Commit 870a396b authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

manual merge

parents 228b665c d309e02f
......@@ -50,8 +50,8 @@ struct layernorm_matcher
{
return f("div")(arg(0)(x_minus_mean()),
arg(1)(skip_broadcasts(f("sqrt")(
arg(0)(f("add")(either_arg(0, 1)(variance(), has_value(1e-12f))))))));
arg(1)(skip_broadcasts(f("sqrt")(arg(0)(
f("add")(either_arg(0, 1)(variance(), is_constant().bind("eps"))))))));
}
auto matcher() const { return layernorm_onnx(); }
......
......@@ -205,6 +205,12 @@ struct module
void print_graph(std::ostream& os, bool brief = false) const;
void print_py(std::ostream& os) const;
std::unordered_map<instruction_ref, std::string>
print_py(std::ostream& os,
const std::string& mname,
std::unordered_map<instruction_ref, std::string> names) const;
void print_cpp(std::ostream& os) const;
std::unordered_map<instruction_ref, std::string>
print_cpp(std::ostream& os,
......
......@@ -30,6 +30,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -56,12 +57,20 @@ struct argmax
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
auto lens = inputs[0].lens();
lens[axis] = 1;
return {shape::int64_type, lens};
check_shapes{inputs, *this, true}.has(1);
const auto& s0 = inputs[0];
if(s0.dynamic())
{
auto dyn_dims = s0.dyn_dims();
dyn_dims[axis] = {1, 1, 0};
return {shape::int64_type, dyn_dims};
}
else
{
auto lens = s0.lens();
lens[axis] = 1;
return {shape::int64_type, lens};
}
}
template <class T>
......@@ -79,19 +88,18 @@ struct argmax
max_index = i;
}
}
return max_index;
}
argument compute(const shape& output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
argument result{dyn_out.computed_shape};
auto batch_item_num = args.front().get_shape().lens()[axis];
result.visit([&](auto output) {
args[0].visit([&](auto input) {
par_for(output_shape.elements(), [&](auto i) {
auto data_idx = output_shape.multi(i);
par_for(dyn_out.computed_shape.elements(), [&](auto i) {
auto data_idx = dyn_out.computed_shape.multi(i);
output[i] = this->calc_argmax(input, data_idx, batch_item_num);
});
});
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_BATCH_NORM_HPP
#define MIGRAPHX_GUARD_OPERATORS_BATCH_NORM_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
#include <cmath>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct batch_norm_inference
{
float epsilon = 1.0e-6f;
float momentum = 0.9f;
std::string name() const { return "batch_norm_inference"; }
enum bn_infer_mode_t
{
per_activation,
spatial,
};
bn_infer_mode_t bn_mode = spatial;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(
f(self.epsilon, "epsilon"), f(self.momentum, "momentum"), f(self.bn_mode, "bn_mode"));
}
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(5);
check_shapes{inputs.data(), inputs.data() + 1, *this}.same_ndims();
check_shapes{inputs.data() + 1, inputs.data() + inputs.size(), *this}.same_shape();
return inputs.front();
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -28,6 +28,7 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -60,10 +61,19 @@ struct binary : op_name<Derived>
value attributes() const { return base_attributes(); }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(2).same_type().same_dims();
check_shapes{inputs, static_cast<const Derived&>(*this), true}
.has(2)
.same_type()
.same_dims();
auto s0 = inputs.at(0);
auto s1 = inputs.at(1);
if(s0 == s1 and s0.packed())
if(s0.dynamic() or s1.dynamic())
{
if(s0 == s1)
return s0;
MIGRAPHX_THROW("BINARY: " + point_function() + ": fixed-dyn shape for inputs");
}
else if(s0 == s1 and s0.packed())
{
return s0;
}
......@@ -81,9 +91,9 @@ struct binary : op_name<Derived>
}
}
argument compute(const shape& output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
argument result{dyn_out.computed_shape};
visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
std::transform(input1.begin(),
input1.end(),
......
......@@ -27,23 +27,30 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/// The broadcast operator performs the numpy-style broadcasting of an axis of a given tensor. This
/// is achieved primarily by setting the stride of the broadcasted axis to zero. Linear indicies are
/// computed from multi-indicies by computing the inner product on the multi-index with the strides.
/// For example, if we have a tensor A(2,3) it has lengths of (2,3) and strides of (3,1). If we want
/// to compute the linear offset that corresponds to the element on the 2nd row (i = 1) and 3rd
/// column (j = 2), we compute the following inner product (1,2) dot (3, 1) = 1*3 + 2*1 = 5. It is
/// obvious from there that we can negate the effects of a given axis by setting the stride of that
/// axis to zero.
/**
* 1 input version:
* Broadcasts a tensor from the original shape to the broadcast_lens by setting the stride of
* broadcasted dimensions to zero. `axis` attribute for a 1D input shape is the output dimension
* that stays the same. ex: broadcasting shape [1024] -> [4, 1024, 3] has axis = 1 For higher rank
* input shapes, axis is an offset parameter for the broadcasting. Such that this operator would
* work in the opposite direction of NumPy broadcasting. ex: broadcasting shape [2, 2] -> [2, 2, 3]
* with axis = 0
*
* 2 input version:
* Broadcast the first input 1D shape into the second input shape based on the axis parameter.
* Handles broadcasting a 1D static shape into a higher rank dynamic shape.
* broadcast_lens is not used
*/
struct broadcast
{
uint64_t axis = 0;
std::vector<std::size_t> broadcast_lens;
uint64_t axis = 0;
std::vector<std::size_t> broadcast_lens = {};
template <class Self, class F>
static auto reflect(Self& self, F f)
......@@ -54,36 +61,86 @@ struct broadcast
std::string name() const { return "broadcast"; }
shape compute_shape(std::vector<shape> inputs) const
{
auto input = inputs.at(0);
auto t = input.type();
std::vector<size_t> bcast_strides(broadcast_lens.size(), 0);
// the broacast op is deprecated now, so not handling the negative
// value of axis anymore
if(axis >= broadcast_lens.size())
check_shapes{inputs, *this, true}.has(1, 2);
auto s0 = inputs.at(0);
auto t = s0.type();
if(inputs.size() == 1)
{
MIGRAPHX_THROW("BROADCAST : axis is out of range");
}
// the ONNX broadcast op is deprecated now, so not handling the negative
// value of axis anymore
if(axis >= broadcast_lens.size())
{
MIGRAPHX_THROW("BROADCAST : axis " + migraphx::to_string(axis) +
" is out of range");
}
if(broadcast_lens.size() - axis < s0.lens().size())
{
MIGRAPHX_THROW("BROADCAST: (broadcast ndims - axis) is less than s0 ndims");
}
if(not std::equal(s0.lens().begin(), s0.lens().end(), broadcast_lens.begin() + axis))
{
MIGRAPHX_THROW("BROADCAST: when broadcasting, succeeding sizes must match");
}
if(broadcast_lens.size() - axis < input.lens().size())
{
MIGRAPHX_THROW("BROADCAST: (broadcast ndims - axis) is less than input ndims");
std::vector<size_t> bcast_strides(broadcast_lens.size(), 0);
std::copy(s0.strides().begin(), s0.strides().end(), bcast_strides.begin() + axis);
shape output{t, broadcast_lens, std::move(bcast_strides)};
if(output.elements() < s0.elements())
{
// don't think this can occur?
MIGRAPHX_THROW("BROADCAST: output size must be greater than or equal to s0 size");
}
return output;
}
if(not std::equal(input.lens().begin(), input.lens().end(), broadcast_lens.begin() + axis))
else
{
MIGRAPHX_THROW("BROADCAST: when broadcasting, succeeding sizes must match");
}
std::copy(input.strides().begin(), input.strides().end(), bcast_strides.begin() + axis);
// two inputs
auto s1 = inputs.at(1);
if(s0.dynamic())
{
MIGRAPHX_THROW("BROADCAST_2in: s0 is a dynamic shape, does not handle broadcasting "
"a dynamic shape");
}
if(s0.ndim() != 1)
{
MIGRAPHX_THROW("BROADCAST_2in: s0 has ndim " + migraphx::to_string(s0.ndim()) +
", only handle ndim = 1");
}
if(axis >= s1.ndim())
{
MIGRAPHX_THROW("BROADCAST_2in: axis " + migraphx::to_string(axis) +
" is out of range");
}
if(s1.dynamic())
{
s0 = s0.to_dynamic();
if(s0.dyn_dims()[0] != s1.dyn_dims()[axis])
{
MIGRAPHX_THROW("BROADCAST_2in: s0 length doesn't match with dynamic s1 axis "
"dimension length (" +
migraphx::to_string(s0.dyn_dims()[0]) +
" != " + migraphx::to_string(s1.dyn_dims()[axis]) + ")");
}
return s1;
}
shape output{t, broadcast_lens, std::move(bcast_strides)};
if(output.elements() < input.elements())
MIGRAPHX_THROW("BROADCAST: output size must be greater than or equal to input size");
return output;
if(s0.lens()[0] != s1.lens()[axis])
{
MIGRAPHX_THROW("BROADCAST_2in: s0 length doesn't match with static s1 axis "
"dimension length (" +
migraphx::to_string(s0.lens()[0]) +
" != " + migraphx::to_string(s1.lens()[axis]) + ")");
}
std::vector<size_t> bcast_strides(s1.ndim(), 0);
std::copy(s0.strides().begin(), s0.strides().end(), bcast_strides.begin() + axis);
shape output{t, s1.lens(), std::move(bcast_strides)};
return output;
}
}
argument compute(shape output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
return args[0].reshape(output_shape);
return args[0].reshape(dyn_out.computed_shape);
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
......@@ -33,11 +33,11 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
// Padding mode is default_ for fixed shape padding.
// same_lower and same_upper used for dynamic padding.
enum padding_mode_t
{
default_, // NOLINT
same,
valid,
same_lower,
same_upper
};
......
......@@ -28,6 +28,7 @@
#include <migraphx/argument.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -42,19 +43,27 @@ namespace op {
struct contiguous
{
std::string name() const { return "contiguous"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
if(inputs.front().standard())
return inputs.front();
auto lens = inputs.at(0).lens();
auto t = inputs.at(0).type();
return {t, lens};
check_shapes{inputs, *this, true}.has(1);
auto s0 = inputs.front();
if(s0.dynamic() or s0.standard())
{
return s0;
}
else
{
const auto& lens = s0.lens();
auto t = s0.type();
return {t, lens};
}
}
argument compute(const shape& output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
assert(output_shape.standard());
argument result{output_shape};
assert(dyn_out.computed_shape.standard());
argument result{dyn_out.computed_shape};
visit_all(result, args[0])([&](auto output, auto input) {
shape_for_each(output.get_shape(), [&](const auto& idx) {
output(idx.begin(), idx.end()) = input(idx.begin(), idx.end());
......
......@@ -44,7 +44,7 @@ struct convert : unary<convert>
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
check_shapes{inputs, *this, true}.has(1);
auto input = inputs.at(0);
if(input.dynamic())
{
......
......@@ -41,9 +41,8 @@ struct convolution
std::vector<std::size_t> stride = {1, 1};
std::vector<std::size_t> dilation = {1, 1};
int group = 1;
padding_mode_t padding_mode = default_;
bool use_dynamic_same_auto_pad = false;
int group = 1;
padding_mode_t padding_mode = default_;
template <class Self, class F>
static auto reflect(Self& self, F f)
......@@ -52,16 +51,15 @@ struct convolution
f(self.stride, "stride"),
f(self.dilation, "dilation"),
f(self.group, "group"),
f(self.padding_mode, "padding_mode"),
f(self.use_dynamic_same_auto_pad, "use_dynamic_same_auto_pad"));
f(self.padding_mode, "padding_mode"));
}
std::string name() const { return "convolution"; }
void check_attribute_size() const
{
if(not((padding.size() == stride.size() or (padding.size() / 2) == stride.size()) and
stride.size() == dilation.size()))
if((padding.size() != stride.size() and (padding.size() / 2) != stride.size()) or
stride.size() != dilation.size())
{
MIGRAPHX_THROW("CONVOLUTION: inconsistent attribute sizes");
}
......@@ -76,7 +74,8 @@ struct convolution
// num of dims of input and attribute should match
const auto input_size = inputs[0].max_lens().size();
const auto padding_size = padding.size();
if(not(input_size == padding_size / 2 + 2 or input_size == padding_size + 2))
if(input_size != padding_size / 2 + 2 && input_size != padding_size + 2)
{
MIGRAPHX_THROW("CONVOLUTION: input and attribute size mismatch!");
}
......@@ -93,13 +92,6 @@ struct convolution
x_shape.lens().at(1) != (w_shape.lens().at(1) * group))
MIGRAPHX_THROW("CONVOLUTION: mismatched channel numbers");
std::vector<op::padding_mode_t> dyn_pad_modes = {op::padding_mode_t::same_upper,
op::padding_mode_t::same_lower};
if(use_dynamic_same_auto_pad and not contains(dyn_pad_modes, padding_mode))
{
MIGRAPHX_THROW("CONVOLUTION: use_dynamic_same_auto_pad set with invalid padding mode");
}
if(x_shape.dynamic() or w_shape.dynamic())
{
return dynamic_compute_shape(x_shape, w_shape);
......@@ -161,7 +153,7 @@ struct convolution
dynamic_shape_push_back(w_shape);
const size_t num_spatial_dims = x_shape.max_lens().size() - 2;
if(use_dynamic_same_auto_pad)
if(padding_mode != default_)
{
for(std::size_t i = 0; i < num_spatial_dims; ++i)
{
......
......@@ -61,8 +61,8 @@ struct deconvolution
void check_attribute_size() const
{
if(not((padding.size() == stride.size() or (padding.size() / 2) == stride.size()) and
stride.size() == dilation.size()))
if((padding.size() != stride.size() and (padding.size() / 2) != stride.size()) or
stride.size() != dilation.size())
{
MIGRAPHX_THROW("deconvolution: inconsistent attribute sizes");
}
......
......@@ -28,6 +28,7 @@
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/gemm.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -38,41 +39,69 @@ struct dot
std::string name() const { return "dot"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.same_type().has(2);
check_shapes{inputs, *this, true}.same_type().same_ndims().has(2);
const shape& a = inputs.at(0);
const shape& b = inputs.at(1);
auto t = a.type();
if(not std::all_of(
inputs.begin(), inputs.end(), [](auto s) { return s.lens().size() >= 2; }))
if(not std::all_of(inputs.begin(), inputs.end(), [](auto s) { return s.ndim() >= 2; }))
{
MIGRAPHX_THROW("DOT: dot only accept 2 or more dims operands");
MIGRAPHX_THROW("DOT: dot only accepts operands with 2 or more dimensions ");
}
// only handle the case that the batch size of a and b are the same
if(not std::equal(
a.lens().rbegin() + 2, a.lens().rend(), b.lens().rbegin() + 2, b.lens().rend()))
if(a.dynamic() or b.dynamic())
{
MIGRAPHX_THROW("DOT: batch size of A and B mismatch: {" + to_string_range(a.lens()) +
"} x {" + to_string_range(b.lens()) + "}");
auto s0 = a.to_dynamic();
auto s1 = b.to_dynamic();
if(not std::equal(s0.dyn_dims().rbegin() + 2,
s0.dyn_dims().rend(),
s1.dyn_dims().rbegin() + 2,
s1.dyn_dims().rend()))
{
MIGRAPHX_THROW("DOT: dynamic outer dimensions of A and B mismatch: {" +
to_string_range(s0.dyn_dims()) + "} x {" +
to_string_range(s1.dyn_dims()) + "}");
}
std::size_t dim_0 = s0.ndim() - 2;
std::size_t dim_1 = s0.ndim() - 1;
if(s0.dyn_dims()[dim_1] != s1.dyn_dims()[dim_0])
{
MIGRAPHX_THROW("DOT: dynamic inner dimensions do not match: {" +
to_string_range(s0.dyn_dims()) + "} x {" +
to_string_range(s1.dyn_dims()) + "}");
}
auto out_dyn_dims = s0.dyn_dims();
out_dyn_dims[dim_1] = s1.dyn_dims()[dim_1];
return {t, out_dyn_dims};
}
std::size_t dim_0 = a.lens().size() - 2;
std::size_t dim_1 = a.lens().size() - 1;
if(a.lens()[dim_1] != b.lens()[dim_0])
else
{
MIGRAPHX_THROW("DOT: inner dimensions do not match: {" + to_string_range(a.lens()) +
"} x {" + to_string_range(b.lens()) + "}");
}
// only handle the case that all the dimensions except the last two are the same
if(not std::equal(
a.lens().rbegin() + 2, a.lens().rend(), b.lens().rbegin() + 2, b.lens().rend()))
{
MIGRAPHX_THROW("DOT: static outer dimensions of A and B mismatch: {" +
to_string_range(a.lens()) + "} x {" + to_string_range(b.lens()) +
"}");
}
auto out_lens = a.lens();
out_lens[dim_1] = b.lens()[dim_1];
return {t, out_lens};
std::size_t dim_0 = a.ndim() - 2;
std::size_t dim_1 = a.ndim() - 1;
if(a.lens()[dim_1] != b.lens()[dim_0])
{
MIGRAPHX_THROW("DOT: static inner dimensions do not match: {" +
to_string_range(a.lens()) + "} x {" + to_string_range(b.lens()) +
"}");
}
auto out_lens = a.lens();
out_lens[dim_1] = b.lens()[dim_1];
return {t, out_lens};
}
}
argument compute(shape output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result = argument{output_shape};
argument result = argument{dyn_out.computed_shape};
visit_all(result, args[0], args[1])(
[&](auto cmat, auto amat, auto bmat) { gemm(cmat, amat, bmat, 1.0f, 0.0f); });
return result;
......
......@@ -32,14 +32,13 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct elu
struct elu : unary<elu>
{
std::string name() const { return "elu"; }
float alpha = 1;
shape compute_shape(std::vector<shape> inputs) const
std::string point_op() const
{
check_shapes{inputs, *this}.has(1);
return inputs.front();
return "${function:where}(${0} > 0, ${0}, ${alpha} * (${function:exp}(${0}) - 1))";
}
template <class Self, class F>
......@@ -47,6 +46,11 @@ struct elu
{
return pack(f(self.alpha, "alpha"));
}
auto apply() const
{
return [&](auto x) { return x > 0 ? x : alpha * std::expm1(x); };
}
};
} // namespace op
......
......@@ -55,17 +55,47 @@ struct flatten
std::string name() const { return "flatten"; }
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1).standard();
auto&& lens = inputs.front().lens();
auto x =
std::accumulate(lens.begin(), lens.begin() + axis, std::size_t{1}, std::multiplies<>{});
auto y =
std::accumulate(lens.begin() + axis, lens.end(), std::size_t{1}, std::multiplies<>{});
return {inputs.at(0).type(), {x, y}};
check_shapes{inputs, *this, true}.has(1);
auto s = inputs[0];
if(s.dynamic())
{
auto min_lens = s.min_lens();
auto max_lens = s.max_lens();
auto opt_lens = s.opt_lens();
// If any of the opt values is 0, output opt will be 0
shape::dynamic_dimension x = {
std::accumulate(
min_lens.begin(), min_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}),
std::accumulate(
max_lens.begin(), max_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}),
std::accumulate(opt_lens.begin(),
opt_lens.begin() + axis,
std::size_t{1},
std::multiplies<>{})};
shape::dynamic_dimension y = {
std::accumulate(
min_lens.begin() + axis, min_lens.end(), std::size_t{1}, std::multiplies<>{}),
std::accumulate(
max_lens.begin() + axis, max_lens.end(), std::size_t{1}, std::multiplies<>{}),
std::accumulate(
opt_lens.begin() + axis, opt_lens.end(), std::size_t{1}, std::multiplies<>{}),
};
return {s.type(), {x, y}};
}
else
{
check_shapes{inputs, *this}.standard();
auto&& lens = s.lens();
auto x = std::accumulate(
lens.begin(), lens.begin() + axis, std::size_t{1}, std::multiplies<>{});
auto y = std::accumulate(
lens.begin() + axis, lens.end(), std::size_t{1}, std::multiplies<>{});
return {s.type(), {x, y}};
}
}
argument compute(shape output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
return args[0].reshape(output_shape);
return args[0].reshape(dyn_out.computed_shape);
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
......@@ -40,7 +40,6 @@ struct fmod : binary<fmod>
a["commutative"] = false;
return a;
}
std::string point_function() const { return "fmod"; }
auto apply() const
{
return [](auto x, auto y) { return std::fmod(x, y); };
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OP_LAYOUT_HPP
#define MIGRAPHX_GUARD_OP_LAYOUT_HPP
......@@ -8,7 +31,6 @@
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/op/unary.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
......
......@@ -26,12 +26,13 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
#include <migraphx/op/unary.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct leaky_relu
struct leaky_relu : unary<leaky_relu>
{
float alpha = 0.01;
......@@ -41,11 +42,13 @@ struct leaky_relu
return pack(f(self.alpha, "alpha"));
}
std::string point_op() const { return "${function:where}(${0} > 0, ${0}, ${alpha} * ${0})"; }
std::string name() const { return "leaky_relu"; }
shape compute_shape(std::vector<shape> inputs) const
auto apply() const
{
check_shapes{inputs, *this}.has(1);
return inputs.front();
return [&](auto x) { return x > 0 ? x : x * alpha; };
}
};
......
......@@ -38,9 +38,9 @@ struct mod : binary<mod>
{
auto a = base_attributes();
a["commutative"] = false;
a["point_op"] = "${function:fmod}((${function:remainder}(${0}, ${1})) + ${1}, ${1})";
return a;
}
std::string point_function() const { return "mod"; }
auto apply() const
{
return [](auto x, auto y) { return std::fmod((std::remainder(x, y)) + y, y); };
......
......@@ -26,64 +26,105 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/common.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Broadcast multiple dimensions between two tensors.
* Two versions of this operator: one input and two inputs.
* One input version uses output_lens attribute and broadcasts to it.
* Two inputs version broadcasts both inputs to the common shape at evaluation time.
*/
struct multibroadcast
{
std::vector<std::size_t> output_lens;
std::vector<std::size_t> output_lens = {};
// optional attribute
std::vector<shape::dynamic_dimension> output_dyn_dims = {};
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.output_lens, "out_lens"));
return pack(f(self.output_lens, "out_lens"), f(self.output_dyn_dims, "out_dyn_dims"));
}
std::string name() const { return "multibroadcast"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
auto t = inputs.at(0).type();
auto input = inputs.at(0);
check_shapes{inputs, *this, true}.has(1, 2);
if(input.lens().empty())
{
MIGRAPHX_THROW("MULTIBROADCAST: inputs dimensions should be > 0");
}
auto t = inputs.at(0).type();
auto s0 = inputs.at(0);
if(input.lens().size() > output_lens.size())
if(s0.max_lens().empty())
{
MIGRAPHX_THROW("MULTIBROADCAST: inputs dimensions should <= output size");
MIGRAPHX_THROW("MULTIBROADCAST: input dimensions should be > 0");
}
auto offset = output_lens.size() - input.lens().size();
for(std::ptrdiff_t i = input.lens().size() - 1; i >= 0; i--)
auto make_bcast_strides = [&](std::vector<std::size_t> bcast_lens, std::size_t offset) {
std::vector<size_t> bcast_strides(bcast_lens.size(), 0);
for(std::ptrdiff_t i = s0.lens().size() - 1; i >= 0; i--)
{
if(bcast_lens[i + offset] == s0.lens()[i])
{
bcast_strides[i + offset] = s0.strides()[i];
}
}
return bcast_strides;
};
if(inputs.size() == 1)
{
if(output_lens[i + offset] != input.lens()[i] and input.lens()[i] != 1)
if(s0.lens().size() > output_lens.size())
{
MIGRAPHX_THROW("MULTIBROADCAST: input shape {" + to_string_range(input.lens()) +
"} cannot be broadcasted to {" + to_string_range(output_lens) +
"}!");
MIGRAPHX_THROW("MULTIBROADCAST: input dimensions should <= output size");
}
}
std::vector<size_t> bcast_strides(output_lens.size(), 0);
for(std::ptrdiff_t i = input.lens().size() - 1; i >= 0; i--)
auto offset = output_lens.size() - s0.lens().size();
for(std::ptrdiff_t i = s0.lens().size() - 1; i >= 0; i--)
{
if(output_lens[i + offset] != s0.lens()[i] and s0.lens()[i] != 1)
{
MIGRAPHX_THROW("MULTIBROADCAST: input shape {" + to_string_range(s0.lens()) +
"} cannot be broadcasted to {" + to_string_range(output_lens) +
"}!");
}
}
auto bcast_strides = make_bcast_strides(output_lens, offset);
return {t, output_lens, std::move(bcast_strides)};
}
else
{
if(output_lens[i + offset] == input.lens()[i])
// two inputs
auto s1 = inputs.at(1);
if(s0.dynamic() or s1.dynamic())
{
bcast_strides[i + offset] = input.strides()[i];
if(not output_dyn_dims.empty())
{
return {t, output_dyn_dims};
}
return {t, compute_broadcasted_dyn_dims(s0, s1)};
}
else
{
auto bcast_lens = compute_broadcasted_lens(s0.lens(), s1.lens());
auto offset = bcast_lens.size() - s0.lens().size();
auto bcast_strides = make_bcast_strides(bcast_lens, offset);
return {t, std::move(bcast_lens), std::move(bcast_strides)};
}
}
return {t, output_lens, bcast_strides};
}
argument compute(shape output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
return args[0].reshape(output_shape);
return args[0].reshape(dyn_out.computed_shape);
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
......@@ -59,18 +59,29 @@ struct pad
std::string name() const { return "pad"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
auto&& idims = inputs.front().lens();
std::vector<std::size_t> rdims(idims.begin(), idims.end());
std::size_t num_dims = rdims.size();
for(std::size_t i = 0; i < num_dims; i++)
check_shapes{inputs, *this, true}.has(1);
const auto& s0 = inputs.front();
if(s0.dynamic())
{
rdims[i] += pads[i] + pads[i + num_dims];
auto out_dyn_dims = s0.dyn_dims();
for(std::size_t i = 0; i < s0.ndim(); ++i)
{
out_dyn_dims[i] += pads[i] + pads[i + s0.ndim()];
}
return {s0.type(), out_dyn_dims};
}
else
{
auto&& idims = s0.lens();
std::vector<std::size_t> rdims(idims.begin(), idims.end());
std::size_t num_dims = rdims.size();
for(std::size_t i = 0; i < num_dims; i++)
{
rdims[i] += pads[i] + pads[i + num_dims];
}
shape s{s0.type(), rdims};
return s;
}
shape s{inputs.front().type(), rdims};
return s;
}
std::size_t pad_ndims() const
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment