Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
8d059502
Commit
8d059502
authored
Jul 10, 2019
by
Shucai Xiao
Browse files
merge develop branch
parents
026365a6
80b06ca7
Changes
29
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
427 additions
and
25 deletions
+427
-25
src/include/migraphx/op/erf.hpp
src/include/migraphx/op/erf.hpp
+23
-0
src/include/migraphx/op/reduce_mean.hpp
src/include/migraphx/op/reduce_mean.hpp
+114
-0
src/include/migraphx/op/reduce_sum.hpp
src/include/migraphx/op/reduce_sum.hpp
+67
-9
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+2
-0
src/onnx/onnx.cpp
src/onnx/onnx.cpp
+12
-10
src/propagate_constant.cpp
src/propagate_constant.cpp
+3
-3
src/targets/gpu/CMakeLists.txt
src/targets/gpu/CMakeLists.txt
+4
-0
src/targets/gpu/device/div.cpp
src/targets/gpu/device/div.cpp
+17
-0
src/targets/gpu/device/erf.cpp
src/targets/gpu/device/erf.cpp
+18
-0
src/targets/gpu/device/include/migraphx/gpu/device/reduce.hpp
...targets/gpu/device/include/migraphx/gpu/device/reduce.hpp
+10
-0
src/targets/gpu/device/pow.cpp
src/targets/gpu/device/pow.cpp
+1
-1
src/targets/gpu/device/reduce_mean.cpp
src/targets/gpu/device/reduce_mean.cpp
+18
-0
src/targets/gpu/device/sub.cpp
src/targets/gpu/device/sub.cpp
+1
-1
src/targets/gpu/include/migraphx/gpu/device/div.hpp
src/targets/gpu/include/migraphx/gpu/device/div.hpp
+20
-0
src/targets/gpu/include/migraphx/gpu/device/erf.hpp
src/targets/gpu/include/migraphx/gpu/device/erf.hpp
+20
-0
src/targets/gpu/include/migraphx/gpu/device/reduce_mean.hpp
src/targets/gpu/include/migraphx/gpu/device/reduce_mean.hpp
+20
-0
src/targets/gpu/include/migraphx/gpu/div.hpp
src/targets/gpu/include/migraphx/gpu/div.hpp
+19
-0
src/targets/gpu/include/migraphx/gpu/erf.hpp
src/targets/gpu/include/migraphx/gpu/erf.hpp
+19
-0
src/targets/gpu/include/migraphx/gpu/oper.hpp
src/targets/gpu/include/migraphx/gpu/oper.hpp
+1
-1
src/targets/gpu/include/migraphx/gpu/reduce_mean.hpp
src/targets/gpu/include/migraphx/gpu/reduce_mean.hpp
+38
-0
No files found.
src/include/migraphx/op/erf.hpp
0 → 100644
View file @
8d059502
#ifndef MIGRAPHX_GUARD_OPERATORS_ERF_HPP
#define MIGRAPHX_GUARD_OPERATORS_ERF_HPP
#include <migraphx/op/unary.hpp>
#include <migraphx/config.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
erf
:
unary
<
erf
>
{
auto
apply
()
const
{
return
[](
auto
x
)
{
return
std
::
erf
(
x
);
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/reduce_mean.hpp
0 → 100644
View file @
8d059502
#ifndef MIGRAPHX_GUARD_OPERATORS_MEAN_HPP
#define MIGRAPHX_GUARD_OPERATORS_MEAN_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/config.hpp>
#include <vector>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
reduce_mean
{
std
::
vector
<
std
::
int64_t
>
axes
{};
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axes
,
"axes"
));
}
std
::
string
name
()
const
{
return
"reduce_mean"
;
}
std
::
vector
<
int64_t
>
tune_axes
(
std
::
size_t
n_dim
)
const
{
auto
tuned_axes
=
axes
;
if
(
tuned_axes
.
empty
())
{
tuned_axes
.
resize
(
n_dim
);
std
::
iota
(
tuned_axes
.
begin
(),
tuned_axes
.
end
(),
0
);
}
else
{
for
(
auto
&
axis
:
tuned_axes
)
{
int64_t
s_dim
=
static_cast
<
int64_t
>
(
n_dim
);
if
(
axis
>=
s_dim
or
axis
<
-
s_dim
)
{
MIGRAPHX_THROW
(
"REDUCE_MEAN: axis out of range"
);
}
if
(
axis
<
0
)
{
axis
+=
n_dim
;
}
}
}
return
tuned_axes
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
s
=
inputs
.
at
(
0
);
auto
lens
=
s
.
lens
();
auto
tuned_axes
=
tune_axes
(
lens
.
size
());
for
(
auto
axis
:
tuned_axes
)
{
lens
[
axis
]
=
1
;
}
return
{
s
.
type
(),
lens
};
}
template
<
class
T
>
void
calc_mean
(
tensor_view
<
T
>&
input
,
shape
&
batch_shape
,
std
::
vector
<
int64_t
>&
tuned_axes
,
std
::
vector
<
std
::
size_t
>&
out_idx
,
tensor_view
<
T
>&
output
)
const
{
auto
data_idx
=
out_idx
;
T
val
=
T
{
0
};
shape_for_each
(
batch_shape
,
[
&
](
auto
b_idx
)
{
for
(
auto
axis
:
tuned_axes
)
{
data_idx
[
axis
]
=
b_idx
[
axis
];
}
val
+=
input
(
data_idx
.
begin
(),
data_idx
.
end
());
});
output
(
out_idx
.
begin
(),
out_idx
.
end
())
=
val
/
batch_shape
.
elements
();
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
auto
arg_lens
=
args
.
front
().
get_shape
().
lens
();
auto
tuned_axes
=
tune_axes
(
arg_lens
.
size
());
std
::
vector
<
std
::
size_t
>
batch_lens
(
output_shape
.
lens
().
size
(),
1
);
for
(
auto
axis
:
tuned_axes
)
{
batch_lens
[
axis
]
=
arg_lens
[
axis
];
}
shape
batch_shape
{
output_shape
.
type
(),
batch_lens
};
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
par_for
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
out_idx
=
output_shape
.
multi
(
i
);
this
->
calc_mean
(
input
,
batch_shape
,
tuned_axes
,
out_idx
,
output
);
});
});
return
result
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/reduce_sum.hpp
View file @
8d059502
...
@@ -4,6 +4,7 @@
...
@@ -4,6 +4,7 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
#include <vector>
#include <vector>
...
@@ -13,7 +14,7 @@ namespace op {
...
@@ -13,7 +14,7 @@ namespace op {
struct
reduce_sum
struct
reduce_sum
{
{
std
::
vector
<
std
::
size
_t
>
axes
;
std
::
vector
<
int64
_t
>
axes
{}
;
template
<
class
Self
,
class
F
>
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
static
auto
reflect
(
Self
&
self
,
F
f
)
...
@@ -23,25 +24,82 @@ struct reduce_sum
...
@@ -23,25 +24,82 @@ struct reduce_sum
std
::
string
name
()
const
{
return
"reduce_sum"
;
}
std
::
string
name
()
const
{
return
"reduce_sum"
;
}
std
::
vector
<
int64_t
>
tune_axes
(
std
::
size_t
n_dim
)
const
{
auto
tuned_axes
=
axes
;
if
(
tuned_axes
.
empty
())
{
tuned_axes
.
resize
(
n_dim
);
std
::
iota
(
tuned_axes
.
begin
(),
tuned_axes
.
end
(),
0
);
}
else
{
for
(
auto
&
axis
:
tuned_axes
)
{
int64_t
s_dim
=
static_cast
<
int64_t
>
(
n_dim
);
if
(
axis
>=
s_dim
or
axis
<
-
s_dim
)
{
MIGRAPHX_THROW
(
"REDUCE_MEAN: axis out of range"
);
}
if
(
axis
<
0
)
{
axis
+=
n_dim
;
}
}
}
return
tuned_axes
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
s
=
inputs
.
at
(
0
);
auto
s
=
inputs
.
at
(
0
);
auto
lens
=
s
.
lens
();
auto
lens
=
s
.
lens
();
for
(
auto
axis
:
axes
)
auto
tuned_axes
=
tune_axes
(
lens
.
size
());
for
(
auto
axis
:
tuned_axes
)
{
lens
[
axis
]
=
1
;
lens
[
axis
]
=
1
;
}
return
{
s
.
type
(),
lens
};
return
{
s
.
type
(),
lens
};
}
}
template
<
class
T
>
void
calc_sum
(
tensor_view
<
T
>&
input
,
shape
&
batch_shape
,
std
::
vector
<
int64_t
>&
tuned_axes
,
std
::
vector
<
std
::
size_t
>&
out_idx
,
tensor_view
<
T
>&
output
)
const
{
auto
data_idx
=
out_idx
;
T
val
=
T
{
0
};
shape_for_each
(
batch_shape
,
[
&
](
auto
b_idx
)
{
for
(
auto
axis
:
tuned_axes
)
{
data_idx
[
axis
]
=
b_idx
[
axis
];
}
val
+=
input
(
data_idx
.
begin
(),
data_idx
.
end
());
});
output
(
out_idx
.
begin
(),
out_idx
.
end
())
=
val
;
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
{
argument
result
{
output_shape
};
argument
result
{
output_shape
};
auto
arg_lens
=
args
.
front
().
get_shape
().
lens
();
std
::
vector
<
int64_t
>
tuned_axes
=
tune_axes
(
arg_lens
.
size
());
std
::
vector
<
std
::
size_t
>
batch_lens
(
output_shape
.
lens
().
size
(),
1
);
for
(
auto
axis
:
tuned_axes
)
{
batch_lens
[
axis
]
=
arg_lens
[
axis
];
}
shape
batch_shape
{
output_shape
.
type
(),
batch_lens
};
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
shape_for_each
(
input
.
get_shape
(),
[
&
](
auto
&&
in_idx
)
{
par_for
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
out_idx
=
in_idx
;
auto
out_idx
=
output_shape
.
multi
(
i
);
for
(
auto
axis
:
axes
)
this
->
calc_sum
(
input
,
batch_shape
,
tuned_axes
,
out_idx
,
output
);
out_idx
[
axis
]
=
0
;
output
(
out_idx
.
begin
(),
out_idx
.
end
())
+=
input
(
in_idx
.
begin
(),
in_idx
.
end
());
});
});
});
});
...
...
src/include/migraphx/operators.hpp
View file @
8d059502
...
@@ -24,6 +24,7 @@
...
@@ -24,6 +24,7 @@
#include <migraphx/op/div.hpp>
#include <migraphx/op/div.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/erf.hpp>
#include <migraphx/op/exp.hpp>
#include <migraphx/op/exp.hpp>
#include <migraphx/op/flatten.hpp>
#include <migraphx/op/flatten.hpp>
#include <migraphx/op/gather.hpp>
#include <migraphx/op/gather.hpp>
...
@@ -46,6 +47,7 @@
...
@@ -46,6 +47,7 @@
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pow.hpp>
#include <migraphx/op/pow.hpp>
#include <migraphx/op/reduce_sum.hpp>
#include <migraphx/op/reduce_sum.hpp>
#include <migraphx/op/reduce_mean.hpp>
#include <migraphx/op/relu.hpp>
#include <migraphx/op/relu.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/rnn.hpp>
#include <migraphx/op/rnn.hpp>
...
...
src/onnx/onnx.cpp
View file @
8d059502
...
@@ -40,6 +40,7 @@ struct onnx_parser
...
@@ -40,6 +40,7 @@ struct onnx_parser
add_generic_op
(
"Sigmoid"
,
op
::
sigmoid
{});
add_generic_op
(
"Sigmoid"
,
op
::
sigmoid
{});
add_generic_op
(
"Abs"
,
op
::
abs
{});
add_generic_op
(
"Abs"
,
op
::
abs
{});
add_generic_op
(
"Exp"
,
op
::
exp
{});
add_generic_op
(
"Exp"
,
op
::
exp
{});
add_generic_op
(
"Erf"
,
op
::
erf
{});
add_generic_op
(
"Log"
,
op
::
log
{});
add_generic_op
(
"Log"
,
op
::
log
{});
// disable dropout for inference
// disable dropout for inference
add_generic_op
(
"Dropout"
,
op
::
identity
{});
add_generic_op
(
"Dropout"
,
op
::
identity
{});
...
@@ -99,7 +100,8 @@ struct onnx_parser
...
@@ -99,7 +100,8 @@ struct onnx_parser
add_mem_op
(
"GRU"
,
&
onnx_parser
::
parse_gru
);
add_mem_op
(
"GRU"
,
&
onnx_parser
::
parse_gru
);
add_mem_op
(
"LSTM"
,
&
onnx_parser
::
parse_lstm
);
add_mem_op
(
"LSTM"
,
&
onnx_parser
::
parse_lstm
);
add_mem_op
(
"Pad"
,
&
onnx_parser
::
parse_pad
);
add_mem_op
(
"Pad"
,
&
onnx_parser
::
parse_pad
);
add_mem_op
(
"ReduceSum"
,
&
onnx_parser
::
parse_reduce_sum
);
add_mem_op
(
"ReduceSum"
,
&
onnx_parser
::
parse_reduce_oper
<
op
::
reduce_sum
>
);
add_mem_op
(
"ReduceMean"
,
&
onnx_parser
::
parse_reduce_oper
<
op
::
reduce_mean
>
);
// init the activation function map
// init the activation function map
init_actv_func
();
init_actv_func
();
...
@@ -1371,20 +1373,21 @@ struct onnx_parser
...
@@ -1371,20 +1373,21 @@ struct onnx_parser
return
{
hidden_states
,
last_output
,
last_cell_output
};
return
{
hidden_states
,
last_output
,
last_cell_output
};
}
}
instruction_ref
parse_reduce_sum
(
const
std
::
string
&
,
template
<
class
T
>
instruction_ref
parse_reduce_oper
(
const
std
::
string
&
,
attribute_map
attributes
,
attribute_map
attributes
,
std
::
vector
<
instruction_ref
>
args
)
std
::
vector
<
instruction_ref
>
args
)
{
{
std
::
size_t
n_dim
=
args
.
front
()
->
get_shape
().
lens
().
size
();
std
::
size_t
n_dim
=
args
.
front
()
->
get_shape
().
lens
().
size
();
// default to reduce over all dimensions
// default to reduce over all dimensions
std
::
vector
<
std
::
size
_t
>
axes
(
n_dim
);
std
::
vector
<
int64
_t
>
axes
(
n_dim
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
0
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
0
);
if
(
contains
(
attributes
,
"axes"
))
if
(
contains
(
attributes
,
"axes"
))
{
{
axes
.
clear
();
axes
.
clear
();
auto
&&
attr_axes
=
attributes
[
"axes"
].
ints
();
auto
&&
attr_axes
=
attributes
[
"axes"
].
ints
();
axes
=
std
::
vector
<
std
::
size
_t
>
(
attr_axes
.
begin
(),
attr_axes
.
end
());
axes
=
std
::
vector
<
int64
_t
>
(
attr_axes
.
begin
(),
attr_axes
.
end
());
}
}
int
keep_dims
=
1
;
int
keep_dims
=
1
;
...
@@ -1395,13 +1398,12 @@ struct onnx_parser
...
@@ -1395,13 +1398,12 @@ struct onnx_parser
if
(
keep_dims
==
1
)
if
(
keep_dims
==
1
)
{
{
return
prog
.
add_instruction
(
op
::
reduce_sum
{
axes
},
std
::
move
(
args
));
return
prog
.
add_instruction
(
T
{
axes
},
std
::
move
(
args
));
}
}
else
else
{
{
auto
ins
=
prog
.
add_instruction
(
op
::
reduce_sum
{
axes
},
std
::
move
(
args
));
auto
ins
=
prog
.
add_instruction
(
T
{
axes
},
std
::
move
(
args
));
std
::
vector
<
int64_t
>
squeeze_axes
{
axes
.
begin
(),
axes
.
end
()};
return
prog
.
add_instruction
(
op
::
squeeze
{
axes
},
ins
);
return
prog
.
add_instruction
(
op
::
squeeze
{
squeeze_axes
},
ins
);
}
}
}
}
...
...
src/propagate_constant.cpp
View file @
8d059502
...
@@ -10,8 +10,8 @@ inline namespace MIGRAPHX_INLINE_NS {
...
@@ -10,8 +10,8 @@ inline namespace MIGRAPHX_INLINE_NS {
bool
skip_propogate
(
instruction_ref
ins
)
bool
skip_propogate
(
instruction_ref
ins
)
{
{
if
(
ins
->
name
()
==
"
@literal
"
)
if
(
ins
->
name
()
==
"
contiguous
"
)
return
true
;
return
skip_propogate
(
ins
->
inputs
().
front
())
;
auto
&&
s
=
ins
->
get_shape
();
auto
&&
s
=
ins
->
get_shape
();
if
(
s
.
broadcasted
()
and
not
s
.
scalar
())
if
(
s
.
broadcasted
()
and
not
s
.
scalar
())
return
true
;
return
true
;
...
@@ -33,7 +33,7 @@ void propagate_constant::apply(program& p) const
...
@@ -33,7 +33,7 @@ void propagate_constant::apply(program& p) const
ins
->
outputs
().
end
());
ins
->
outputs
().
end
());
for
(
auto
child
:
children
)
for
(
auto
child
:
children
)
{
{
if
(
skip_propogate
(
child
))
if
(
child
->
name
()
==
"@literal"
or
skip_propogate
(
child
))
{
{
self
(
child
);
self
(
child
);
continue
;
continue
;
...
...
src/targets/gpu/CMakeLists.txt
View file @
8d059502
...
@@ -17,6 +17,7 @@ add_library(migraphx_device
...
@@ -17,6 +17,7 @@ add_library(migraphx_device
device/max.cpp
device/max.cpp
device/min.cpp
device/min.cpp
device/exp.cpp
device/exp.cpp
device/erf.cpp
device/log.cpp
device/log.cpp
device/sin.cpp
device/sin.cpp
device/cos.cpp
device/cos.cpp
...
@@ -36,9 +37,11 @@ add_library(migraphx_device
...
@@ -36,9 +37,11 @@ add_library(migraphx_device
device/pad.cpp
device/pad.cpp
device/gather.cpp
device/gather.cpp
device/sub.cpp
device/sub.cpp
device/div.cpp
device/clip.cpp
device/clip.cpp
device/reduce_sum.cpp
device/reduce_sum.cpp
device/pow.cpp
device/pow.cpp
device/reduce_mean.cpp
)
)
set_target_properties
(
migraphx_device PROPERTIES EXPORT_NAME device
)
set_target_properties
(
migraphx_device PROPERTIES EXPORT_NAME device
)
rocm_clang_tidy_check
(
migraphx_device
)
rocm_clang_tidy_check
(
migraphx_device
)
...
@@ -77,6 +80,7 @@ add_library(migraphx_gpu
...
@@ -77,6 +80,7 @@ add_library(migraphx_gpu
adjust_allocation.cpp
adjust_allocation.cpp
clip.cpp
clip.cpp
reduce_sum.cpp
reduce_sum.cpp
reduce_mean.cpp
)
)
set_target_properties
(
migraphx_gpu PROPERTIES EXPORT_NAME gpu
)
set_target_properties
(
migraphx_gpu PROPERTIES EXPORT_NAME gpu
)
rocm_clang_tidy_check
(
migraphx_gpu
)
rocm_clang_tidy_check
(
migraphx_gpu
)
...
...
src/targets/gpu/device/div.cpp
0 → 100644
View file @
8d059502
#include <migraphx/gpu/device/div.hpp>
#include <migraphx/gpu/device/nary.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
div
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg1
,
const
argument
&
arg2
)
{
nary
(
stream
,
result
,
arg1
,
arg2
)([](
auto
x
,
auto
y
)
{
return
x
/
y
;
});
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/device/erf.cpp
0 → 100644
View file @
8d059502
#include <migraphx/gpu/device/erf.hpp>
#include <migraphx/gpu/device/nary.hpp>
#include <migraphx/gpu/device/types.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
erf
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
)
{
nary
(
stream
,
result
,
arg
)([](
auto
x
)
{
return
::
erf
(
to_hip_type
(
x
));
});
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/device/include/migraphx/gpu/device/reduce.hpp
View file @
8d059502
...
@@ -28,6 +28,16 @@ struct id
...
@@ -28,6 +28,16 @@ struct id
}
}
};
};
struct
mean
{
size_t
item_num
=
1
;
template
<
class
T
>
MIGRAPHX_DEVICE_CONSTEXPR
auto
operator
()(
T
x
)
const
{
return
static_cast
<
T
>
(
x
/
item_num
);
}
};
struct
max
struct
max
{
{
template
<
class
T
,
class
U
>
template
<
class
T
,
class
U
>
...
...
src/targets/gpu/device/pow.cpp
View file @
8d059502
...
@@ -9,7 +9,7 @@ namespace device {
...
@@ -9,7 +9,7 @@ namespace device {
void
pow
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg1
,
const
argument
&
arg2
)
void
pow
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg1
,
const
argument
&
arg2
)
{
{
nary
(
stream
,
result
,
arg1
,
arg2
)(
nary
(
stream
,
result
,
arg1
,
arg2
)(
[](
auto
e
,
auto
b
)
{
return
::
pow
(
to_hip_type
(
b
),
to_hip_type
(
e
));
});
[](
auto
b
,
auto
e
)
{
return
::
pow
(
to_hip_type
(
b
),
to_hip_type
(
e
));
});
}
}
}
// namespace device
}
// namespace device
...
...
src/targets/gpu/device/reduce_mean.cpp
0 → 100644
View file @
8d059502
#include <migraphx/gpu/device/reduce_mean.hpp>
#include <migraphx/gpu/device/reduce.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
reduce_mean
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
)
{
std
::
size_t
item_num
=
arg
.
get_shape
().
elements
()
/
result
.
get_shape
().
elements
();
reduce
(
stream
,
result
,
arg
,
sum
{},
0
,
id
{},
mean
{
item_num
});
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/device/sub.cpp
View file @
8d059502
...
@@ -8,7 +8,7 @@ namespace device {
...
@@ -8,7 +8,7 @@ namespace device {
void
sub
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg1
,
const
argument
&
arg2
)
void
sub
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg1
,
const
argument
&
arg2
)
{
{
nary
(
stream
,
result
,
arg1
,
arg2
)([](
auto
x
,
auto
y
)
{
return
y
-
x
;
});
nary
(
stream
,
result
,
arg1
,
arg2
)([](
auto
x
,
auto
y
)
{
return
x
-
y
;
});
}
}
}
// namespace device
}
// namespace device
...
...
src/targets/gpu/include/migraphx/gpu/device/div.hpp
0 → 100644
View file @
8d059502
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_DIV_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_DIV_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
div
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg1
,
const
argument
&
arg2
);
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/device/erf.hpp
0 → 100644
View file @
8d059502
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_ERF_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_ERF_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
erf
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
);
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/device/reduce_mean.hpp
0 → 100644
View file @
8d059502
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_REDUCE_MEAN_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_REDUCE_MEAN_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
reduce_mean
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
);
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/div.hpp
0 → 100644
View file @
8d059502
#ifndef MIGRAPHX_GUARD_RTGLIB_DIV_HPP
#define MIGRAPHX_GUARD_RTGLIB_DIV_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/div.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
hip_div
:
binary_device
<
hip_div
,
device
::
div
>
{
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/erf.hpp
0 → 100644
View file @
8d059502
#ifndef MIGRAPHX_GUARD_RTGLIB_ERF_HPP
#define MIGRAPHX_GUARD_RTGLIB_ERF_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/erf.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
hip_erf
:
unary_device
<
hip_erf
,
device
::
erf
>
{
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/oper.hpp
View file @
8d059502
...
@@ -88,7 +88,7 @@ struct binary_device : oper<Derived>
...
@@ -88,7 +88,7 @@ struct binary_device : oper<Derived>
argument
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
argument
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
{
F
(
ctx
.
get_stream
().
get
(),
args
[
2
],
args
[
1
],
args
[
0
]);
F
(
ctx
.
get_stream
().
get
(),
args
[
2
],
args
[
0
],
args
[
1
]);
return
args
[
2
];
return
args
[
2
];
}
}
...
...
src/targets/gpu/include/migraphx/gpu/reduce_mean.hpp
0 → 100644
View file @
8d059502
#ifndef MIGRAPHX_GUARD_RTGLIB_REDUCE_MEAN_HPP
#define MIGRAPHX_GUARD_RTGLIB_REDUCE_MEAN_HPP
#include <migraphx/shape.hpp>
#include <migraphx/op/reduce_mean.hpp>
#include <migraphx/reflect.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
context
;
struct
hip_reduce_mean
{
op
::
reduce_mean
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::reduce_mean"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
;
argument
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
;
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
{
return
shapes
.
size
()
-
1
;
}
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment