Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
870a396b
"megatron/legacy/model/classification.py" did not exist on "5942af978a8a8ff706a302b1ba2d9ef3ce144444"
Commit
870a396b
authored
Jan 23, 2023
by
Khalique Ahmed
Browse files
manual merge
parents
228b665c
d309e02f
Changes
473
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
332 additions
and
841 deletions
+332
-841
src/targets/gpu/kernels/include/migraphx/kernels/pointwise.hpp
...argets/gpu/kernels/include/migraphx/kernels/pointwise.hpp
+0
-32
src/targets/gpu/kernels/include/migraphx/kernels/ranges.hpp
src/targets/gpu/kernels/include/migraphx/kernels/ranges.hpp
+16
-15
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
+19
-21
src/targets/gpu/kernels/include/migraphx/kernels/shape.hpp
src/targets/gpu/kernels/include/migraphx/kernels/shape.hpp
+1
-0
src/targets/gpu/kernels/include/migraphx/kernels/softmax.hpp
src/targets/gpu/kernels/include/migraphx/kernels/softmax.hpp
+9
-5
src/targets/gpu/kernels/include/migraphx/kernels/vec.hpp
src/targets/gpu/kernels/include/migraphx/kernels/vec.hpp
+32
-0
src/targets/gpu/leaky_relu.cpp
src/targets/gpu/leaky_relu.cpp
+0
-65
src/targets/gpu/lowering.cpp
src/targets/gpu/lowering.cpp
+49
-171
src/targets/gpu/mlir.cpp
src/targets/gpu/mlir.cpp
+95
-69
src/targets/gpu/perfdb.cpp
src/targets/gpu/perfdb.cpp
+10
-5
src/targets/gpu/prefuse_ops.cpp
src/targets/gpu/prefuse_ops.cpp
+18
-5
src/targets/gpu/quant_convolution.cpp
src/targets/gpu/quant_convolution.cpp
+0
-195
src/targets/gpu/rocblas.cpp
src/targets/gpu/rocblas.cpp
+33
-0
src/targets/gpu/softmax.cpp
src/targets/gpu/softmax.cpp
+0
-49
src/targets/gpu/target.cpp
src/targets/gpu/target.cpp
+5
-5
src/targets/ref/lowering.cpp
src/targets/ref/lowering.cpp
+17
-188
src/tf/parse_batchnorm.cpp
src/tf/parse_batchnorm.cpp
+27
-5
src/tf/parse_conv.cpp
src/tf/parse_conv.cpp
+0
-5
src/tf/parse_depthwiseconv.cpp
src/tf/parse_depthwiseconv.cpp
+0
-5
src/tf/tf_parser.cpp
src/tf/tf_parser.cpp
+1
-1
No files found.
src/targets/gpu/kernels/include/migraphx/kernels/pointwise.hpp
View file @
870a396b
...
...
@@ -33,38 +33,6 @@
namespace
migraphx
{
template
<
class
T
>
struct
implicit_conversion_op
{
T
x
;
template
<
index_int
N
,
class
U
>
constexpr
operator
vec
<
U
,
N
>
()
const
{
if
constexpr
(
vec_size
<
T
>
()
==
0
)
{
return
x
;
}
else
{
static_assert
(
vec_size
<
T
>
()
==
N
,
"Vector mismatch size"
);
return
__builtin_convertvector
(
x
,
vec
<
U
,
N
>
);
}
}
template
<
class
U
>
constexpr
operator
U
()
const
{
return
x
;
}
};
template
<
class
T
>
constexpr
implicit_conversion_op
<
T
>
implicit_conversion
(
T
x
)
{
return
{
x
};
}
template
<
class
F
,
class
T
,
class
...
Ts
>
__device__
void
pointwise_tensor
(
index
idx
,
F
f
,
T
out
,
Ts
...
xs
)
{
...
...
src/include/migraphx/
int_divide
.hpp
→
src/
targets/gpu/kernels/
include/migraphx/
kernels/ranges
.hpp
View file @
870a396b
...
...
@@ -21,28 +21,29 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_
RTGLIB_INT_DIVIDE
_HPP
#define MIGRAPHX_GUARD_
RTGLIB_INT_DIVIDE
_HPP
#ifndef MIGRAPHX_GUARD_
KERNELS_RANGES
_HPP
#define MIGRAPHX_GUARD_
KERNELS_RANGES
_HPP
#include <migraphx/config.hpp>
#include <cmath>
#include <migraphx/kernels/iota_iterator.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
template
<
class
R
,
class
T
,
class
U
>
R
floor_divide
(
T
x
,
U
y
)
template
<
class
Iterator
>
struct
iterator_range
{
return
R
(
std
::
floor
(
double
(
x
)
/
double
(
y
)));
}
Iterator
start
;
Iterator
last
;
constexpr
Iterator
begin
()
const
{
return
start
;
}
template
<
class
R
,
class
T
,
class
U
>
R
ceil_divide
(
T
x
,
U
y
)
constexpr
Iterator
end
()
const
{
return
last
;
}
};
constexpr
iterator_range
<
iota_iterator
>
range
(
diff_int
start
,
diff_int
last
)
{
return
R
(
std
::
ceil
(
double
(
x
)
/
double
(
y
)))
;
return
{{
start
,
{}},
{
last
,
{}}}
;
}
constexpr
iterator_range
<
iota_iterator
>
range
(
diff_int
last
)
{
return
range
(
0
,
last
);
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
#endif // MIGRAPHX_GUARD_KERNELS_RANGES_HPP
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
View file @
870a396b
...
...
@@ -94,16 +94,17 @@ MIGRAPHX_DPP_REDUCE(op::max, v_max)
MIGRAPHX_DPP_REDUCE
(
op
::
min
,
v_min
)
MIGRAPHX_DPP_REDUCE
(
op
::
product
,
v_mul
)
template
<
class
Op
,
class
T
,
class
F
>
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
i
ndex
_int
n
,
F
f
)
template
<
class
Op
,
class
T
,
class
Index
,
class
F
>
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
I
ndex
n
,
F
f
)
{
MIGRAPHX_ASSERT
(
idx
.
max_nlocal
()
==
idx
.
nlocal
());
#if __AMDGCN_WAVEFRONT_SIZE == 32
constexpr
index_int
lanes_per_thread
=
16
;
#else
constexpr
index_int
lanes_per_thread
=
64
;
#endif
using
type
=
decltype
(
f
(
0
));
__shared__
type
buffer
[
idx
.
nlocal
()
/
lanes_per_thread
];
__shared__
type
buffer
[
idx
.
max_
nlocal
()
/
lanes_per_thread
];
type
x
=
init
;
idx
.
local_stride
(
n
,
[
&
](
auto
i
)
{
x
=
op
(
x
,
f
(
i
));
});
dpp_reduce
(
x
,
op
);
...
...
@@ -123,12 +124,12 @@ __device__ auto block_reduce(index idx, Op op, T init, index_int n, F f)
return
y
;
}
#else
template
<
class
Op
,
class
T
,
class
F
>
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
i
ndex
_int
n
,
F
f
)
template
<
class
Op
,
class
T
,
class
Index
,
class
F
>
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
I
ndex
n
,
F
f
)
{
MIGRAPHX_ASSERT
(
idx
.
max_nlocal
()
==
idx
.
nlocal
());
using
type
=
decltype
(
f
(
0
));
__shared__
type
buffer
[
idx
.
nlocal
()];
__shared__
type
buffer
[
idx
.
max_
nlocal
()];
type
x
=
init
;
idx
.
local_stride
(
n
,
[
&
](
auto
i
)
{
x
=
op
(
x
,
f
(
i
));
});
buffer
[
idx
.
local
]
=
x
;
...
...
@@ -196,17 +197,14 @@ struct block
struct
reducer
{
index
idx
;
Slicer
slice
r
;
Slicer
slice
;
template
<
class
Op
,
class
T
,
class
Read
>
__device__
auto
reduce
(
Op
op
,
T
init
,
Read
read
)
const
{
return
sliced
(
slicer
,
[
=
](
auto
x
,
auto
...
xs
)
{
return
vec_reduce
(
block_reduce
(
idx
,
op
,
init
,
x
.
get_shape
().
elements
(),
[
&
](
auto
j
)
{
return
read
(
x
[
j
],
xs
[
j
]...);
}),
op
);
return
sliced
(
slice
,
[
=
](
auto
x
,
auto
...
xs
)
{
return
block_reduce
(
idx
,
op
,
init
,
x
.
get_shape
().
elements
(),
[
&
](
auto
j
)
{
return
vec_reduce
(
read
(
x
[
j
],
xs
[
j
]...),
op
);
});
});
}
...
...
@@ -220,7 +218,7 @@ struct block
template
<
class
F
>
__device__
auto
inner
(
F
f
)
const
{
return
sliced
(
slice
r
,
[
=
](
auto
x
,
auto
...
xs
)
{
return
sliced
(
slice
,
[
=
](
auto
x
,
auto
...
xs
)
{
idx
.
local_stride
(
x
.
get_shape
().
elements
(),
[
&
](
auto
j
)
{
f
(
x
[
j
],
xs
[
j
]...);
});
});
}
...
...
@@ -228,7 +226,7 @@ struct block
template
<
class
Input
>
constexpr
auto
elements
()
const
{
using
reduce_type
=
decltype
(
slice
r
(
Input
{}));
using
reduce_type
=
decltype
(
slice
(
Input
{}));
using
value_type
=
typename
Input
::
type
;
constexpr
auto
relements
=
get_shape_c
<
reduce_type
>
{}.
elements
();
if
constexpr
(
vec_size
<
value_type
>
()
>
1
)
...
...
@@ -262,11 +260,11 @@ struct lane
struct
reducer
{
index
idx
;
Slicer
slice
r
;
Slicer
slice
;
template
<
class
Op
,
class
T
,
class
Read
>
__device__
auto
reduce
(
Op
op
,
T
init
,
Read
read
)
const
{
return
sliced
(
slice
r
,
[
=
](
auto
x
,
auto
...
xs
)
{
return
sliced
(
slice
,
[
=
](
auto
x
,
auto
...
xs
)
{
using
type
=
typename
decltype
(
x
)
::
type
;
type
r
=
init
;
for
(
index_int
j
=
0
;
j
<
x
.
get_shape
().
elements
();
j
++
)
...
...
@@ -286,7 +284,7 @@ struct lane
template
<
class
F
>
__device__
auto
inner
(
F
f
)
const
{
return
sliced
(
slice
r
,
[
=
](
auto
x
,
auto
...
xs
)
{
return
sliced
(
slice
,
[
=
](
auto
x
,
auto
...
xs
)
{
for
(
index_int
j
=
0
;
j
<
x
.
get_shape
().
elements
();
j
++
)
{
f
(
x
[
j
],
xs
[
j
]...);
...
...
@@ -297,7 +295,7 @@ struct lane
template
<
class
Input
>
constexpr
auto
elements
()
const
{
using
reduce_type
=
decltype
(
slice
r
(
Input
{}));
using
reduce_type
=
decltype
(
slice
(
Input
{}));
return
get_shape_c
<
reduce_type
>
{}.
elements
();
}
};
...
...
src/targets/gpu/kernels/include/migraphx/kernels/shape.hpp
View file @
870a396b
...
...
@@ -128,6 +128,7 @@ struct shape
result
[
0
]
=
tidx
;
return
result
;
}
/// Convert multi-index into a single index
constexpr
index_int
single
(
index_array
idx
)
const
{
...
...
src/targets/gpu/kernels/include/migraphx/kernels/softmax.hpp
View file @
870a396b
...
...
@@ -33,11 +33,15 @@ template <index_int Axis, class Input, class Output>
__device__
void
softmax
(
Input
input
,
Output
output
)
{
reduce
::
block
::
run
<
reduce
::
with_axis
<
Input
,
Axis
>>
([
&
](
auto
,
auto
r
)
{
auto
batch_max
=
r
.
reduce
(
op
::
max
{},
lowest
{},
op
::
id
{})(
input
);
auto
batch_sum
=
r
.
reduce
(
op
::
sum
{},
0
,
[
&
](
auto
x
)
{
return
migraphx
::
exp
(
x
-
batch_max
);
})(
input
);
r
.
inner
([
&
](
auto
&
y
,
auto
x
)
{
y
=
migraphx
::
exp
(
x
-
batch_max
)
/
batch_sum
;
})(
output
,
input
);
#ifdef MIGRAPHX_USE_FAST_SOFTMAX
const
auto
c
=
vec_at
(
r
.
slice
(
input
)[
0
],
0
);
#else
const
auto
c
=
r
.
reduce
(
op
::
max
{},
lowest
{},
op
::
id
{})(
input
);
#endif
auto
batch_sum
=
r
.
reduce
(
op
::
sum
{},
0
,
[
&
](
auto
x
)
{
return
migraphx
::
convert
<
float
>
(
migraphx
::
exp
(
x
-
c
));
})(
input
);
r
.
inner
([
&
](
auto
&
y
,
auto
x
)
{
y
=
migraphx
::
exp
(
x
-
c
)
/
batch_sum
;
})(
output
,
input
);
});
}
...
...
src/targets/gpu/kernels/include/migraphx/kernels/vec.hpp
View file @
870a396b
...
...
@@ -185,5 +185,37 @@ constexpr auto vec_reduce(T x, Op op)
}
}
template
<
class
T
>
struct
implicit_conversion_op
{
T
x
;
template
<
index_int
N
,
class
U
>
constexpr
operator
vec
<
U
,
N
>
()
const
{
if
constexpr
(
vec_size
<
T
>
()
==
0
)
{
return
x
;
}
else
{
static_assert
(
vec_size
<
T
>
()
==
N
,
"Vector mismatch size"
);
return
__builtin_convertvector
(
x
,
vec
<
U
,
N
>
);
}
}
template
<
class
U
>
constexpr
operator
U
()
const
{
return
x
;
}
};
template
<
class
T
>
constexpr
implicit_conversion_op
<
T
>
implicit_conversion
(
T
x
)
{
return
{
x
};
}
}
// namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_VEC_HPP
src/targets/gpu/leaky_relu.cpp
deleted
100644 → 0
View file @
228b665c
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/leaky_relu.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/miopen.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
shape
miopen_leaky_relu
::
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
not_broadcasted
();
return
inputs
.
at
(
1
);
}
argument
miopen_leaky_relu
::
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
{
float
alpha
=
1
;
float
beta
=
0
;
auto
x_desc
=
make_tensor
(
args
[
0
].
get_shape
());
auto
y_desc
=
make_tensor
(
output_shape
);
miopenActivationForward
(
ctx
.
get_stream
().
get_miopen
(),
ad
.
get
(),
&
alpha
,
x_desc
.
get
(),
args
[
0
].
implicit
(),
&
beta
,
y_desc
.
get
(),
args
[
1
].
implicit
());
return
args
[
1
];
}
void
miopen_leaky_relu
::
finalize
(
context
&
,
const
shape
&
,
const
std
::
vector
<
shape
>&
)
{
ad
=
make_leaky_relu
(
op
.
alpha
);
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/lowering.cpp
View file @
870a396b
...
...
@@ -26,24 +26,18 @@
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/if_op.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
#include <migraphx/gpu/deconvolution.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/gpu/gemm.hpp>
#include <migraphx/gpu/int8_conv_pack.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/iterator_for.hpp>
...
...
@@ -81,85 +75,25 @@ struct miopen_apply
(
void
)
i
;
}
const
std
::
unordered_set
<
std
::
string
>&
get_rocblas_fp32_archs
()
{
static
std
::
unordered_set
<
std
::
string
>
supported_archs
{
"gfx908"
,
"gfx90a"
};
return
supported_archs
;
}
void
init
()
{
assert
(
mod
!=
nullptr
);
assert
(
pass
!=
nullptr
);
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
auto
&
ctx
=
get_context
();
const
auto
device_name
=
trim
(
split_string
(
get_device_name
(),
':'
).
front
());
if
(
contains
(
get_rocblas_fp32_archs
(),
device_name
))
compute_fp32
=
true
;
rocblas_gemm_flags
flag
;
rocblas_query_int8_layout_flag
(
ctx
.
get_stream
().
get_rocblas
(),
&
flag
);
int8_x4_format
=
(
flag
==
rocblas_gemm_flags_pack_int8x4
);
#endif
auto
&
ctx
=
get_context
();
int8_x4_format
=
get_int8_x4_format
(
ctx
);
compute_fp32
=
get_compute_fp32_flag
();
offload_copy
=
(
mod
->
name
()
==
"main"
)
?
pass
->
offload_copy
:
false
;
add_generic_op
(
"acos"
);
add_generic_op
(
"acosh"
);
add_generic_op
(
"add"
);
add_generic_op
(
"asin"
);
add_generic_op
(
"asinh"
);
add_generic_op
(
"atan"
);
add_generic_op
(
"atanh"
);
add_generic_op
(
"ceil"
);
add_generic_op
(
"contiguous"
);
add_generic_op
(
"cos"
);
add_generic_op
(
"cosh"
);
add_generic_op
(
"div"
);
add_generic_op
(
"equal"
);
add_generic_op
(
"erf"
);
add_generic_op
(
"exp"
);
add_generic_op
(
"floor"
);
add_generic_op
(
"greater"
);
add_generic_op
(
"less"
);
add_generic_op
(
"log"
);
add_generic_op
(
"logical_and"
);
add_generic_op
(
"logical_or"
);
add_generic_op
(
"logical_xor"
);
add_generic_op
(
"max"
);
add_generic_op
(
"min"
);
add_generic_op
(
"mul"
);
add_generic_op
(
"not"
);
add_generic_op
(
"pow"
);
add_generic_op
(
"prelu"
);
add_generic_op
(
"recip"
);
add_generic_op
(
"relu"
);
add_generic_op
(
"round"
);
add_generic_op
(
"rsqrt"
);
add_generic_op
(
"sigmoid"
);
add_generic_op
(
"sign"
);
add_generic_op
(
"sin"
);
add_generic_op
(
"sinh"
);
add_generic_op
(
"sqdiff"
);
add_generic_op
(
"sqrt"
);
add_generic_op
(
"sub"
);
add_generic_op
(
"tan"
);
add_generic_op
(
"tanh"
);
add_generic_op
(
"where"
);
add_extend_op
(
"abs"
);
add_extend_op
(
"argmax"
);
add_extend_op
(
"argmin"
);
add_extend_op
(
"clip"
);
add_extend_op
(
"convert"
);
add_extend_op
(
"elu"
);
add_extend_op
(
"gather"
);
add_extend_op
(
"leaky_relu"
);
add_extend_op
(
"logsoftmax"
);
add_extend_op
(
"lrn"
);
add_extend_op
(
"multinomial"
);
add_extend_op
(
"nonzero"
);
add_extend_op
(
"pad"
);
add_extend_op
(
"pooling"
);
add_extend_op
(
"prefix_scan_sum"
);
add_extend_op
(
"reverse"
);
...
...
@@ -169,16 +103,15 @@ struct miopen_apply
add_extend_op
(
"scatter_none"
);
add_extend_op
(
"topk"
);
add_
batch_norm_inference_op
(
);
add_convolution_op
();
add_
de
convolution_op
();
add_
convolution_op
(
"convolution"
);
add_convolution_op
(
"deconvolution"
);
add_convolution_op
(
"quant_convolution"
);
add_gemm_op
<
op
::
dot
>
(
"dot"
);
add_gemm_op
<
op
::
quant_dot
>
(
"quant_dot"
);
add_if_op
();
add_loop_op
();
add_neg_op
();
add_nms_op
();
add_quant_convolution_op
();
}
void
copy_params
()
const
...
...
@@ -227,7 +160,8 @@ struct miopen_apply
init
();
for
(
auto
it
=
mod
->
begin
();
it
!=
mod
->
end
();
it
++
)
{
auto
s
=
it
->
get_shape
();
auto
s
=
it
->
get_shape
();
auto
attrs
=
it
->
get_operator
().
attributes
();
if
(
apply_map
.
count
(
it
->
name
())
>
0
)
{
check_shape
(
s
,
apply_map
.
at
(
it
->
name
())(
it
));
...
...
@@ -236,11 +170,37 @@ struct miopen_apply
{
check_shape
(
s
,
insert_precompile_op
(
it
));
}
else
if
(
attrs
.
contains
(
"target"
))
{
check_shape
(
s
,
insert_custom_op
(
it
,
attrs
));
}
}
copy_params
();
}
instruction_ref
insert_custom_op
(
instruction_ref
ins
,
const
value
&
attrs
)
const
{
const
auto
&
custom_op
=
ins
->
get_operator
();
if
(
attrs
.
at
(
"target"
)
==
"cpu"
)
{
auto
s
=
ins
->
get_shape
();
std
::
vector
<
instruction_ref
>
cpu_inputs
;
auto
inputs
=
ins
->
inputs
();
auto
output
=
inputs
.
back
();
std
::
transform
(
inputs
.
begin
(),
inputs
.
end
(),
std
::
back_inserter
(
cpu_inputs
),
[
&
](
auto
in
)
{
return
mod
->
insert_instruction
(
ins
,
make_op
(
"hip::copy_from_gpu"
),
in
);
});
cpu_inputs
.
front
()
=
mod
->
insert_instruction
(
ins
,
make_op
(
"hip::sync_stream"
),
cpu_inputs
);
auto
cpu_out
=
mod
->
insert_instruction
(
ins
,
custom_op
,
cpu_inputs
);
auto
gpu_out
=
mod
->
insert_instruction
(
ins
,
make_op
(
"hip::copy_to_gpu"
),
cpu_out
,
output
);
return
mod
->
replace_instruction
(
ins
,
gpu_out
);
}
return
ins
;
}
instruction_ref
insert_precompile_op
(
instruction_ref
ins
)
const
{
auto
output
=
insert_allocation
(
ins
,
ins
->
get_shape
());
...
...
@@ -259,38 +219,6 @@ struct miopen_apply
return
mod
->
insert_instruction
(
ins
,
make_op
(
"allocate"
,
{{
"shape"
,
to_value
(
s
)}}));
}
void
add_convolution_op
()
{
apply_map
.
emplace
(
"convolution"
,
[
=
](
instruction_ref
ins
)
{
auto
&&
op
=
any_cast
<
op
::
convolution
>
(
ins
->
get_operator
());
auto
conv
=
miopen_convolution
{
op
,
make_conv
(
op
)};
auto
ws
=
conv
.
find
(
get_context
(),
ins
->
get_shape
(),
to_shapes
(
ins
->
inputs
()));
auto
workspace
=
insert_allocation
(
ins
,
ws
);
auto
output
=
insert_allocation
(
ins
,
ins
->
get_shape
());
return
mod
->
replace_instruction
(
ins
,
conv
,
ins
->
inputs
().
at
(
0
),
ins
->
inputs
().
at
(
1
),
workspace
,
output
);
});
}
void
add_deconvolution_op
()
{
apply_map
.
emplace
(
"deconvolution"
,
[
=
](
instruction_ref
ins
)
{
auto
&&
op
=
any_cast
<
op
::
deconvolution
>
(
ins
->
get_operator
());
auto
conv
=
miopen_deconvolution
{
op
,
make_deconv
(
op
)};
auto
ws
=
conv
.
find
(
get_context
(),
ins
->
get_shape
(),
to_shapes
(
ins
->
inputs
()));
auto
workspace
=
insert_allocation
(
ins
,
ws
);
auto
output
=
insert_allocation
(
ins
,
ins
->
get_shape
());
return
mod
->
replace_instruction
(
ins
,
conv
,
ins
->
inputs
().
at
(
0
),
ins
->
inputs
().
at
(
1
),
workspace
,
output
);
});
}
template
<
typename
Op
>
void
add_gemm_op
(
const
std
::
string
&
name
)
{
...
...
@@ -304,32 +232,19 @@ struct miopen_apply
});
}
void
add_
quant_
convolution_op
()
void
add_convolution_op
(
const
std
::
string
&
name
)
{
apply_map
.
emplace
(
"quant_convolution"
,
[
=
](
instruction_ref
ins
)
{
auto
&&
op
=
any_cast
<
op
::
quant_convolution
>
(
ins
->
get_operator
());
shape
ws
;
miopen_quant_convolution
conv
;
auto
compile_quant_conv_with_format
=
[
&
](
bool
format
)
{
conv
=
miopen_quant_convolution
{
op
,
format
,
make_conv
(
op
)};
ws
=
conv
.
find
(
get_context
(),
ins
->
get_shape
(),
to_shapes
(
ins
->
inputs
()));
};
try
{
compile_quant_conv_with_format
(
int8_x4_format
);
}
catch
(
migraphx
::
exception
&
)
{
// In case no solver supports the default format, retry using the other format.
compile_quant_conv_with_format
(
not
int8_x4_format
);
}
auto
args
=
ins
->
inputs
();
auto
workspace
=
insert_allocation
(
ins
,
ws
);
auto
output
=
insert_allocation
(
ins
,
ins
->
get_shape
());
apply_map
.
emplace
(
name
,
[
=
](
instruction_ref
ins
)
{
operation
conv
=
make_op
(
"gpu::"
+
name
,
{{
"op"
,
ins
->
get_operator
().
to_value
()},
{
"int8_x4_format"
,
int8_x4_format
}});
auto
output
=
insert_allocation
(
ins
,
ins
->
get_shape
());
return
mod
->
replace_instruction
(
ins
,
conv
,
args
[
0
],
args
[
1
],
workspace
,
output
);
return
mod
->
replace_instruction
(
ins
,
make_op
(
"gpu::miopen_op"
,
{{
"op"
,
to_value
(
conv
)}}),
ins
->
inputs
().
at
(
0
),
ins
->
inputs
().
at
(
1
),
output
);
});
}
...
...
@@ -363,43 +278,6 @@ struct miopen_apply
});
}
void
add_batch_norm_inference_op
()
{
apply_map
.
emplace
(
"batch_norm_inference"
,
[
=
](
instruction_ref
ins
)
{
auto
&&
op
=
any_cast
<
op
::
batch_norm_inference
>
(
ins
->
get_operator
());
auto
output
=
insert_allocation
(
ins
,
ins
->
get_shape
());
shape
old_shape
=
ins
->
inputs
().
at
(
1
)
->
get_shape
();
auto
input
=
ins
->
inputs
()[
0
];
auto
input_lens
=
input
->
get_shape
().
lens
();
std
::
vector
<
int64_t
>
rsp_lens
(
input_lens
.
size
(),
1
);
// for per_activation case, also need to reshape input
if
(
op
.
bn_mode
==
op
::
batch_norm_inference
::
per_activation
)
{
std
::
copy
(
input_lens
.
begin
()
+
1
,
input_lens
.
end
(),
rsp_lens
.
begin
()
+
1
);
}
else
{
rsp_lens
[
1
]
=
static_cast
<
int64_t
>
(
old_shape
.
elements
());
}
auto
reshape_op
=
op
::
reshape
{
rsp_lens
};
std
::
vector
<
instruction_ref
>
reshapes
;
std
::
transform
(
ins
->
inputs
().
begin
()
+
1
,
ins
->
inputs
().
end
(),
std
::
back_inserter
(
reshapes
),
[
&
](
auto
i
)
{
return
mod
->
insert_instruction
(
ins
,
reshape_op
,
i
);
});
return
mod
->
replace_instruction
(
ins
,
miopen_batch_norm_inference
{
op
},
input
,
reshapes
[
0
],
reshapes
[
1
],
reshapes
[
2
],
reshapes
[
3
],
output
);
});
}
// use 0 - input to represent neg
void
add_neg_op
()
{
...
...
src/targets/gpu/mlir.cpp
View file @
870a396b
...
...
@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "migraphx/make_op.hpp"
#include <migraphx/gpu/mlir.hpp>
#ifdef MIGRAPHX_MLIR
...
...
@@ -31,7 +32,13 @@
#include <mlir-c/Dialect/MIGraphX.h>
#include <mlir-c/IntegerSet.h>
#include <mlir-c/Pass.h>
#include <mlir-c/Registration.h>
#include <mutex>
#if !defined(MLIR_MIGRAPHX_DIALECT_API_VERSION) || MLIR_MIGRAPHX_DIALECT_API_VERSION != 3
#warning "Incompatible version of rocMLIR library used, disabling"
#undef MIGRAPHX_MLIR
#else
#include <mlir-c/RegisterRocMLIR.h>
#endif
#endif
#include <migraphx/env.hpp>
...
...
@@ -43,15 +50,12 @@
#include <migraphx/gpu/code_object_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/perfdb.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/permutation.hpp>
#include <deque>
#include <variant>
#if defined(MLIR_MIGRAPHX_DIALECT_API_VERSION) && MLIR_MIGRAPHX_DIALECT_API_VERSION >= 2
#define MIGRAPHX_MLIR_BARE_POINTER
#endif
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
...
...
@@ -99,7 +103,10 @@ struct mlir_handle
mlir_handle
(
T
p
)
:
handle
(
ptr
{
p
})
{}
T
get
()
const
{
return
handle
.
get
().
get
();
}
T
get
()
const
{
return
handle
.
get
().
get
();
// NOLINT(readability-redundant-smartptr-get)
}
T
release
()
{
return
handle
.
release
().
get
();
}
...
...
@@ -163,9 +170,11 @@ struct mlir_program
location
(
mlirLocationUnknownGet
(
ctx
.
get
())),
mmodule
(
mlirModuleCreateEmpty
(
location
))
{
MlirDialectHandle
mixr_handle
=
mlirGetDialectHandle__migraphx__
();
mlirDialectHandleRegisterDialect
(
mixr_handle
,
ctx
.
get
());
mlirRegisterAllDialects
(
ctx
.
get
());
MlirDialectRegistry
registry
=
mlirDialectRegistryCreate
();
mlirRegisterRocMLIRDialects
(
registry
);
mlirContextAppendDialectRegistry
(
ctx
.
get
(),
registry
);
mlirContextLoadAllAvailableDialects
(
ctx
.
get
());
mlirDialectRegistryDestroy
(
registry
);
mlirContextSetAllowUnregisteredDialects
(
ctx
.
get
(),
true
/*allow*/
);
}
...
...
@@ -370,7 +379,11 @@ struct mlir_program
mlir_operation_state
&
add_results
(
const
std
::
vector
<
shape
>&
outputs
)
{
auto
x
=
prog
->
make_tensors
(
outputs
);
std
::
vector
<
shape
>
reshaped
(
outputs
.
size
());
std
::
transform
(
outputs
.
begin
(),
outputs
.
end
(),
reshaped
.
begin
(),
[](
const
shape
&
r
)
{
return
shape
{
r
.
type
(),
r
.
lens
()};
});
auto
x
=
prog
->
make_tensors
(
reshaped
);
mlirOperationStateAddResults
(
&
op_state
,
x
.
size
(),
x
.
data
());
return
*
this
;
}
...
...
@@ -443,7 +456,8 @@ struct mlir_program
auto
ops
=
create_operation_state
(
"func.func"
);
ops
.
add_attributes
({{
"function_type"
,
make_function_type
(
inputs
,
outputs
)},
{
"sym_name"
,
std
::
string
(
"main"
)},
{
"kernel"
,
std
::
string
(
"mixr"
)}});
{
"kernel"
,
std
::
string
(
"mixr"
)},
{
"arch"
,
target_arch
}});
ops
.
add_region
(
std
::
move
(
region
));
insert
(
body
,
std
::
move
(
ops
));
...
...
@@ -502,11 +516,13 @@ struct mlir_program
{
pp
=
problem_params
{
ins
->
get_operator
(),
to_shapes
(
ins
->
inputs
()),
ins
->
get_shape
()};
std
::
string
tuned
=
get_tune_params
();
// check if HW supports xdlops
auto
target_chip
=
trim
(
split_string
(
target_arch
,
':'
).
front
());
bool
xdlops
=
contains
(
get_xdlops_archs
(),
target_chip
);
std
::
string
tuned
=
get_tune_params
(
xdlops
);
if
(
not
tuned
.
empty
())
ops
.
add_attributes
({{
"perf_config"
,
tuned
}});
// check if HW supports xdlops
if
(
contains
(
get_xdlops_archs
(),
target_name
))
if
(
xdlops
)
ops
.
add_attributes
({{
"xdlopsV2"
,
true
}});
}
...
...
@@ -530,7 +546,7 @@ struct mlir_program
// 1st pipeline to call
mlirMIGraphXAddHighLevelPipeline
(
pm
.
get
());
// 2nd pipeline to call
mlirMIGraphXAddBackendPipeline
(
pm
.
get
(),
target_
name
.
c_str
()
,
"amdgcn-amd-amdhsa"
,
""
);
mlirMIGraphXAddBackendPipeline
(
pm
.
get
(),
target_
arch
.
c_str
());
mlirPassManagerRun
(
pm
.
get
(),
mmodule
.
get
());
code_object_op
op
{};
...
...
@@ -540,16 +556,7 @@ struct mlir_program
return
op
;
}
void
find_target
()
{
std
::
string
tname
=
get_device_name
();
// HACK: Since MLIR can't handle the full target name
target_name
=
trim
(
split_string
(
tname
,
':'
).
front
());
if
(
tname
.
size
()
!=
target_name
.
size
())
std
::
cout
<<
"*************** WARNING: MLIR may not compile the correct target features for: "
<<
tname
<<
std
::
endl
;
}
void
find_target
()
{
target_arch
=
get_device_name
();
}
std
::
pair
<
std
::
size_t
,
std
::
size_t
>
get_launch_params
()
const
{
...
...
@@ -571,14 +578,14 @@ struct mlir_program
MIGRAPHX_THROW
(
"Failed to compile mlir program"
);
}
std
::
string
get_tune_params
()
{
return
get_mlir_perf_for_conv
(
pp
);
}
std
::
string
get_tune_params
(
bool
xdlops
)
{
return
get_mlir_perf_for_conv
(
pp
,
xdlops
);
}
mlir_context
ctx
;
MlirLocation
location
;
mlir_module
mmodule
;
problem_params
pp
;
std
::
deque
<
std
::
string
>
strings
{};
std
::
string
target_
name
;
std
::
string
target_
arch
;
};
std
::
string
dump_mlir
(
const
module
&
m
)
...
...
@@ -589,11 +596,61 @@ std::string dump_mlir(const module& m)
return
mlir_print
(
&
mlirOperationPrint
,
mod_op
);
}
code_object_op
compile_mlir
(
const
context
&
,
const
module
&
m
)
void
adjust_param_shapes
(
module
&
m
,
const
std
::
vector
<
instruction_ref
>&
inputs
)
{
auto
names
=
m
.
get_parameter_names
();
std
::
sort
(
names
.
begin
(),
names
.
end
());
for
(
auto
i
:
range
(
names
.
size
()))
{
const
auto
&
name
=
names
[
i
];
const
auto
&
input
=
inputs
[
i
]
->
get_shape
();
auto
param
=
m
.
get_parameter
(
name
);
if
(
input
.
standard
())
continue
;
auto
lens
=
input
.
lens
();
auto
strides
=
input
.
strides
();
std
::
vector
<
operation
>
ops
;
if
(
input
.
transposed
())
{
auto
perm
=
find_permutation
(
input
);
auto
iperm
=
invert_permutation
(
perm
);
lens
=
reorder_dims
(
lens
,
iperm
);
strides
=
reorder_dims
(
strides
,
iperm
);
ops
.
push_back
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}));
}
if
(
input
.
broadcasted
())
{
std
::
transform
(
lens
.
begin
(),
lens
.
end
(),
strides
.
begin
(),
lens
.
begin
(),
[](
auto
len
,
auto
stride
)
->
std
::
size_t
{
if
(
stride
==
0
)
return
1
;
return
len
;
});
ops
.
push_back
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
input
.
lens
()}}));
}
auto
new_param
=
std
::
accumulate
(
ops
.
begin
(),
ops
.
end
(),
m
.
add_parameter
(
name
+
".0"
,
shape
{
input
.
type
(),
lens
}),
[
&
](
auto
x
,
auto
op
)
{
return
m
.
insert_instruction
(
param
,
op
,
x
);
});
m
.
replace_instruction
(
param
,
new_param
);
m
.
remove_instruction
(
param
);
}
}
code_object_op
compile_mlir
(
const
context
&
,
module
m
,
const
std
::
vector
<
instruction_ref
>&
inputs
)
{
adjust_param_shapes
(
m
,
inputs
);
const
bool
trace
=
enabled
(
MIGRAPHX_TRACE_MLIR
{});
if
(
trace
)
std
::
cout
<<
m
<<
std
::
endl
;
// set mutex while llvm thread support is disabled.
static
std
::
mutex
g_mlirc_mutex
;
// NOLINT
const
std
::
lock_guard
<
std
::
mutex
>
lock
(
g_mlirc_mutex
);
mlir_program
mp
;
mp
.
find_target
();
mp
.
parse
(
m
);
...
...
@@ -613,46 +670,9 @@ instruction_ref insert_mlir(module& m,
std
::
vector
<
instruction_ref
>
refs
;
std
::
size_t
last
=
0
;
#ifdef MIGRAPHX_MLIR_BARE_POINTER
refs
.
reserve
(
inputs
.
size
());
std
::
copy
(
inputs
.
begin
(),
inputs
.
end
(),
std
::
back_inserter
(
refs
));
last
=
refs
.
size
()
-
1
;
#else
refs
.
reserve
(
inputs
.
size
()
*
15
);
std
::
unordered_map
<
uint64_t
,
instruction_ref
>
literal_map
{};
auto
get_literal
=
[
&
](
uint64_t
value
)
{
auto
fi
=
literal_map
.
find
(
value
);
if
(
fi
!=
literal_map
.
end
())
return
fi
->
second
;
auto
lit
=
m
.
add_literal
(
value
);
literal_map
.
emplace
(
value
,
lit
);
return
lit
;
};
for
(
auto
input
:
inputs
)
{
const
size_t
offset
=
0
;
auto
s
=
input
->
get_shape
();
last
=
refs
.
size
();
refs
.
push_back
(
input
);
refs
.
push_back
(
input
);
refs
.
push_back
(
get_literal
(
offset
));
// offset
// dim sizes
std
::
transform
(
s
.
lens
().
begin
(),
s
.
lens
().
end
(),
std
::
back_inserter
(
refs
),
[
&
](
const
auto
&
lval
)
{
return
get_literal
(
lval
);
});
// refs.push_back(get_literal(1)); // G
// dim strides
std
::
transform
(
s
.
strides
().
begin
(),
s
.
strides
().
end
(),
std
::
back_inserter
(
refs
),
[
&
](
const
auto
&
lval
)
{
return
get_literal
(
lval
);
});
// refs.push_back(get_literal(1)); // G
}
#endif
last
=
refs
.
size
()
-
1
;
co
.
expected_inputs
=
to_shapes
(
refs
);
co
.
output_arg
=
last
;
return
m
.
insert_instruction
(
ins
,
co
,
refs
);
...
...
@@ -662,13 +682,19 @@ instruction_ref insert_mlir(module& m,
std
::
string
dump_mlir
(
const
module
&
)
{
return
{};
}
code_object_op
compile_mlir
(
const
context
&
,
const
module
&
)
{
return
{};
}
template
<
class
T
>
void
use
(
T
&
)
{
}
// Disabling clang-tidy warning on non-real useage.
// NOLINTBEGIN(performance-unnecessary-value-param)
code_object_op
compile_mlir
(
const
context
&
,
module
,
const
std
::
vector
<
instruction_ref
>&
)
{
return
{};
}
// NOLINTEND(performance-unnecessary-value-param)
instruction_ref
// cppcheck-suppress funcArgNamesDifferent
insert_mlir
(
module
&
m
,
instruction_ref
,
code_object_op
co
,
const
std
::
vector
<
instruction_ref
>&
)
...
...
src/targets/gpu/perfdb.cpp
View file @
870a396b
...
...
@@ -27,6 +27,7 @@
#include <migraphx/stringutils.hpp>
#include <migraphx/permutation.hpp>
#include <fstream>
#include <mutex>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -88,6 +89,9 @@ std::string generate_miopen_config(const problem_params& pp)
auto
query_miopen_db
(
const
std
::
string
&
query
)
{
static
std
::
mutex
g_db_mutex
;
// NOLINT
const
std
::
lock_guard
<
std
::
mutex
>
lock
(
g_db_mutex
);
// TODO: Store db as a static variable
const
auto
dbpath
=
fs
::
path
{
"/opt"
}
/
"rocm"
/
"share"
/
"miopen"
/
"db"
/
"miopen.db"
;
// Check if db file exists.
...
...
@@ -108,16 +112,17 @@ auto query_miopen_db(const std::string& query)
}
// namespace
std
::
string
get_mlir_perf_for_conv
(
const
problem_params
&
pp
)
std
::
string
get_mlir_perf_for_conv
(
const
problem_params
&
pp
,
bool
xdlops
)
{
std
::
string
query
=
"select P.* \
std
::
string
solver
=
xdlops
?
"ConvMlirIgemmFwdXdlops"
:
"ConvMlirIgemmFwd"
;
std
::
string
query
=
"select P.* \
from perf_db P, config C \
where P.config = C.id AND \
P.solver = '
ConvMlirIgemmFwdXdlops
' AND \
P.solver = '
${solver}
' AND \
${config}"
;
auto
results
=
query_miopen_db
(
interpolate_string
(
query
,
{{
"config"
,
generate_miopen_config
(
pp
)}}));
auto
results
=
query_miopen_db
(
interpolate_string
(
query
,
{{
"config"
,
generate_miopen_config
(
pp
)}
,
{
"solver"
,
solver
}
}));
if
(
results
.
empty
())
return
""
;
return
results
.
front
().
at
(
"params"
);
...
...
src/targets/gpu/prefuse_ops.cpp
View file @
870a396b
...
...
@@ -35,6 +35,12 @@ namespace {
template
<
class
Derived
,
std
::
size_t
N
>
struct
layernorm_base
{
float
epsilon
=
1e-12
f
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
epsilon
,
"epsilon"
));
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
,
std
::
vector
<
module_ref
>
mods
)
const
{
std
::
size_t
nargs
=
1
;
...
...
@@ -45,23 +51,27 @@ struct layernorm_base
}
check_shapes
{
inputs
,
static_cast
<
const
Derived
&>
(
*
this
)}.
has
(
nargs
+
N
);
auto
s
=
inputs
.
at
(
0
);
auto
t
=
s
.
type
();
if
(
not
mods
.
empty
())
t
=
mods
.
front
()
->
get_output_shapes
().
front
().
type
();
if
(
s
.
scalar
())
{
return
s
;
}
else
if
(
s
.
broadcasted
())
{
return
{
s
.
type
()
,
s
.
lens
()};
return
{
t
,
s
.
lens
()};
}
else
{
return
s
.
with_lens
(
s
.
lens
());
return
s
.
with_lens
(
t
,
s
.
lens
());
}
}
};
struct
layernorm
:
layernorm_base
<
layernorm
,
0
>
{
std
::
string
name
()
const
{
return
"gpu::prelayernorm"
;
}
};
MIGRAPHX_REGISTER_OP
(
layernorm
);
...
...
@@ -80,8 +90,9 @@ struct find_layernorm
{
auto
ins
=
r
.
result
;
auto
x_ins
=
r
.
instructions
[
"x"
];
auto
eps
=
r
.
instructions
[
"eps"
]
->
eval
().
at
<
float
>
();
m
.
replace_instruction
(
ins
,
layernorm
{},
x_ins
);
m
.
replace_instruction
(
ins
,
layernorm
{
eps
},
x_ins
);
}
};
...
...
@@ -89,15 +100,17 @@ struct find_add_layernorm
{
auto
matcher
()
const
{
return
match
::
layernorm
()(
match
::
var
(
"x"
)(
match
::
name
(
"add"
).
bind
(
"add"
)));
return
match
::
layernorm
()(
match
::
var
(
"x"
)(
match
::
name
(
"add"
)(
match
::
used_once
()).
bind
(
"add"
)));
}
void
apply
(
module
&
m
,
const
match
::
matcher_result
&
r
)
const
{
auto
ins
=
r
.
result
;
auto
add_ins
=
r
.
instructions
[
"add"
];
auto
eps
=
r
.
instructions
[
"eps"
]
->
eval
().
at
<
float
>
();
m
.
replace_instruction
(
ins
,
add_layernorm
{},
add_ins
->
inputs
());
m
.
replace_instruction
(
ins
,
add_layernorm
{
eps
},
add_ins
->
inputs
());
}
};
}
// namespace
...
...
src/targets/gpu/quant_convolution.cpp
deleted
100644 → 0
View file @
228b665c
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/device/convert.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/generate.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
shape
miopen_quant_convolution
::
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
4
).
standard
();
return
op
.
normalize_compute_shape
({
inputs
.
at
(
0
),
inputs
.
at
(
1
)});
}
argument
miopen_quant_convolution
::
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
{
auto
x_desc
=
make_tensor
(
args
[
0
].
get_shape
(),
int8_x4_format
);
auto
w_desc
=
make_tensor
(
args
[
1
].
get_shape
(),
int8_x4_format
);
auto
y_desc
=
make_tensor
(
output_shape
);
float
alpha
=
1
;
float
beta
=
0
;
auto
status
=
miopenConvolutionForward
(
ctx
.
get_stream
().
get_miopen
(),
&
alpha
,
x_desc
.
get
(),
args
[
0
].
implicit
(),
w_desc
.
get
(),
args
[
1
].
implicit
(),
cd
.
get
(),
algo
,
&
beta
,
y_desc
.
get
(),
args
[
3
].
implicit
(),
args
[
2
].
implicit
(),
args
[
2
].
get_shape
().
bytes
());
if
(
status
!=
miopenStatusSuccess
)
{
MIGRAPHX_THROW
(
"QUANT_CONVOLUTION: run convolution forward failed"
);
}
return
args
[
3
];
}
shape
miopen_quant_convolution
::
find
(
context
&
ctx
,
const
shape
&
output_shape
,
std
::
vector
<
shape
>
inputs
)
{
shape
workspace_shape
{};
auto
x_desc
=
make_tensor
(
inputs
[
0
],
int8_x4_format
);
auto
w_desc
=
make_tensor
(
inputs
[
1
],
int8_x4_format
);
auto
y_desc
=
make_tensor
(
output_shape
);
std
::
size_t
workspace_size
=
0
;
miopenConvolutionForwardGetWorkSpaceSize
(
ctx
.
get_stream
().
get_miopen
(),
w_desc
.
get
(),
x_desc
.
get
(),
cd
.
get
(),
y_desc
.
get
(),
&
workspace_size
);
workspace_shape
=
shape
{
shape
::
int8_type
,
{
workspace_size
}};
auto
x_shape
=
inputs
[
0
];
auto
w_shape
=
inputs
[
1
];
if
(
int8_x4_format
)
{
x_shape
=
pack_int8_shape
(
x_shape
);
w_shape
=
pack_int8_shape
(
w_shape
);
}
auto
x
=
to_gpu
(
generate_argument
(
x_shape
));
auto
w
=
to_gpu
(
generate_argument
(
w_shape
));
auto
y
=
allocate_gpu
(
output_shape
);
auto
workspace
=
allocate_gpu
(
workspace_shape
);
int
algo_count
=
1
;
miopenConvAlgoPerf_t
perf
;
auto
status
=
miopenFindConvolutionForwardAlgorithm
(
ctx
.
get_stream
().
get_miopen
(),
x_desc
.
get
(),
x
.
implicit
(),
w_desc
.
get
(),
w
.
implicit
(),
cd
.
get
(),
y_desc
.
get
(),
y
.
implicit
(),
1
,
&
algo_count
,
&
perf
,
workspace
.
implicit
(),
workspace_size
,
false
);
if
(
status
!=
miopenStatusSuccess
)
MIGRAPHX_THROW
(
"MIOpen Quant Convolution: find convolution failed"
);
algo
=
perf
.
fwd_algo
;
size_t
solution_count
;
status
=
miopenConvolutionForwardGetSolutionCount
(
ctx
.
get_stream
().
get_miopen
(),
w_desc
.
get
(),
x_desc
.
get
(),
cd
.
get
(),
y_desc
.
get
(),
&
solution_count
);
if
(
status
!=
miopenStatusSuccess
)
MIGRAPHX_THROW
(
"MIOpen Quant Convolution: get solution count failed"
);
std
::
vector
<
miopenConvSolution_t
>
solutions
(
solution_count
);
status
=
miopenConvolutionForwardGetSolution
(
ctx
.
get_stream
().
get_miopen
(),
w_desc
.
get
(),
x_desc
.
get
(),
cd
.
get
(),
y_desc
.
get
(),
solution_count
,
&
solution_count
,
solutions
.
data
());
if
(
status
!=
miopenStatusSuccess
)
MIGRAPHX_THROW
(
"MIOpen Quant Convolution: get solution failed"
);
solution_id
=
solutions
.
front
().
solution_id
;
return
shape
{
shape
::
int8_type
,
{
perf
.
memory
}};
}
void
miopen_quant_convolution
::
finalize
(
context
&
ctx
,
const
shape
&
output_shape
,
std
::
vector
<
shape
>
inputs
)
{
if
(
cd
==
nullptr
)
cd
=
make_conv
(
op
);
if
(
solution_id
==
0
)
{
// Check that workspace hasn't changed
auto
size
=
inputs
.
at
(
2
).
bytes
();
auto
ws
=
find
(
ctx
,
output_shape
,
inputs
);
if
(
ws
.
bytes
()
>
size
)
MIGRAPHX_THROW
(
"MIOpen Quant Convolution: workspace has changed during finalization."
);
}
auto
x_desc
=
make_tensor
(
inputs
[
0
],
int8_x4_format
);
auto
w_desc
=
make_tensor
(
inputs
[
1
],
int8_x4_format
);
auto
y_desc
=
make_tensor
(
output_shape
);
auto
status
=
miopenConvolutionForwardCompileSolution
(
ctx
.
get_stream
().
get_miopen
(),
w_desc
.
get
(),
x_desc
.
get
(),
cd
.
get
(),
y_desc
.
get
(),
solution_id
);
if
(
status
!=
miopenStatusSuccess
)
MIGRAPHX_THROW
(
"MIOpen Quant Convolution: compile solution failed"
);
}
shape
miopen_quant_convolution
::
pack_int8_shape
(
const
shape
&
s
)
const
{
if
(
s
.
type
()
!=
shape
::
int8_type
)
{
MIGRAPHX_THROW
(
"PACK_INT8_SHAPE: only process int8_type"
);
}
auto
lens
=
s
.
lens
();
auto
strides
=
s
.
strides
();
lens
[
1
]
=
(
lens
[
1
]
+
3
)
/
4
*
4
;
strides
[
0
]
=
strides
[
1
]
*
lens
[
1
];
return
{
s
.
type
(),
lens
,
strides
};
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/rocblas.cpp
View file @
870a396b
...
...
@@ -21,7 +21,13 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <unordered_set>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/context.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -41,6 +47,33 @@ rocblas_handle_ptr create_rocblas_handle_ptr(hipStream_t s)
return
rb
;
}
const
std
::
unordered_set
<
std
::
string
>&
get_rocblas_fp32_archs
()
{
static
std
::
unordered_set
<
std
::
string
>
supported_archs
{
"gfx908"
,
"gfx90a"
};
return
supported_archs
;
}
bool
get_compute_fp32_flag
()
{
bool
compute_fp32
=
false
;
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
const
auto
device_name
=
trim
(
split_string
(
get_device_name
(),
':'
).
front
());
if
(
contains
(
get_rocblas_fp32_archs
(),
device_name
))
compute_fp32
=
true
;
#endif
return
compute_fp32
;
}
bool
get_int8_x4_format
(
context
&
ctx
)
{
bool
int8_x4_format
=
true
;
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
rocblas_gemm_flags
flag
;
rocblas_query_int8_layout_flag
(
ctx
.
get_stream
().
get_rocblas
(),
&
flag
);
int8_x4_format
=
(
flag
==
rocblas_gemm_flags_pack_int8x4
);
#endif
return
int8_x4_format
;
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/softmax.cpp
deleted
100644 → 0
View file @
228b665c
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/softmax.hpp>
#include <migraphx/gpu/device/softmax.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/tune_axis.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
shape
hip_softmax
::
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
standard
();
return
op
.
normalize_compute_shape
({
inputs
.
at
(
0
)});
}
argument
hip_softmax
::
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
auto
n_dim
=
args
.
front
().
get_shape
().
lens
().
size
();
auto
tuned_axis
=
tune_axis
(
n_dim
,
op
.
axis
,
op
.
name
());
device
::
softmax
(
ctx
.
get_stream
().
get
(),
args
.
back
(),
args
.
front
(),
tuned_axis
);
return
args
.
back
();
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/target.cpp
View file @
870a396b
...
...
@@ -42,7 +42,6 @@
#include <migraphx/propagate_constant.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/replace_allocate.hpp>
#include <migraphx/rewrite_batchnorm.hpp>
#include <migraphx/rewrite_gelu.hpp>
#include <migraphx/rewrite_pooling.hpp>
#include <migraphx/rewrite_quantization.hpp>
...
...
@@ -52,6 +51,7 @@
#include <migraphx/simplify_qdq.hpp>
#include <migraphx/simplify_reshapes.hpp>
#include <migraphx/gpu/allocation_model.hpp>
#include <migraphx/gpu/compile_miopen.hpp>
#include <migraphx/gpu/compile_ops.hpp>
#include <migraphx/gpu/concat_gpu_opt.hpp>
#include <migraphx/gpu/context.hpp>
...
...
@@ -112,8 +112,6 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination
{},
insert_pad
{},
dead_code_elimination
{},
rewrite_batchnorm
{},
dead_code_elimination
{},
rewrite_rnn
{},
dead_code_elimination
{},
inline_module
{},
...
...
@@ -145,14 +143,16 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination
{},
eliminate_concat
{
concat_gpu_optimization
{}},
dead_code_elimination
{},
pack_int8_args
{
},
compile_miopen
{
&
gctx
},
dead_code_elimination
{},
adjust_allocation
{
gpu_allocation_model
{}
},
pack_int8_args
{
},
dead_code_elimination
{},
fuse_ops
{
&
ctx
,
options
.
fast_math
},
dead_code_elimination
{},
replace_allocate
{
gpu_allocation_model
{},
options
.
offload_copy
},
dead_code_elimination
{},
adjust_allocation
{
gpu_allocation_model
{}},
dead_code_elimination
{},
compile_ops
{
&
ctx
},
dead_code_elimination
{},
write_literals
{
&
ctx
},
...
...
src/targets/ref/lowering.cpp
View file @
870a396b
...
...
@@ -26,15 +26,12 @@
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/loop.hpp>
#include <migraphx/op/lrn.hpp>
...
...
@@ -75,84 +72,6 @@ typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::ena
return
x
;
}
//
// ref implemenataion of batch norm for inference
//
// inputs are:
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
// args[4] -> bias
//
// The equation to compute batch norm for inference is:
//
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
//
// the input data format should be nchw
//
struct
ref_batch_norm_inference
{
op
::
batch_norm_inference
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"ref::batch_norm_inference"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
output
{
output_shape
};
double
epsilon
=
op
.
epsilon
;
auto
input
=
args
[
0
];
auto
arg_gamma
=
args
[
1
];
auto
arg_bias
=
args
[
2
];
auto
mini_batch_mean
=
args
[
3
];
auto
mini_batch_variance
=
args
[
4
];
if
(
op
.
bn_mode
==
op
::
batch_norm_inference
::
spatial
)
{
visit_all
(
output
,
input
,
mini_batch_mean
,
mini_batch_variance
,
arg_gamma
,
arg_bias
)(
[
&
](
auto
result
,
auto
buffer
,
auto
mean
,
auto
variance
,
auto
gamma
,
auto
bias
)
{
par_for
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
idx
=
output_shape
.
multi
(
i
);
auto
c
=
idx
[
1
];
assert
((
variance
[
c
]
+
epsilon
)
>
0
);
result
[
i
]
=
gamma
[
c
]
*
(
buffer
[
i
]
-
mean
[
c
])
/
std
::
sqrt
(
variance
[
c
]
+
epsilon
)
+
bias
[
c
];
});
});
}
if
(
op
.
bn_mode
==
op
::
batch_norm_inference
::
per_activation
)
{
visit_all
(
output
,
input
,
mini_batch_mean
,
mini_batch_variance
,
arg_gamma
,
arg_bias
)(
[
&
](
auto
result
,
auto
buffer
,
auto
mean
,
auto
variance
,
auto
gamma
,
auto
bias
)
{
par_for
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
idx
=
output_shape
.
multi
(
i
);
idx
[
0
]
=
0
;
auto
index
=
output_shape
.
index
(
idx
);
assert
((
variance
[
index
]
+
epsilon
)
>
0
);
result
[
i
]
=
gamma
[
index
]
*
(
buffer
[
i
]
-
mean
[
index
])
/
std
::
sqrt
(
variance
[
index
]
+
epsilon
)
+
bias
[
index
];
});
});
}
return
output
;
}
};
MIGRAPHX_REGISTER_OP
(
ref_batch_norm_inference
)
struct
ref_lrn
{
op
::
lrn
op
;
...
...
@@ -237,15 +156,16 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>>
argument
compute
(
context
&
,
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
std
::
vector
<
std
::
size_t
>
padding
;
if
(
op
.
use_dynamic_same_auto_pad
)
if
(
op
.
padding_mode
!=
op
::
padding_mode_t
::
default_
)
{
auto
input_lens
=
args
[
0
].
get_shape
().
lens
();
std
::
vector
<
std
::
size_t
>
img_lens
{
input_lens
.
begin
()
+
2
,
input_lens
.
end
()};
auto
input_lens
=
args
[
0
].
get_shape
().
lens
();
auto
weights_lens
=
args
[
1
].
get_shape
().
lens
();
std
::
vector
<
std
::
size_t
>
k_lens
{
weights_lens
.
begin
()
+
2
,
weights_lens
.
end
()};
padding
=
calc_dyn_auto_pad
(
img_lens
,
k_lens
,
op
.
stride
,
op
.
dilation
);
output_shape
=
compute_padded_shape
({
args
.
at
(
0
).
get_shape
(),
args
.
at
(
1
).
get_shape
()},
padding
);
padding
=
op
.
padding_mode
==
op
::
same_upper
?
calc_dyn_auto_pad
(
input_lens
,
weights_lens
,
op
.
stride
,
op
.
dilation
,
true
)
:
calc_dyn_auto_pad
(
input_lens
,
weights_lens
,
op
.
stride
,
op
.
dilation
,
false
);
output_shape
=
compute_padded_shape
(
args
[
0
].
get_shape
(),
args
[
1
].
get_shape
(),
padding
,
op
.
stride
,
op
.
dilation
);
}
else
{
...
...
@@ -313,34 +233,6 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>>
});
return
result
;
}
private:
/*!
* Used for dynamic auto padding since padding needs to be computed at evaulation time.
* \param inputs two fixed shape inputs [input_tensor, weights]
* \param padding from auto_pad calculation
*/
shape
compute_padded_shape
(
const
std
::
vector
<
shape
>&
inputs
,
const
std
::
vector
<
std
::
size_t
>&
padding
)
const
{
const
shape
&
input
=
inputs
.
at
(
0
);
const
shape
&
weights
=
inputs
.
at
(
1
);
const
size_t
num_spatial_dims
=
input
.
lens
().
size
()
-
2
;
std
::
vector
<
size_t
>
output_lens
{
input
.
lens
()[
0
],
weights
.
lens
()[
0
]};
// calculate the output shape of the convolution: ((W - K + 2P) / S) + 1
for
(
size_t
i
=
0
;
i
<
num_spatial_dims
;
i
++
)
{
auto
padding_factor
=
padding
[
i
]
+
padding
[
i
+
num_spatial_dims
];
output_lens
.
push_back
(
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
i
+
2
]
-
(
1
+
op
.
dilation
[
i
]
*
(
weights
.
lens
()[
i
+
2
]
-
1
))
+
padding_factor
)
/
op
.
stride
[
i
]
+
1
)));
}
return
inputs
[
0
].
with_lens
(
output_lens
);
}
};
struct
ref_im2col
...
...
@@ -454,10 +346,10 @@ struct ref_pad
std
::
string
name
()
const
{
return
"ref::pad"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
context
&
,
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
assert
(
out
put_shape
.
standard
());
argument
result
{
out
put_shape
};
assert
(
dyn_out
.
com
put
ed
_shape
.
standard
());
argument
result
{
dyn_out
.
com
put
ed
_shape
};
result
.
visit
([
&
](
auto
output
)
{
using
type
=
typename
decltype
(
output
)
::
value_type
;
std
::
fill
(
output
.
begin
(),
output
.
end
(),
pad_clamp
<
type
>
(
op
.
value
));
...
...
@@ -491,9 +383,9 @@ struct ref_gemm
std
::
string
name
()
const
{
return
"ref::dot"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
context
&
,
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
out
put_shape
};
argument
result
{
dyn_out
.
com
put
ed
_shape
};
migemm
(
result
,
args
[
0
],
args
[
1
],
1.0
f
,
0.0
f
);
return
result
;
...
...
@@ -537,65 +429,6 @@ struct ref_quant_gemm
};
MIGRAPHX_REGISTER_OP
(
ref_gemm
)
struct
leaky_relu_op
{
op
::
leaky_relu
op
;
std
::
string
name
()
const
{
return
"ref::leaky_relu"
;
}
auto
fcn
()
const
{
auto
a
=
op
.
alpha
;
return
[
a
](
auto
x
)
{
return
x
>
0
?
x
:
x
*
a
;
};
}
};
struct
elu_op
{
op
::
elu
op
;
std
::
string
name
()
const
{
return
"ref::elu"
;
}
auto
fcn
()
const
{
auto
a
=
op
.
alpha
;
return
[
a
](
auto
x
)
{
return
x
>
0
?
x
:
a
*
std
::
expm1
(
x
);
};
}
};
template
<
typename
Op
>
struct
ref_unary
:
auto_register_op
<
ref_unary
<
Op
>>
{
ref_unary
()
=
default
;
template
<
class
T
>
ref_unary
(
T
pop
)
:
op
(
Op
{
std
::
move
(
pop
)})
{
}
Op
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
.
op
,
f
);
}
std
::
string
name
()
const
{
return
op
.
name
();
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
const
auto
&
s
=
inputs
.
at
(
0
);
return
{
s
.
type
(),
s
.
lens
()};
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
assert
(
input
.
get_shape
().
standard
());
std
::
transform
(
input
.
begin
(),
input
.
end
(),
output
.
begin
(),
op
.
fcn
());
});
return
result
;
}
};
template
<
class
Op
>
struct
ref_softmax
:
auto_register_op
<
ref_softmax
<
Op
>>
{
...
...
@@ -616,10 +449,10 @@ struct ref_softmax : auto_register_op<ref_softmax<Op>>
{
return
op
.
normalize_compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
context
&
,
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
out
put_shape
};
auto
batch_lens
=
out
put_shape
.
lens
();
argument
result
{
dyn_out
.
com
put
ed
_shape
};
auto
batch_lens
=
dyn_out
.
com
put
ed
_shape
.
lens
();
int64_t
tuned_axis
=
tune_axis
(
args
[
0
].
get_shape
().
lens
().
size
(),
op
.
axis
,
op
.
name
());
std
::
size_t
n_dims
=
batch_lens
[
tuned_axis
];
batch_lens
[
tuned_axis
]
=
1
;
...
...
@@ -642,7 +475,7 @@ struct ref_softmax : auto_register_op<ref_softmax<Op>>
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
{
idx
[
tuned_axis
]
=
j
;
std
::
size_t
index
=
out
put_shape
.
index
(
idx
);
std
::
size_t
index
=
dyn_out
.
com
put
ed
_shape
.
index
(
idx
);
output
[
index
]
=
std
::
exp
(
input
[
index
]
-
batch_max
[
i
]);
}
...
...
@@ -731,16 +564,12 @@ struct ref_apply
void
init
()
{
apply_map
[
"batch_norm_inference"
]
=
extend_op
<
ref_batch_norm_inference
,
op
::
batch_norm_inference
>
();
apply_map
[
"convolution"
]
=
extend_op
<
ref_convolution
<
op
::
convolution
>
,
op
::
convolution
>
();
apply_map
[
"dot"
]
=
extend_op
<
ref_gemm
,
op
::
dot
>
();
apply_map
[
"quant_dot"
]
=
extend_op
<
ref_quant_gemm
,
op
::
quant_dot
>
();
apply_map
[
"quant_convolution"
]
=
extend_op
<
ref_convolution
<
op
::
quant_convolution
>
,
op
::
quant_convolution
>
();
apply_map
[
"elu"
]
=
extend_op
<
ref_unary
<
elu_op
>
,
op
::
elu
>
();
apply_map
[
"im2col"
]
=
extend_op
<
ref_im2col
,
op
::
im2col
>
();
apply_map
[
"leaky_relu"
]
=
extend_op
<
ref_unary
<
leaky_relu_op
>
,
op
::
leaky_relu
>
();
apply_map
[
"logsoftmax"
]
=
extend_op
<
ref_softmax
<
op
::
logsoftmax
>
,
op
::
logsoftmax
>
();
apply_map
[
"lrn"
]
=
extend_op
<
ref_lrn
,
op
::
lrn
>
();
apply_map
[
"pad"
]
=
extend_op
<
ref_pad
,
op
::
pad
>
();
...
...
src/tf/parse_batchnorm.cpp
View file @
870a396b
...
...
@@ -23,6 +23,7 @@
*/
#include <migraphx/tf/op_parser.hpp>
#include <migraphx/tf/tf_parser.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
...
...
@@ -38,16 +39,37 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
instruction_ref
parse
(
const
op_desc
&
/*opd*/
,
const
tf_parser
&
/*parser*/
,
tf_parser
::
node_info
info
,
const
std
::
vector
<
instruction_ref
>
&
args
)
const
std
::
vector
<
instruction_ref
>
args
)
const
{
float
epsilon
=
1e-5
f
;
float
momentum
=
0.9
f
;
// different default epsilon than from ONNX
float
epsilon
=
1e-4
f
;
if
(
contains
(
info
.
attributes
,
"epsilon"
))
{
epsilon
=
info
.
attributes
.
at
(
"epsilon"
).
f
();
}
auto
op
=
make_op
(
"batch_norm_inference"
,
{{
"epsilon"
,
epsilon
},
{
"momentum"
,
momentum
}});
return
info
.
add_instruction
(
op
,
args
);
auto
x_lens
=
args
[
0
]
->
get_shape
().
lens
();
auto
x_type
=
args
[
0
]
->
get_shape
().
type
();
// unsqueeze tensors of shape (C) to broadcast correctly
auto
rt
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
0.5
}});
auto
eps
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
epsilon
}});
auto
scale_unsqueeze
=
info
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
args
[
1
]);
auto
bias_unsqueeze
=
info
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
args
[
2
]);
auto
mean_unsqueeze
=
info
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
args
[
3
]);
auto
var_unsqueeze
=
info
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
args
[
4
]);
auto
numer
=
info
.
add_broadcastable_binary_op
(
"sub"
,
args
[
0
],
mean_unsqueeze
);
auto
var_eps
=
info
.
add_broadcastable_binary_op
(
"add"
,
var_unsqueeze
,
eps
);
auto
denom
=
info
.
add_broadcastable_binary_op
(
"pow"
,
var_eps
,
rt
);
auto
div0
=
info
.
add_broadcastable_binary_op
(
"div"
,
numer
,
denom
);
auto
r0
=
info
.
add_broadcastable_binary_op
(
"mul"
,
div0
,
scale_unsqueeze
);
return
info
.
add_broadcastable_binary_op
(
"add"
,
r0
,
bias_unsqueeze
);
}
};
...
...
src/tf/parse_conv.cpp
View file @
870a396b
...
...
@@ -75,7 +75,6 @@ struct parse_conv : op_parser<parse_conv>
const
std
::
string
&
pad_mode
=
info
.
attributes
.
at
(
"padding"
).
s
();
if
(
pad_mode
.
find
(
"SAME"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
same
;
std
::
vector
<
size_t
>
weight_dims
=
weights
->
get_shape
().
lens
();
size_t
weight_h
=
weight_dims
[
2
];
size_t
weight_w
=
weight_dims
[
3
];
...
...
@@ -87,10 +86,6 @@ struct parse_conv : op_parser<parse_conv>
op
.
padding
=
std
::
vector
<
size_t
>
(
pads
.
begin
(),
pads
.
end
());
}
else
if
(
pad_mode
.
find
(
"VALID"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
valid
;
}
else
if
(
pad_mode
.
find
(
"EXPLICIT"
)
!=
std
::
string
::
npos
)
{
std
::
vector
<
size_t
>
padding
;
...
...
src/tf/parse_depthwiseconv.cpp
View file @
870a396b
...
...
@@ -80,7 +80,6 @@ struct parse_depthwiseconv : op_parser<parse_depthwiseconv>
if
(
pad_mode
.
find
(
"SAME"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
same
;
std
::
vector
<
size_t
>
weight_dims
=
weights
->
get_shape
().
lens
();
size_t
weight_h
=
weight_dims
[
2
];
size_t
weight_w
=
weight_dims
[
3
];
...
...
@@ -101,10 +100,6 @@ struct parse_depthwiseconv : op_parser<parse_depthwiseconv>
op
.
padding
[
1
]
=
pads
[
1
];
}
}
else
if
(
pad_mode
.
find
(
"VALID"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
valid
;
}
}
std
::
vector
<
int64_t
>
new_weights_shape
;
...
...
src/tf/tf_parser.cpp
View file @
870a396b
...
...
@@ -347,7 +347,7 @@ void tf_parser::parse_node(const std::string& name)
// input was from a node with multiple outputs
if
(
contains
(
input_name
,
':'
))
{
input_name
=
input_name
.
substr
(
0
,
input
.
find
(
':'
));
input_name
.
resize
(
input
.
find
(
':'
));
}
else
{
...
...
Prev
1
…
13
14
15
16
17
18
19
20
21
…
24
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment