_for(ctx, inputs.at(1).elements()));
options.inputs = inputs;
options.output = inputs.back();
options.kernel_name = derived().get_kernel_name(op);
options.virtual_inputs = inputs;
// The compiler protests the inequality comparison in assign_mul when pertaining to floating
// point, despite it making sense in the context. Thus the warning removal.
options.params += "-Wno-float-equal";
const auto src = derived().make_interpolated_string(op);
return prepend_copy_data_to_output(compile_hip_code_object(src, options));
} }
std::string name() const { return "gpu::pad"; } compiler_replace prepend_copy_data_to_output(const operation& co) const
shape compute_shape(std::vector<shape> inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{ {
return shapes.size() - 1; return {co, [](module& m, instruction_ref ins, const operation& op) {
auto args = ins->inputs();
args.back() =
m.insert_instruction(ins, make_op("hip::copy"), args.front(), args.back());
args.erase(args.begin());
return m.replace_instruction(ins, op, args);
}};
} }
std::string get_kernel_name(const operation& op) const { return op.name() + "_kernel"; }
const Derived& derived() const { return static_cast<const Derived&>(*this); }
}; };
} // namespace gpu } // namespace gpu
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
#endif #endif
...@@ -21,11 +21,7 @@ ...@@ -21,11 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include <migraphx/gpu/compiler.hpp> #include "scatter.hpp"
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -55,46 +51,21 @@ MIGRAPHX_GLOBAL void scatternd_kernel(void* in_indices, void* in_updates, void* ...@@ -55,46 +51,21 @@ MIGRAPHX_GLOBAL void scatternd_kernel(void* in_indices, void* in_updates, void*
)__migraphx__"; )__migraphx__";
struct scatternd_compiler : compiler<scatternd_compiler> struct scatternd_compiler : scatter_compiler<scatternd_compiler>
{ {
std::vector<std::string> names() const std::vector<std::string> names() const
{ {
return {"scatternd_none", "scatternd_add", "scatternd_mul"}; return {
"scatternd_none", "scatternd_add", "scatternd_mul", "scatternd_min", "scatternd_max"};
} }
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const std::string make_interpolated_string(const operation& op) const
{ {
hip_compile_options options; const auto reduction = op.name().substr(std::char_traits<char>::length("scatternd_"));
options.set_launch_params(v, compute_global_for(ctx, inputs.at(1).elements())); return interpolate_string(scatternd_kernel, {{"reduction", "assign_" + reduction}});
options.inputs = inputs;
options.output = inputs.back();
options.kernel_name = "scatternd_kernel";
options.virtual_inputs = inputs;
auto reduction = "assign_" + v.get("reduction", std::string{"none"});
auto src = interpolate_string(scatternd_kernel, {{"reduction", reduction}});
return compile_hip_code_object(src, options);
} }
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const std::string get_kernel_name(const operation&) const { return "scatternd_kernel"; }
{
assert(starts_with(op.name(), "scatternd_"));
auto reduction = op.name().substr(10);
return insert(compile_op(
ctx,
to_shapes(std::vector<instruction_ref>{ins->inputs().begin() + 1, ins->inputs().end()}),
{{"reduction", reduction}}));
}
compiler_replace insert(const operation& co) const
{
return {co, [](module& m, instruction_ref ins, const operation& op) {
auto args = ins->inputs();
args.back() =
m.insert_instruction(ins, make_op("hip::copy"), args.front(), args.back());
args.erase(args.begin());
return m.replace_instruction(ins, op, args);
}};
}
}; };
} // namespace gpu } // namespace gpu
......
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
#define MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
#include <migraphx/kernels/type_traits.hpp>
namespace migraphx {
template <typename To,
typename From,
MIGRAPHX_REQUIRES(is_trivially_copyable<To>{} and is_trivially_copyable<From>{})>
inline constexpr To bit_cast(From fr) noexcept
{
static_assert(sizeof(To) == sizeof(From));
return __builtin_bit_cast(To, fr);
}
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
...@@ -49,12 +49,8 @@ constexpr unsigned int dpp_row_bcast(unsigned int x) ...@@ -49,12 +49,8 @@ constexpr unsigned int dpp_row_bcast(unsigned int x)
return y; return y;
} }
template <unsigned int DppCtrl, template <class T, class F>
unsigned int RowMask = 0xf, __device__ T dpp_op(T& x, F f)
unsigned int BankMask = 0xf,
bool BoundCtrl = false,
class T>
__device__ T dpp_mov(T& x)
{ {
static const index_int n = sizeof(T) < 4 ? 1 : sizeof(T) / 4; static const index_int n = sizeof(T) < 4 ? 1 : sizeof(T) / 4;
union type union type
...@@ -68,10 +64,28 @@ __device__ T dpp_mov(T& x) ...@@ -68,10 +64,28 @@ __device__ T dpp_mov(T& x)
input.data = x; input.data = x;
for(index_int i = 0; i < n; i++) for(index_int i = 0; i < n; i++)
{ {
output.reg[i] = __hip_move_dpp(input.reg[i], DppCtrl, RowMask, BankMask, BoundCtrl); output.reg[i] = f(input.reg[i]);
} }
return output.data; return output.data;
} }
template <unsigned int DppCtrl,
unsigned int RowMask = 0xf,
unsigned int BankMask = 0xf,
bool BoundCtrl = false,
class T>
__device__ T dpp_mov(T& x)
{
return dpp_op(x,
[](auto i) { return __hip_move_dpp(i, DppCtrl, RowMask, BankMask, BoundCtrl); });
}
template <unsigned int Mask, class T>
__device__ T dpp_swizzle(T& x)
{
return dpp_op(x, [](auto i) { return __hip_ds_swizzle(i, Mask); });
}
#endif // MIGRAPHX_HAS_DPP #endif // MIGRAPHX_HAS_DPP
} // namespace migraphx } // namespace migraphx
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment