Commit 870a396b authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

manual merge

parents 228b665c d309e02f
......@@ -27,14 +27,15 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_elu : verify_program<test_elu>
struct test_sin_half : verify_program<test_sin_half>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
mm->add_instruction(migraphx::make_op("leaky_relu", {{"alpha", 1.0}}), x);
migraphx::shape s{migraphx::shape::half_type, {10}};
auto x = mm->add_parameter("x", s);
mm->add_instruction(migraphx::make_op("sin"), x);
return p;
}
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_slice_concat_add : verify_program<test_slice_concat_add>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s0{migraphx::shape::float_type, {1, 24, 2, 2}};
migraphx::shape s1{migraphx::shape::float_type, {1, 8, 2, 2}};
auto x = mm->add_parameter("x", s0);
auto y = mm->add_parameter("y", s1);
auto z = mm->add_parameter("z", s0);
auto slice = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {0}}, {"ends", {8}}}), x);
auto concat = mm->add_instruction(migraphx::make_op("concat", {{"axis", 1}}), slice, y, y);
mm->add_instruction(migraphx::make_op("add"), concat, z);
return p;
}
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/common.hpp>
struct test_softmax_large3 : verify_program<test_softmax_large3>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {2, 4}});
auto large = mm->add_literal({migraphx::shape{migraphx::shape::float_type}, {100}});
auto add = migraphx::add_common_op(*mm, migraphx::make_op("mul"), {x, large});
mm->add_instruction(migraphx::make_op("softmax", {{"axis", -1}}), add);
return p;
}
};
......@@ -27,27 +27,29 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_batchnorm_inference : verify_program<test_batchnorm_inference>
struct test_trans_slice : verify_program<test_trans_slice>
{
const size_t width = 3;
const size_t height = 3;
const size_t channels = 3;
const size_t batches = 4;
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {batches, channels, height, width}};
migraphx::shape vars{migraphx::shape::float_type, {channels}};
auto x = mm->add_parameter("x", s);
auto scale = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 1)));
auto bias = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 2)));
auto mean = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 3)));
auto variance = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 4)));
mm->add_instruction(
migraphx::make_op("batch_norm_inference"), x, scale, bias, mean, variance);
auto x = mm->add_parameter("x", {migraphx::shape::float_type, {2, 384, 36, 64}});
auto transpose =
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), x);
auto slice1 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {0}}, {"ends", {12}}}),
transpose);
auto slice2 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {12}}, {"ends", {24}}}),
transpose);
auto transpose2 = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), slice2);
auto slice3 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {24}}, {"ends", {36}}}),
transpose);
mm->add_return({slice1, transpose2, slice3});
return p;
}
};
......@@ -116,6 +116,9 @@ def main():
model = migraphx.parse_onnx(model_name, default_dim_value=batch)
if args.verbose:
print(model)
model.compile(migraphx.get_target('gpu'), offload_copy=False)
params = {}
......
......@@ -21,5 +21,5 @@
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
numpy==1.18.5
numpy==1.21.6
onnxruntime==1.10.0
......@@ -21,7 +21,10 @@
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import string, sys, re, runpy
import string
import sys
import re
import runpy
from functools import wraps
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
......@@ -308,18 +311,39 @@ class Parameter:
return self.substitute('${type} ${name}', prefix=prefix)
def virtual_output_args(self, prefix: Optional[str] = None) -> List[str]:
return [
'&{prefix}{n}'.format(prefix=prefix or '', n=n)
for t, n in self.cparams
]
container_type = self.type.remove_generic().basic().str()
decl_list: List[str] = []
container = (container_type == "std::vector"
or container_type == "vector")
for t, n, in self.cparams:
if not decl_list and container:
decl_list.append('{prefix}{n}.data()'.format(prefix=prefix
or '',
n=n))
else:
decl_list.append('&{prefix}{n}'.format(prefix=prefix or '',
n=n))
return decl_list
def virtual_output_declarations(self,
prefix: Optional[str] = None) -> List[str]:
return [
'std::remove_pointer_t<{type}> {prefix}{n};'.format(
type=Type(t).str(), prefix=prefix or '', n=n)
for t, n in self.cparams
]
container_type = self.type.remove_generic().basic().str()
container = (container_type == "std::vector"
or container_type == "vector")
decl_list: List[str] = []
for t, n, in self.cparams:
if not decl_list and container:
inner_t = self.type.inner_type()
if inner_t:
decl_list.append(
'std::array<{inner_t}, 1024> {prefix}{n};'.format(
inner_t=inner_t.str(), prefix=prefix or '', n=n))
else:
decl_list.append(
'std::remove_pointer_t<{type}> {prefix}{n}'.format(
type=Type(t).str(), prefix=prefix or '', n=n))
decl_list[-1] += '=1024;' if container else ';'
return decl_list
def virtual_output(self, prefix: Optional[str] = None) -> str:
write = self.virtual_write
......@@ -694,9 +718,14 @@ def generate_cpp_header() -> str:
[c.generate() for c in cpp_classes])
def cwrap(name: str) -> Callable:
c_type_map: Dict[str, Type] = {}
def cwrap(name: str, c_type: Optional[str] = None) -> Callable:
def with_cwrap(f):
type_map[name] = f
if c_type:
c_type_map[name] = Type(c_type)
@wraps(f)
def decorated(*args, **kwargs):
......@@ -917,6 +946,9 @@ def vector_c_wrap(p: Parameter) -> None:
# Not a generic type
if not inner:
return
if inner.str() in c_type_map:
inner = c_type_map[inner.str()]
t = inner.add_pointer()
if p.type.is_reference():
if p.type.is_const():
......@@ -927,6 +959,12 @@ def vector_c_wrap(p: Parameter) -> None:
p.add_size_param()
p.bad_param('${name} == nullptr or ${size} == nullptr',
'Null pointer')
elif p.virtual:
p.add_param(t)
p.add_size_param()
p.bad_param('${name} == nullptr or ${size} == nullptr',
'Null pointer')
p.virtual_write = '{${name}.begin(), ${name}.begin()+${size}}; // cppcheck-suppress returnDanglingLifetime'
else:
p.add_param(t)
p.bad_param('${name} == nullptr', 'Null pointer')
......@@ -946,7 +984,7 @@ def vector_c_wrap(p: Parameter) -> None:
p.write = ['std::copy(${result}.begin(), ${result}.end(), ${name})']
@cwrap('std::string')
@cwrap('std::string', 'char*')
def string_c_wrap(p: Parameter) -> None:
t = Type('char*')
if p.returns:
......@@ -1061,9 +1099,9 @@ struct ${ctype} {
c_api_virtual_impl = Template('''
${return_type} ${name}(${params}) const
{
${output_decls}
if (${fname} == nullptr)
throw std::runtime_error("${name} function is missing.");
${output_decls}
std::array<char, 256> exception_msg;
exception_msg.front() = '\\0';
auto api_error_result = ${fname}(${args});
......
......@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/execution_environment.hpp>
#include <migraphx/migraphx.h>
#include <migraphx/rank.hpp>
#include <migraphx/shape.hpp>
......@@ -166,6 +167,13 @@ void set_output_names(tf_options& options, std::vector<const char*> names)
options.output_node_names = std::vector<std::string>(names.begin(), names.end());
}
std::vector<argument>
run_async(program& p, const parameter_map& params, void* s, std::string_view name)
{
execution_environment exec_env{any_ptr(s, name), true};
return p.eval(params, exec_env);
}
template <class Value>
std::vector<const char*> get_names(const std::unordered_map<std::string, Value>& m)
{
......@@ -265,11 +273,18 @@ struct experimental_custom_op
template <class CustomOp>
struct custom_operation
{
template <class Self, class F>
static auto reflect(Self&, F)
{
return pack();
}
value attributes() const
{
return {{"custom_op", true}, {"target", op.runs_on_offload_target() ? "gpu" : "cpu"}};
}
CustomOp op;
std::string name() const { return op.xobject.name; }
......@@ -284,6 +299,23 @@ struct custom_operation
{
return op.compute(std::move(ctx), std::move(output_shape), std::move(inputs));
}
std::ptrdiff_t output_alias(std::vector<shape> inputs) const
{
auto alias_vec = op.output_alias(std::move(inputs));
// TODO: For now, only support one output alias
if(alias_vec.empty())
{
return -1;
}
if(alias_vec.size() > 1)
{
MIGRAPHX_THROW("Currently, CustomOps in MIGraphX only supports one output_alias");
}
return alias_vec.front();
}
bool runs_on_offload_target() const { return op.runs_on_offload_target(); }
};
template <class CustomOp>
......
......@@ -26,7 +26,6 @@
#include <stdlib.h>
#include <stdbool.h>
// Add new types here
// clang-format off
#define MIGRAPHX_SHAPE_VISIT_TYPES(m) \
......
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import argparse
import onnx
from onnx import version_converter
def parse_args():
parser = argparse.ArgumentParser(
description=
'MIGraphX Onnx Model Convertion. Use to convert the opset of the input model to MIGraphX\'s'
)
req_args = parser.add_argument_group(title='required arguments')
req_args.add_argument('--model',
type=str,
required=True,
help='path to onnx file')
req_args.add_argument('--output',
type=str,
required=True,
help='path to output onnx file')
req_args.add_argument('--opset',
type=int,
required=True,
help='The output opset')
req_args.add_argument('--infer_shapes',
action='store_true',
help='Infer shapes for output model')
parser.add_argument('--verbose',
action='store_true',
help='show verbose information (for debugging)')
args = parser.parse_args()
return args
def main():
args = parse_args()
model_path = args.model
out_model_path = args.output
target_opset = args.opset
verbose = args.verbose
infer_shapes = args.infer_shapes
original_model = onnx.load(model_path)
if verbose:
print(f"The model before conversion:\n{original_model}")
# A full list of supported adapters can be found here:
# https://github.com/onnx/onnx/blob/main/onnx/version_converter.py#L21
# Apply the version conversion on the original model
converted_model = version_converter.convert_version(
original_model, target_opset)
if infer_shapes:
converted_model = onnx.shape_inference.infer_shapes(converted_model)
if verbose:
print(f"The model after conversion:\n{converted_model}")
# Save the ONNX model
onnx.save(converted_model, out_model_path)
if __name__ == '__main__':
main()
......@@ -66,12 +66,21 @@ any_ptr get_queue_context(T&)
{
return {};
}
template <class T>
void wait_for_context(T&, any_ptr)
{
}
template <class T>
void finish_on_context(T&, any_ptr){}
<%
interface('context',
virtual('to_value', returns = 'value', const = True, default = 'to_value_context'),
virtual('from_value', v = 'const value&', default = 'from_value_context'),
virtual('get_queue', returns = 'any_ptr', default = 'get_queue_context'),
virtual('wait_for', queue = 'any_ptr', returns = 'void', default = 'wait_for_context'),
virtual('finish_on', queue = 'any_ptr', returns = 'void', default = 'finish_on_context'),
virtual('finish', returns = 'void', const = True)) %>
inline void migraphx_to_value(value& v, const context& ctx)
......
......@@ -32,6 +32,8 @@
#include <utility>
#include <unordered_map>
#include <migraphx/reflect.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/argument.hpp>
......@@ -199,9 +201,12 @@ auto compute_op(rank<1>,
context& ctx,
const shape& output_shape,
const std::vector<argument>& input)
-> decltype(x.compute(auto_any_cast(ctx), output_shape, input))
-> decltype(x.compute(auto_any_cast(ctx),
make_compute_output_shape(pack(x, output_shape, input)),
input))
{
return x.compute(auto_any_cast(ctx), output_shape, input);
return x.compute(
auto_any_cast(ctx), make_compute_output_shape(pack(x, output_shape, input)), input);
}
template <class T>
......@@ -220,9 +225,9 @@ compute_op(const T& x, context& ctx, const shape& output_shape, const std::vecto
template <class T>
auto compute_op(rank<1>, const T& x, const shape& output_shape, const std::vector<argument>& input)
-> decltype(x.compute(output_shape, input))
-> decltype(x.compute(make_compute_output_shape(pack(x, output_shape, input)), input))
{
return x.compute(output_shape, input);
return x.compute(make_compute_output_shape(pack(x, output_shape, input)), input);
}
template <class T>
......@@ -244,9 +249,11 @@ auto compute_op(rank<1>,
const shape& output,
const std::vector<argument>& inputs,
const std::vector<module_ref>& module_args,
F f) -> decltype(x.compute(output, inputs, module_args, f))
F f)
-> decltype(
x.compute(make_compute_output_shape(pack(x, output, inputs)), inputs, module_args, f))
{
return x.compute(output, inputs, module_args, f);
return x.compute(make_compute_output_shape(pack(x, output, inputs)), inputs, module_args, f);
}
template <class T, class F>
......@@ -278,9 +285,17 @@ auto compute_op(rank<4>,
const shape& output,
const std::vector<argument>& inputs,
const std::vector<module_ref>& module_args,
F f) -> decltype(x.compute(auto_any_cast(ctx), output, inputs, module_args, f))
F f) -> decltype(x.compute(auto_any_cast(ctx),
make_compute_output_shape(pack(x, output, inputs)),
inputs,
module_args,
f))
{
return x.compute(auto_any_cast(ctx), output, inputs, module_args, f);
return x.compute(auto_any_cast(ctx),
make_compute_output_shape(pack(x, output, inputs)),
inputs,
module_args,
f);
}
template <class T, class F>
......@@ -290,9 +305,11 @@ auto compute_op(rank<3>,
const shape& output,
const std::vector<argument>& inputs,
const std::vector<module_ref>& module_args,
F f) -> decltype(x.compute(output, inputs, module_args, f))
F f)
-> decltype(
x.compute(make_compute_output_shape(pack(x, output, inputs)), inputs, module_args, f))
{
return x.compute(output, inputs, module_args, f);
return x.compute(make_compute_output_shape(pack(x, output, inputs)), inputs, module_args, f);
}
template <class T, class F>
......@@ -302,9 +319,10 @@ auto compute_op(rank<2>,
const shape& output,
const std::vector<argument>& inputs,
const std::vector<module_ref>&,
F) -> decltype(x.compute(output, inputs))
F)
-> decltype(x.compute(make_compute_output_shape(pack(x, output, inputs)), inputs))
{
return x.compute(output, inputs);
return x.compute(make_compute_output_shape(pack(x, output, inputs)), inputs);
}
template <class T, class F>
......@@ -314,9 +332,12 @@ auto compute_op(rank<1>,
const shape& output,
const std::vector<argument>& inputs,
const std::vector<module_ref>&,
F) -> decltype(x.compute(auto_any_cast(ctx), output, inputs))
F) -> decltype(x.compute(auto_any_cast(ctx),
make_compute_output_shape(pack(x, output, inputs)),
inputs))
{
return x.compute(auto_any_cast(ctx), output, inputs);
return x.compute(
auto_any_cast(ctx), make_compute_output_shape(pack(x, output, inputs)), inputs);
}
template <class T, class F>
......@@ -348,7 +369,8 @@ auto is_context_free_op(rank<1>,
const T& x,
const shape& output_shape,
const std::vector<argument>& input)
-> decltype(x.compute(output_shape, input), std::true_type{});
-> decltype(x.compute(make_compute_output_shape(pack(x, output_shape, input)), input),
std::true_type{});
template <class T>
auto is_context_free_op(rank<0>, const T&, const shape&, const std::vector<argument>&)
......
......@@ -57,7 +57,7 @@ echo "Dependencies are installed at $PREFIX"
rbuild prepare -d $PREFIX -s develop
# install onnx package for unit tests
pip3 install onnx==1.8.1 numpy==1.18.5 typing==3.7.4 pytest==6.0.1 packaging==16.8
pip3 install onnx==1.10.0 numpy==1.21.6 typing==3.7.4 pytest==6.0.1 packaging==16.8
# pin version of protobuf in Python for onnx runtime unit tests
pip3 install protobuf==3.20.0
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment