Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
870a396b
Commit
870a396b
authored
Jan 23, 2023
by
Khalique Ahmed
Browse files
manual merge
parents
228b665c
d309e02f
Changes
473
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
625 additions
and
196 deletions
+625
-196
src/targets/gpu/include/migraphx/gpu/unary_not.hpp
src/targets/gpu/include/migraphx/gpu/unary_not.hpp
+0
-43
src/targets/gpu/jit/concat.cpp
src/targets/gpu/jit/concat.cpp
+29
-12
src/targets/gpu/jit/gather.cpp
src/targets/gpu/jit/gather.cpp
+89
-0
src/targets/gpu/jit/gathernd.cpp
src/targets/gpu/jit/gathernd.cpp
+1
-1
src/targets/gpu/jit/layernorm.cpp
src/targets/gpu/jit/layernorm.cpp
+6
-6
src/targets/gpu/jit/mlir.cpp
src/targets/gpu/jit/mlir.cpp
+1
-2
src/targets/gpu/jit/pad.cpp
src/targets/gpu/jit/pad.cpp
+100
-0
src/targets/gpu/jit/pointwise.cpp
src/targets/gpu/jit/pointwise.cpp
+3
-7
src/targets/gpu/jit/reduce.cpp
src/targets/gpu/jit/reduce.cpp
+14
-5
src/targets/gpu/jit/scatternd.cpp
src/targets/gpu/jit/scatternd.cpp
+4
-3
src/targets/gpu/jit/softmax.cpp
src/targets/gpu/jit/softmax.cpp
+6
-1
src/targets/gpu/kernels/include/migraphx/kernels/array.hpp
src/targets/gpu/kernels/include/migraphx/kernels/array.hpp
+110
-46
src/targets/gpu/kernels/include/migraphx/kernels/concat.hpp
src/targets/gpu/kernels/include/migraphx/kernels/concat.hpp
+21
-9
src/targets/gpu/kernels/include/migraphx/kernels/functional.hpp
...rgets/gpu/kernels/include/migraphx/kernels/functional.hpp
+8
-0
src/targets/gpu/kernels/include/migraphx/kernels/gather.hpp
src/targets/gpu/kernels/include/migraphx/kernels/gather.hpp
+27
-26
src/targets/gpu/kernels/include/migraphx/kernels/index.hpp
src/targets/gpu/kernels/include/migraphx/kernels/index.hpp
+81
-5
src/targets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
...argets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
+26
-19
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
+26
-11
src/targets/gpu/kernels/include/migraphx/kernels/ops.hpp
src/targets/gpu/kernels/include/migraphx/kernels/ops.hpp
+10
-0
src/targets/gpu/kernels/include/migraphx/kernels/pad.hpp
src/targets/gpu/kernels/include/migraphx/kernels/pad.hpp
+63
-0
No files found.
src/targets/gpu/include/migraphx/gpu/unary_not.hpp
deleted
100644 → 0
View file @
228b665c
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_UNARY_NOT_HPP
#define MIGRAPHX_GUARD_RTGLIB_UNARY_NOT_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/unary_not.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
hip_unary_not
:
unary_device
<
hip_unary_not
,
device
::
unary_not
>
{
std
::
string
name
()
const
{
return
"gpu::not"
;
}
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/jit/concat.cpp
View file @
870a396b
...
@@ -38,16 +38,19 @@ using namespace migraphx::gpu::gen; // NOLINT
...
@@ -38,16 +38,19 @@ using namespace migraphx::gpu::gen; // NOLINT
static
const
char
*
const
concat_kernel
=
R"__migraphx__(
static
const
char
*
const
concat_kernel
=
R"__migraphx__(
#include <migraphx/kernels/concat.hpp>
#include <migraphx/kernels/concat.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <migraphx/kernels/ops.hpp>
#include <args.hpp>
#include <args.hpp>
namespace migraphx {
namespace migraphx {
${preamble}
extern "C" {
extern "C" {
__global__ void ${kernel}(${params})
__global__ void ${kernel}(${params})
{
{
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto y, auto... xs) {
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto y,
${concat_params},
auto... xs) {
concat<${axis}>(y, xs...);
concat<${axis}>(
${concat_args})(${post},
y, xs...);
});
});
}
}
...
@@ -68,28 +71,42 @@ struct concat_compiler : compiler<concat_compiler>
...
@@ -68,28 +71,42 @@ struct concat_compiler : compiler<concat_compiler>
operation
compile_op
(
context
&
ctx
,
const
std
::
vector
<
shape
>&
inputs
,
const
value
&
v
)
const
operation
compile_op
(
context
&
ctx
,
const
std
::
vector
<
shape
>&
inputs
,
const
value
&
v
)
const
{
{
// TODO: Use reduce_dims
auto
num_of_concat_inputs
=
v
.
get
(
"concat_inputs"
,
inputs
.
size
()
-
1
);
hip_compile_options
options
;
hip_compile_options
options
;
options
.
inputs
=
inputs
;
options
.
inputs
=
inputs
;
options
.
output
=
inputs
.
back
();
options
.
output
=
inputs
.
back
();
options
.
params
=
"-Wno-float-equal"
;
options
.
params
=
"-Wno-float-equal"
;
auto
axis
=
find_fast_axis
(
options
.
inputs
);
auto
vec
=
vectorize
::
elements
(
axis
,
options
.
inputs
);
options
.
kernel_name
=
v
.
get
(
"kernel"
,
"concat_kernel"
);
options
.
kernel_name
=
v
.
get
(
"kernel"
,
"concat_kernel"
);
auto
axis
=
find_fast_axis
(
options
.
inputs
);
auto
vec
=
vectorize
::
elements
(
ctx
,
axis
,
options
.
inputs
);
options
.
set_launch_params
(
options
.
set_launch_params
(
v
,
compute_global_for
(
ctx
,
get_concat_elements
(
options
.
inputs
)
/
vec
.
size
,
256
));
v
,
compute_global_for
(
ctx
,
get_concat_elements
(
options
.
inputs
)
/
vec
.
size
,
256
));
auto
src
=
interpolate_string
(
concat_kernel
,
auto
src
=
interpolate_string
(
{{
"kernel"
,
options
.
kernel_name
},
concat_kernel
,
{
"params"
,
enum_params
(
inputs
.
size
(),
"void * private_p"
)},
{{
"kernel"
,
options
.
kernel_name
},
{
"args"
,
enum_params
(
inputs
.
size
(),
"private_p"
)},
{
"params"
,
enum_params
(
inputs
.
size
(),
"void * private_p"
)},
{
"transformers"
,
make_transformer_args
(
vec
)},
{
"args"
,
enum_params
(
inputs
.
size
(),
"private_p"
)},
{
"axis"
,
v
.
at
(
"axis"
).
to
<
std
::
string
>
()}});
{
"concat_params"
,
enum_params
(
num_of_concat_inputs
,
"auto concat_x"
)},
{
"concat_args"
,
enum_params
(
num_of_concat_inputs
,
"concat_x"
)},
{
"post"
,
v
.
get
(
"post"
,
std
::
string
{
"op::id{}"
})},
{
"transformers"
,
make_transformer_args
(
vec
)},
{
"preamble"
,
v
.
get
(
"preamble"
,
std
::
string
{})},
{
"axis"
,
v
.
at
(
"axis"
).
to
<
std
::
string
>
()}});
return
compile_hip_code_object
(
src
,
options
);
return
compile_hip_code_object
(
src
,
options
);
}
}
compiler_replace
compile
(
context
&
ctx
,
instruction_ref
ins
,
const
operation
&
op
)
const
compiler_replace
compile
(
context
&
ctx
,
instruction_ref
ins
,
const
operation
&
op
)
const
{
{
return
replace
(
compile_op
(
ctx
,
to_shapes
(
ins
->
inputs
()),
op
.
to_value
()));
auto
v
=
op
.
to_value
();
if
(
not
ins
->
module_inputs
().
empty
())
{
auto
*
pm
=
ins
->
module_inputs
().
front
();
v
[
"concat_inputs"
]
=
ins
->
inputs
().
size
()
-
pm
->
get_parameter_names
().
size
();
v
[
"preamble"
]
=
generate_pointwise
(
*
pm
,
"post_concat"
);
v
[
"post"
]
=
"MIGRAPHX_LIFT(post_concat)"
;
v
[
"kernel"
]
=
"concat_"
+
generate_name_from_ops
(
*
pm
)
+
"_kernel"
;
}
return
replace
(
compile_op
(
ctx
,
to_shapes
(
ins
->
inputs
()),
v
));
}
}
};
};
...
...
src/targets/gpu/
include/migraphx/gpu/softmax.h
pp
→
src/targets/gpu/
jit/gather.c
pp
View file @
870a396b
...
@@ -21,42 +21,69 @@
...
@@ -21,42 +21,69 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
* THE SOFTWARE.
*/
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP
#include <migraphx/gpu/compiler.hpp>
#define MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP
#include <migraphx/make_op.hpp>
#include <migraphx/op/softmax.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/reflect.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
gpu
{
struct
context
;
// NOLINTNEXTLINE
static
const
char
*
const
gather_kernel
=
R"__migraphx__(
#include <migraphx/kernels/gather.hpp>
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/generic_constant.hpp>
#include <args.hpp>
namespace migraphx {
extern "C" {
struct
hip_softmax
__global__ void gather_kernel(void* in_data, void* in_indices, void* output)
{
{
op
::
softmax
op
;
make_tensors()(in_data, in_indices, output)([](auto&&... xs) {
gather<${axis}>(xs...);
});
}
}
} // namespace migraphx
template
<
class
Self
,
class
F
>
)__migraphx__"
;
static
auto
reflect
(
Self
&
self
,
F
f
)
struct
gather_compiler
:
compiler
<
gather_compiler
>
{
std
::
vector
<
std
::
string
>
names
()
const
{
return
{
"gather"
};
}
operation
compile_op
(
context
&
ctx
,
const
std
::
vector
<
shape
>&
inputs
,
const
value
&
v
)
const
{
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
hip_compile_options
options
;
const
auto
&
out_s
=
inputs
.
back
();
options
.
set_launch_params
(
v
,
compute_global_for
(
ctx
,
out_s
.
elements
()));
options
.
inputs
=
inputs
;
options
.
output
=
out_s
;
options
.
kernel_name
=
"gather_kernel"
;
options
.
virtual_inputs
=
inputs
;
auto
axis
=
v
.
at
(
"axis"
).
to
<
std
::
string
>
();
auto
src
=
interpolate_string
(
gather_kernel
,
{{
"axis"
,
axis
}});
return
compile_hip_code_object
(
src
,
options
);
}
}
std
::
string
name
()
const
{
return
"gpu::softmax"
;
}
compiler_replace
compile
(
context
&
ctx
,
instruction_ref
ins
,
const
operation
&
op
)
const
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
;
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
{
{
return
shapes
.
size
()
-
1
;
return
replace
(
compile_op
(
ctx
,
to_shapes
(
ins
->
inputs
()),
op
.
to_value
()))
;
}
}
};
};
}
// namespace gpu
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
}
// namespace migraphx
#endif
src/targets/gpu/jit/gathernd.cpp
View file @
870a396b
...
@@ -65,7 +65,7 @@ struct gathernd_compiler : compiler<gathernd_compiler>
...
@@ -65,7 +65,7 @@ struct gathernd_compiler : compiler<gathernd_compiler>
operation
compile_op
(
context
&
ctx
,
const
std
::
vector
<
shape
>&
inputs
,
const
value
&
v
)
const
operation
compile_op
(
context
&
ctx
,
const
std
::
vector
<
shape
>&
inputs
,
const
value
&
v
)
const
{
{
hip_compile_options
options
;
hip_compile_options
options
;
auto
out_s
=
inputs
.
back
();
const
auto
&
out_s
=
inputs
.
back
();
options
.
set_launch_params
(
v
,
compute_global_for
(
ctx
,
out_s
.
elements
()));
options
.
set_launch_params
(
v
,
compute_global_for
(
ctx
,
out_s
.
elements
()));
options
.
inputs
=
inputs
;
options
.
inputs
=
inputs
;
options
.
output
=
out_s
;
options
.
output
=
out_s
;
...
...
src/targets/gpu/jit/layernorm.cpp
View file @
870a396b
...
@@ -50,9 +50,8 @@ ${preamble}
...
@@ -50,9 +50,8 @@ ${preamble}
extern "C" {
extern "C" {
__global__ void ${kernel}(${params})
__global__ void ${kernel}(${params})
{
{
auto idx = make_index();
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto... xs) {
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto... xs) {
${layernorm}<${axis}>(${post}, xs...);
${layernorm}<${axis}>(${post},
${eps},
xs...);
});
});
}
}
...
@@ -78,9 +77,8 @@ struct layernorm_compiler : compiler<layernorm_compiler>
...
@@ -78,9 +77,8 @@ struct layernorm_compiler : compiler<layernorm_compiler>
// Vectorize if the axis is a reduction axis
// Vectorize if the axis is a reduction axis
if
(
axis
==
faxis
)
if
(
axis
==
faxis
)
{
{
vec
=
vectorize
::
elements
(
faxis
,
inputs
);
vec
=
vectorize
::
elements
(
ctx
,
faxis
,
inputs
);
}
}
auto
preloads
=
preload
::
broadcasts
(
axis
,
inputs
);
auto
relements
=
inputs
[
0
].
lens
()[
axis
]
/
vec
.
size
;
auto
relements
=
inputs
[
0
].
lens
()[
axis
]
/
vec
.
size
;
auto
nelements
=
(
inputs
.
back
().
elements
()
/
inputs
[
0
].
lens
()[
axis
]);
auto
nelements
=
(
inputs
.
back
().
elements
()
/
inputs
[
0
].
lens
()[
axis
]);
auto
block_size
=
compute_block_size
(
relements
,
256
);
auto
block_size
=
compute_block_size
(
relements
,
256
);
...
@@ -90,16 +88,18 @@ struct layernorm_compiler : compiler<layernorm_compiler>
...
@@ -90,16 +88,18 @@ struct layernorm_compiler : compiler<layernorm_compiler>
options
.
output
=
inputs
.
back
();
options
.
output
=
inputs
.
back
();
options
.
inputs
=
inputs
;
options
.
inputs
=
inputs
;
options
.
kernel_name
=
v
.
get
(
"kernel"
,
"layernorm_kernel"
);
options
.
kernel_name
=
v
.
get
(
"kernel"
,
"layernorm_kernel"
);
auto
eps
=
v
.
get
(
"epsilon"
,
1e-12
f
);
auto
src
=
interpolate_string
(
layernorm_kernel
,
auto
src
=
interpolate_string
(
layernorm_kernel
,
{{
"kernel"
,
options
.
kernel_name
},
{{
"kernel"
,
options
.
kernel_name
},
{
"params"
,
enum_params
(
inputs
.
size
(),
"void * private_p"
)},
{
"params"
,
enum_params
(
inputs
.
size
(),
"void * private_p"
)},
{
"args"
,
enum_params
(
inputs
.
size
(),
"private_p"
)},
{
"args"
,
enum_params
(
inputs
.
size
(),
"private_p"
)},
{
"transformers"
,
make_transformer_args
(
preloads
,
vec
)},
{
"transformers"
,
make_transformer_args
(
vec
)},
{
"post"
,
v
.
get
(
"post"
,
std
::
string
{
"op::id{}"
})},
{
"post"
,
v
.
get
(
"post"
,
std
::
string
{
"op::id{}"
})},
{
"preamble"
,
v
.
get
(
"preamble"
,
std
::
string
{})},
{
"preamble"
,
v
.
get
(
"preamble"
,
std
::
string
{})},
{
"layernorm"
,
v
.
get
(
"layernorm"
,
std
::
string
{
"layernorm"
})},
{
"layernorm"
,
v
.
get
(
"layernorm"
,
std
::
string
{
"layernorm"
})},
{
"axis"
,
to_string
(
axis
)}});
{
"axis"
,
to_string
(
axis
)},
{
"eps"
,
to_string
(
eps
)}});
return
compile_hip_code_object
(
src
,
options
);
return
compile_hip_code_object
(
src
,
options
);
}
}
...
...
src/targets/gpu/jit/mlir.cpp
View file @
870a396b
...
@@ -24,7 +24,6 @@
...
@@ -24,7 +24,6 @@
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
namespace
migraphx
{
namespace
migraphx
{
...
@@ -41,7 +40,7 @@ struct mlir_compiler : compiler<mlir_compiler>
...
@@ -41,7 +40,7 @@ struct mlir_compiler : compiler<mlir_compiler>
{
{
auto
*
smod
=
ins
->
module_inputs
().
front
();
auto
*
smod
=
ins
->
module_inputs
().
front
();
assert
(
smod
->
get_parameter_names
().
size
()
==
ins
->
inputs
().
size
()
-
1
);
assert
(
smod
->
get_parameter_names
().
size
()
==
ins
->
inputs
().
size
()
-
1
);
return
insert
(
compile_mlir
(
ctx
,
*
smod
));
return
insert
(
compile_mlir
(
ctx
,
*
smod
,
ins
->
inputs
()
));
}
}
compiler_replace
insert
(
code_object_op
co
)
const
compiler_replace
insert
(
code_object_op
co
)
const
...
...
src/targets/gpu/
batch_norm_inference
.cpp
→
src/targets/gpu/
jit/pad
.cpp
View file @
870a396b
...
@@ -21,65 +21,80 @@
...
@@ -21,65 +21,80 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
* THE SOFTWARE.
*/
*/
#include <migraphx/gpu/
batch_norm_inference
.hpp>
#include <migraphx/gpu/
compiler
.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/float_equal.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
gpu
{
shape
miopen_batch_norm_inference
::
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
using
namespace
migraphx
::
gpu
::
gen
;
// NOLINT
static
const
char
*
const
pointwise_kernel
=
R"__migraphx__(
#include <migraphx/kernels/pad.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/ops.hpp>
#include <args.hpp>
namespace migraphx {
extern "C" {
__global__ void pad_kernel(void* input_p, void* output_p)
{
{
check_shapes
{
inputs
,
*
this
}.
has
(
6
);
auto offsets = index_ints<${offsets}>{};
check_shapes
{
inputs
.
data
(),
inputs
.
data
()
+
1
,
*
this
}.
same_ndims
().
max_ndims
(
5
);
auto idx = make_index();
return
op
.
compute_shape
({
inputs
.
at
(
0
),
inputs
.
at
(
1
),
inputs
.
at
(
2
),
inputs
.
at
(
3
),
inputs
.
at
(
4
)});
make_tensors()(input_p, output_p)([&](auto input, auto output) {
pad(idx, offsets, input, output, ${pad_val});
});
}
}
}
inline
shape
reshape_to_2d
(
const
shape
&
input
)
} // namespace migraphx
{
auto
dims
=
input
.
lens
();
if
(
dims
.
size
()
>=
4
)
return
input
;
std
::
vector
<
size_t
>
new_dims
(
dims
.
begin
(),
dims
.
end
());
)__migraphx__"
;
std
::
size_t
num
=
4
-
dims
.
size
();
new_dims
.
insert
(
new_dims
.
end
(),
num
,
1
);
return
{
input
.
type
(),
new_dims
};
}
argument
miopen_batch_norm_inference
::
compute
(
context
&
ctx
,
struct
pad_compiler
:
compiler
<
pad_compiler
>
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
{
{
shape
x_shape
=
args
[
0
].
get_shape
();
std
::
vector
<
std
::
string
>
names
()
const
{
return
{
"pad"
};
}
shape
y_shape
=
output_shape
;
shape
bn_shape
=
args
[
3
].
get_shape
();
auto
x_desc
=
make_tensor
(
reshape_to_2d
(
x_shape
));
operation
compile_op
(
context
&
ctx
,
const
std
::
vector
<
shape
>&
inputs
,
const
value
&
v
)
const
auto
y_desc
=
make_tensor
(
reshape_to_2d
(
y_shape
));
{
auto
bn_desc
=
make_tensor
(
reshape_to_2d
(
bn_shape
));
hip_compile_options
options
;
options
.
inputs
=
inputs
;
options
.
output
=
inputs
.
back
();
options
.
virtual_inputs
=
reduce_dims
(
inputs
);
options
.
kernel_name
=
"pad_kernel"
;
options
.
set_launch_params
(
v
,
compute_global_for
(
ctx
,
inputs
.
at
(
1
).
elements
()));
float
alpha
=
1.0
;
auto
pad_val
=
v
.
get
(
"value"
,
0.
f
);
float
beta
=
0.0
f
;
auto
pad_val_string
=
to_string
(
pad_val
);
if
(
float_equal
(
pad_val
,
std
::
numeric_limits
<
float
>::
lowest
()))
pad_val_string
=
"lowest{}"
;
if
(
float_equal
(
pad_val
,
std
::
numeric_limits
<
float
>::
max
()))
pad_val_string
=
"highest{}"
;
miopenBatchNormalizationForwardInference
(
ctx
.
get_stream
().
get_miopen
(),
auto
padding
=
v
.
at
(
"pads"
).
to_vector
<
int64_t
>
();
miopenBatchNormMode_t
(
op
.
bn_mode
),
auto
input_lens
=
inputs
.
front
().
lens
();
&
alpha
,
std
::
vector
<
size_t
>
offsets
(
input_lens
.
size
());
&
beta
,
std
::
copy
(
padding
.
begin
(),
padding
.
begin
()
+
offsets
.
size
(),
offsets
.
begin
());
x_desc
.
get
(),
args
[
0
].
implicit
(),
y_desc
.
get
(),
args
[
5
].
implicit
(),
bn_desc
.
get
(),
args
[
1
].
implicit
(),
args
[
2
].
implicit
(),
args
[
3
].
implicit
(),
args
[
4
].
implicit
(),
op
.
epsilon
);
return
args
[
5
];
auto
src
=
interpolate_string
(
}
pointwise_kernel
,
{{
"pad_val"
,
to_string
(
pad_val_string
)},
{
"offsets"
,
to_string_range
(
offsets
)}});
return
compile_hip_code_object
(
src
,
options
);
}
compiler_replace
compile
(
context
&
ctx
,
instruction_ref
ins
,
const
operation
&
op
)
const
{
return
replace
(
compile_op
(
ctx
,
to_shapes
(
ins
->
inputs
()),
op
.
to_value
()));
}
};
}
// namespace gpu
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
}
// namespace migraphx
src/targets/gpu/jit/pointwise.cpp
View file @
870a396b
...
@@ -75,20 +75,16 @@ struct pointwise_compiler : compiler<pointwise_compiler>
...
@@ -75,20 +75,16 @@ struct pointwise_compiler : compiler<pointwise_compiler>
options
.
virtual_inputs
=
reduce_dims
(
inputs
);
options
.
virtual_inputs
=
reduce_dims
(
inputs
);
options
.
params
=
"-Wno-float-equal"
;
options
.
params
=
"-Wno-float-equal"
;
auto
axis
=
find_fast_axis
(
options
.
virtual_inputs
);
auto
axis
=
find_fast_axis
(
options
.
virtual_inputs
);
auto
vec
=
vectorize
::
elements
(
axis
,
options
.
virtual_inputs
);
auto
vec
=
vectorize
::
elements
(
ctx
,
axis
,
options
.
virtual_inputs
);
auto
preloads
=
preload
::
broadcasts
(
axis
,
options
.
virtual_inputs
);
options
.
kernel_name
=
v
.
get
(
"kernel"
,
"kernel"
);
options
.
kernel_name
=
v
.
get
(
"kernel"
,
"kernel"
);
options
.
set_launch_params
(
options
.
set_launch_params
(
v
,
v
,
compute_global_for
(
ctx
,
options
.
output
.
elements
()
/
vec
.
size
,
256
));
compute_global_for
(
ctx
,
options
.
output
.
elements
()
/
vec
.
size
,
oversubscribe_if
(
not
preloads
.
is_preloading
())));
auto
src
=
interpolate_string
(
pointwise_kernel
,
auto
src
=
interpolate_string
(
pointwise_kernel
,
{{
"kernel"
,
options
.
kernel_name
},
{{
"kernel"
,
options
.
kernel_name
},
{
"params"
,
enum_params
(
inputs
.
size
(),
"void * private_p"
)},
{
"params"
,
enum_params
(
inputs
.
size
(),
"void * private_p"
)},
{
"args"
,
enum_params
(
inputs
.
size
(),
"private_p"
)},
{
"args"
,
enum_params
(
inputs
.
size
(),
"private_p"
)},
{
"lambda"
,
v
.
at
(
"lambda"
).
to
<
std
::
string
>
()},
{
"lambda"
,
v
.
at
(
"lambda"
).
to
<
std
::
string
>
()},
{
"transformers"
,
make_transformer_args
(
preloads
,
vec
)},
{
"transformers"
,
make_transformer_args
(
vec
)},
{
"preamble"
,
v
.
get
(
"preamble"
,
std
::
string
{})}});
{
"preamble"
,
v
.
get
(
"preamble"
,
std
::
string
{})}});
return
compile_hip_code_object
(
src
,
options
);
return
compile_hip_code_object
(
src
,
options
);
}
}
...
...
src/targets/gpu/jit/reduce.cpp
View file @
870a396b
...
@@ -121,7 +121,7 @@ struct reduce_compiler : compiler<reduce_compiler>
...
@@ -121,7 +121,7 @@ struct reduce_compiler : compiler<reduce_compiler>
// Vectorize if the axis is a reduction axis
// Vectorize if the axis is a reduction axis
if
(
options
.
virtual_inputs
.
back
().
lens
()[
faxis
]
==
1
)
if
(
options
.
virtual_inputs
.
back
().
lens
()[
faxis
]
==
1
)
{
{
vec
=
vectorize
::
elements
(
faxis
,
options
.
virtual_inputs
);
vec
=
vectorize
::
elements
(
ctx
,
faxis
,
options
.
virtual_inputs
);
}
}
auto
relements
=
get_reduce_elements
(
options
.
virtual_inputs
)
/
vec
.
size
;
auto
relements
=
get_reduce_elements
(
options
.
virtual_inputs
)
/
vec
.
size
;
auto
nelements
=
options
.
virtual_inputs
.
back
().
elements
();
auto
nelements
=
options
.
virtual_inputs
.
back
().
elements
();
...
@@ -156,16 +156,25 @@ struct reduce_compiler : compiler<reduce_compiler>
...
@@ -156,16 +156,25 @@ struct reduce_compiler : compiler<reduce_compiler>
compiler_replace
compile
(
context
&
ctx
,
instruction_ref
ins
,
const
operation
&
op
)
const
compiler_replace
compile
(
context
&
ctx
,
instruction_ref
ins
,
const
operation
&
op
)
const
{
{
value
v
=
value
::
object
{};
value
v
=
value
::
object
{};
auto
reduce_elements
=
get_reduce_elements
(
ins
->
inputs
());
if
(
op
.
name
()
==
"reduce_sum"
)
if
(
op
.
name
()
==
"reduce_sum"
)
{
{
v
[
"reduction"
]
=
"op::sum{}"
;
v
[
"reduction"
]
=
"op::sum{}"
;
}
}
else
if
(
op
.
name
()
==
"reduce_mean"
)
else
if
(
op
.
name
()
==
"reduce_mean"
)
{
{
v
[
"reduction"
]
=
"op::sum{}"
;
auto
reduce_elements
=
get_reduce_elements
(
ins
->
inputs
());
v
[
"write"
]
=
"op::mean{"
+
std
::
to_string
(
reduce_elements
)
+
"}"
;
auto
reduce_type
=
ins
->
inputs
().
front
()
->
get_shape
().
type
();
v
[
"reduction"
]
=
"op::sum{}"
;
std
::
string
mean
=
"op::mean{"
+
std
::
to_string
(
reduce_elements
)
+
"}"
;
// Use float accumulator when reduction size is too large for half
if
(
reduce_type
==
shape
::
half_type
and
reduce_elements
>
16384
)
v
[
"read"
]
=
"compose("
+
mean
+
", op::convert_to<float>{})"
;
else
if
(
contains
({
shape
::
float_type
,
shape
::
half_type
,
shape
::
double_type
},
reduce_type
))
v
[
"read"
]
=
mean
;
else
v
[
"write"
]
=
mean
;
}
}
else
if
(
op
.
name
()
==
"reduce_max"
)
else
if
(
op
.
name
()
==
"reduce_max"
)
{
{
...
...
src/targets/gpu/jit/scatternd.cpp
View file @
870a396b
...
@@ -79,9 +79,10 @@ struct scatternd_compiler : compiler<scatternd_compiler>
...
@@ -79,9 +79,10 @@ struct scatternd_compiler : compiler<scatternd_compiler>
{
{
assert
(
starts_with
(
op
.
name
(),
"scatternd_"
));
assert
(
starts_with
(
op
.
name
(),
"scatternd_"
));
auto
reduction
=
op
.
name
().
substr
(
10
);
auto
reduction
=
op
.
name
().
substr
(
10
);
return
insert
(
compile_op
(
ctx
,
return
insert
(
compile_op
(
to_shapes
({
ins
->
inputs
().
begin
()
+
1
,
ins
->
inputs
().
end
()}),
ctx
,
{{
"reduction"
,
reduction
}}));
to_shapes
(
std
::
vector
<
instruction_ref
>
{
ins
->
inputs
().
begin
()
+
1
,
ins
->
inputs
().
end
()}),
{{
"reduction"
,
reduction
}}));
}
}
compiler_replace
insert
(
const
operation
&
op
)
const
compiler_replace
insert
(
const
operation
&
op
)
const
...
...
src/targets/gpu/jit/softmax.cpp
View file @
870a396b
...
@@ -32,6 +32,8 @@ namespace migraphx {
...
@@ -32,6 +32,8 @@ namespace migraphx {
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
gpu
{
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_USE_FAST_SOFTMAX
)
using
namespace
migraphx
::
gpu
::
gen
;
// NOLINT
using
namespace
migraphx
::
gpu
::
gen
;
// NOLINT
static
const
char
*
const
softmax_kernel
=
R"__migraphx__(
static
const
char
*
const
softmax_kernel
=
R"__migraphx__(
...
@@ -69,7 +71,7 @@ struct softmax_compiler : compiler<softmax_compiler>
...
@@ -69,7 +71,7 @@ struct softmax_compiler : compiler<softmax_compiler>
// Vectorize if the axis is a reduction axis
// Vectorize if the axis is a reduction axis
if
(
faxis
==
axis
)
if
(
faxis
==
axis
)
{
{
vec
=
vectorize
::
elements
(
faxis
,
inputs
);
vec
=
vectorize
::
elements
(
ctx
,
faxis
,
inputs
);
}
}
auto
relements
=
inputs
[
0
].
lens
()[
axis
]
/
vec
.
size
;
auto
relements
=
inputs
[
0
].
lens
()[
axis
]
/
vec
.
size
;
auto
nelements
=
(
inputs
.
back
().
elements
()
/
inputs
[
0
].
lens
()[
axis
]);
auto
nelements
=
(
inputs
.
back
().
elements
()
/
inputs
[
0
].
lens
()[
axis
]);
...
@@ -81,6 +83,9 @@ struct softmax_compiler : compiler<softmax_compiler>
...
@@ -81,6 +83,9 @@ struct softmax_compiler : compiler<softmax_compiler>
options
.
inputs
=
inputs
;
options
.
inputs
=
inputs
;
options
.
kernel_name
=
"softmax_kernel"
;
options
.
kernel_name
=
"softmax_kernel"
;
if
(
enabled
(
MIGRAPHX_USE_FAST_SOFTMAX
{}))
options
.
params
=
"-DMIGRAPHX_USE_FAST_SOFTMAX"
;
auto
src
=
interpolate_string
(
auto
src
=
interpolate_string
(
softmax_kernel
,
softmax_kernel
,
{{
"transformers"
,
make_transformer_args
(
vec
)},
{
"axis"
,
to_string
(
axis
)}});
{{
"transformers"
,
make_transformer_args
(
vec
)},
{
"axis"
,
to_string
(
axis
)}});
...
...
src/targets/gpu/kernels/include/migraphx/kernels/array.hpp
View file @
870a396b
...
@@ -33,49 +33,95 @@
...
@@ -33,49 +33,95 @@
namespace
migraphx
{
namespace
migraphx
{
// NOLINTNEXTLINE
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_ARRAY_OP(op, binary_op) \
#define MIGRAPHX_DEVICE_ARRAY_OP(op, binary_op) \
template <class U> \
template <class U> \
constexpr array& operator op(const array<U, N>& x) \
constexpr array& operator op(const array<U, N>& x) \
{ \
{ \
for(index_int i = 0; i < N; i++) \
array_detail::array_for_each(*this, x)([](auto& sy, auto sx) { sy op sx; }); \
d[i] op x[i]; \
return *this; \
return *this; \
} \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
constexpr array& operator op(const U& x) \
constexpr array& operator op(const U& x) \
{ \
{ \
array_detail::array_for_each (*this)([&](auto& sy) { sy op x; }); \
for(index_int i = 0; i < N; i++) \
return *this; \
d[i] op x; \
} \
return *this; \
template <class U> \
} \
friend constexpr auto operator binary_op(const array& x, const array<U, N>& y) \
template <class U> \
{ \
friend constexpr auto operator binary_op(const array& x, const array<U, N>& y) \
array<decltype(T {} binary_op U{}), N> z{}; \
{ \
array_detail::array_for_each(z, x, y)( \
array<decltype(T {} binary_op U{}), N> z{}; \
[&](auto& sz, auto sx, auto sy) { sz = sx binary_op sy; }); \
for(index_int i = 0; i < N; i++) \
return z; \
z[i] = x[i] binary_op y[i]; \
} \
return z; \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
} \
friend constexpr auto operator binary_op(const array& x, const U& y) \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
{ \
friend constexpr auto operator binary_op(const array& x, const U& y) \
array<decltype(T {} binary_op U{}), N> z{}; \
{ \
array_detail::array_for_each(z, x)([&](auto& sz, auto sx) { sz = sx binary_op y; }); \
array<decltype(T {} binary_op U{}), N> z{}; \
return z; \
for(index_int i = 0; i < N; i++) \
} \
z[i] = x[i] binary_op y; \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
return z; \
friend constexpr auto operator binary_op(const U& x, const array& y) \
} \
{ \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
array<decltype(T {} binary_op U{}), N> z{}; \
friend constexpr auto operator binary_op(const U& x, const array& y) \
array_detail::array_for_each(z, y)([&](auto& sz, auto sy) { sz = x binary_op sy; }); \
{ \
return z; \
array<decltype(T {} binary_op U{}), N> z{}; \
for(index_int i = 0; i < N; i++) \
z[i] = x binary_op y[i]; \
return z; \
}
}
namespace
array_detail
{
template
<
class
T
>
constexpr
auto
is_vectorizable
()
{
return
not
is_same
<
T
,
bool
>
{}
and
(
is_fundamental
<
T
>
{}
or
is_same
<
T
,
half
>
{});
}
template
<
class
T
>
__device__
auto
&
array2vec
(
T
&
x
)
{
using
value_type
=
typename
T
::
value_type
;
constexpr
auto
size
=
decltype
(
x
.
size
()){};
using
type
=
vec
<
value_type
,
size
>
;
if
constexpr
(
is_const
<
T
>
{})
return
reinterpret_cast
<
const
type
&>
(
x
);
else
return
reinterpret_cast
<
type
&>
(
x
);
}
template
<
class
T
,
class
...
Ts
>
constexpr
auto
array_for_each
(
T
&
x
,
Ts
&
...
xs
)
{
MIGRAPHX_ASSERT
(((
x
.
size
()
==
xs
.
size
())
and
...));
return
[
&
](
auto
f
)
{
constexpr
auto
size
=
decltype
(
x
.
size
()){};
if
constexpr
((
is_vectorizable
<
typename
T
::
value_type
>
()
or
(
is_vectorizable
<
typename
Ts
::
value_type
>
()
or
...))
and
size
<=
8
and
size
>
1
and
(
size
%
2
==
0
))
{
if
(
__builtin_is_constant_evaluated
())
{
for
(
index_int
i
=
0
;
i
<
size
;
i
++
)
f
(
x
[
i
],
xs
[
i
]...);
}
else
{
using
vec_type
=
std
::
remove_reference_t
<
decltype
(
array2vec
(
x
))
>
;
f
(
array2vec
(
x
),
__builtin_convertvector
(
array2vec
(
xs
),
vec_type
)...);
}
}
else
{
for
(
index_int
i
=
0
;
i
<
size
;
i
++
)
f
(
x
[
i
],
xs
[
i
]...);
}
};
}
}
// namespace array_detail
template
<
class
T
,
index_int
N
>
template
<
class
T
,
index_int
N
>
struct
array
struct
array
{
{
using
value_type
=
T
;
T
d
[
N
];
T
d
[
N
];
constexpr
T
&
operator
[](
index_int
i
)
constexpr
T
&
operator
[](
index_int
i
)
{
{
...
@@ -108,18 +154,13 @@ struct array
...
@@ -108,18 +154,13 @@ struct array
constexpr
T
dot
(
const
array
&
x
)
const
constexpr
T
dot
(
const
array
&
x
)
const
{
{
T
result
=
0
;
auto
r
=
x
*
(
*
this
);
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
return
r
.
reduce
([](
auto
a
,
auto
b
)
{
return
a
+
b
;
},
0
);
result
+=
x
[
i
]
*
d
[
i
];
return
result
;
}
}
constexpr
T
product
()
const
constexpr
T
product
()
const
{
{
T
result
=
1
;
return
reduce
([](
auto
x
,
auto
y
)
{
return
x
*
y
;
},
1
);
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
result
*=
d
[
i
];
return
result
;
}
}
constexpr
T
single
(
index_int
width
=
100
)
const
constexpr
T
single
(
index_int
width
=
100
)
const
...
@@ -134,6 +175,24 @@ struct array
...
@@ -134,6 +175,24 @@ struct array
return
result
;
return
result
;
}
}
template
<
class
F
>
constexpr
auto
apply
(
F
f
)
const
{
array
<
decltype
(
f
(
d
[
0
])),
N
>
result
;
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
result
[
i
]
=
f
(
d
[
i
]);
return
result
;
}
template
<
class
F
>
constexpr
auto
reduce
(
F
f
,
T
init
)
const
{
T
result
=
init
;
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
result
=
f
(
result
,
d
[
i
]);
return
result
;
}
MIGRAPHX_DEVICE_ARRAY_OP
(
+=
,
+
)
MIGRAPHX_DEVICE_ARRAY_OP
(
+=
,
+
)
MIGRAPHX_DEVICE_ARRAY_OP
(
-=
,
-
)
MIGRAPHX_DEVICE_ARRAY_OP
(
-=
,
-
)
MIGRAPHX_DEVICE_ARRAY_OP
(
*=
,
*
)
MIGRAPHX_DEVICE_ARRAY_OP
(
*=
,
*
)
...
@@ -201,6 +260,11 @@ struct array
...
@@ -201,6 +260,11 @@ struct array
}
}
};
};
template
<
class
T
,
class
...
Ts
>
constexpr
array
<
T
,
sizeof
...(
Ts
)
+
1
>
make_array
(
T
x
,
Ts
...
xs
)
{
return
{
x
,
static_cast
<
T
>
(
xs
)...};
}
template
<
class
T
,
T
...
Xs
>
template
<
class
T
,
T
...
Xs
>
struct
integral_const_array
:
array
<
T
,
sizeof
...(
Xs
)
>
struct
integral_const_array
:
array
<
T
,
sizeof
...(
Xs
)
>
{
{
...
...
src/targets/gpu/kernels/include/migraphx/kernels/concat.hpp
View file @
870a396b
...
@@ -41,7 +41,15 @@ constexpr auto concat_slice(Output out, Input, Start)
...
@@ -41,7 +41,15 @@ constexpr auto concat_slice(Output out, Input, Start)
return
Start
{}
*
output_shape
.
strides
[
Axis
];
return
Start
{}
*
output_shape
.
strides
[
Axis
];
});
});
constexpr
auto
s
=
make_shape
(
lens
,
strides
);
constexpr
auto
s
=
make_shape
(
lens
,
strides
);
return
make_tensor_view
(
&
out
[
offset
],
s
);
MIGRAPHX_ASSERT
(
offset
<
out
.
get_shape
().
element_space
());
MIGRAPHX_ASSERT
((
s
.
element_space
()
+
offset
)
<=
out
.
get_shape
().
element_space
());
return
make_tensor_view
(
out
.
data
()
+
offset
,
s
);
}
template
<
index_int
Axis
,
class
Input
,
class
Start
,
class
...
Ts
>
constexpr
auto
concat_slices
(
Input
input
,
Start
start
,
Ts
...
xs
)
{
return
[
=
](
auto
f
)
{
f
(
concat_slice
<
Axis
>
(
xs
,
input
,
start
)...);
};
}
}
template
<
index_int
Axis
,
class
Input
>
template
<
index_int
Axis
,
class
Input
>
...
@@ -51,15 +59,19 @@ constexpr auto concat_ends(Input)
...
@@ -51,15 +59,19 @@ constexpr auto concat_ends(Input)
return
_c
<
lens
[
Axis
]
>
;
return
_c
<
lens
[
Axis
]
>
;
}
}
template
<
index_int
Axis
,
class
Output
,
class
...
Inputs
>
template
<
index_int
Axis
,
class
...
Inputs
>
__device__
void
concat
(
Output
output
,
Inputs
...
inputs
)
__device__
auto
concat
(
Inputs
...
inputs
)
{
{
auto
idx
=
make_index
();
return
[
=
](
auto
f
,
auto
...
ts
)
{
fold
([
&
](
auto
start
,
auto
input
)
{
auto
idx
=
make_index
();
auto
y
=
concat_slice
<
Axis
>
(
output
,
input
,
start
);
fold
([
&
](
auto
start
,
auto
input
)
{
idx
.
global_stride
(
input
.
get_shape
().
elements
(),
[
&
](
auto
i
)
{
y
[
i
]
=
input
[
i
];
});
concat_slices
<
Axis
>
(
input
,
start
,
ts
...)([
&
](
auto
y
,
auto
...
xs
)
{
return
start
+
concat_ends
<
Axis
>
(
input
);
idx
.
global_stride
(
input
.
get_shape
().
elements
(),
})(
_c
<
0
>
,
inputs
...);
[
&
](
auto
i
)
{
y
[
i
]
=
f
(
input
[
i
],
xs
[
i
]...);
});
});
return
start
+
concat_ends
<
Axis
>
(
input
);
})(
_c
<
0
>
,
inputs
...);
};
}
}
}
// namespace migraphx
}
// namespace migraphx
...
...
src/targets/gpu/kernels/include/migraphx/kernels/functional.hpp
View file @
870a396b
...
@@ -187,6 +187,14 @@ constexpr auto fold(F f)
...
@@ -187,6 +187,14 @@ constexpr auto fold(F f)
return
[
=
](
auto
&&
...
xs
)
{
return
fold_impl
(
f
,
static_cast
<
decltype
(
xs
)
&&>
(
xs
)...);
};
return
[
=
](
auto
&&
...
xs
)
{
return
fold_impl
(
f
,
static_cast
<
decltype
(
xs
)
&&>
(
xs
)...);
};
}
}
template
<
class
...
Fs
>
constexpr
auto
compose
(
Fs
...
fs
)
{
return
fold
([](
auto
f
,
auto
g
)
{
return
[
=
](
auto
&&
...
xs
)
{
return
f
(
g
(
static_cast
<
decltype
(
xs
)
>
(
xs
)...));
};
})(
fs
...);
}
template
<
class
...
Ts
>
template
<
class
...
Ts
>
constexpr
auto
pack
(
Ts
...
xs
)
constexpr
auto
pack
(
Ts
...
xs
)
{
{
...
...
src/targets/gpu/include/migraphx/
gpu/conv
er
t
.hpp
→
src/targets/gpu/
kernels/
include/migraphx/
kernels/gath
er.hpp
View file @
870a396b
...
@@ -21,43 +21,44 @@
...
@@ -21,43 +21,44 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
* THE SOFTWARE.
*/
*/
#ifndef MIGRAPHX_GUARD_
RTGLIB_CONV
ER
T
_HPP
#ifndef MIGRAPHX_GUARD_
KERNELS_GATH
ER_HPP
#define MIGRAPHX_GUARD_
RTGLIB_CONV
ER
T
_HPP
#define MIGRAPHX_GUARD_
KERNELS_GATH
ER_HPP
#include <migraphx/argument.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/reflect.hpp>
#include <migraphx/kernels/shape.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/tensor_view.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
context
;
template
<
int
Axis
,
class
Input
,
class
Indices
>
constexpr
auto
gather_shape
(
Input
input
,
Indices
indices
)
{
auto
lengths
=
input
.
lens
;
lengths
[
Axis
]
=
indices
.
elements
();
return
make_shape
(
lengths
,
input
.
strides
);
}
struct
hip_convert
template
<
int
Axis
,
class
Input
,
class
Indices
,
class
Output
>
__device__
void
gather
(
Input
input
,
Indices
indices
,
Output
output
)
{
{
op
::
convert
op
;
auto
ind
=
make_index
();
auto
axis_dim_size
=
input
.
get_shape
().
lens
[
Axis
];
template
<
class
Self
,
class
F
>
constexpr
auto
out_comp
=
gather_shape
<
Axis
>
(
get_shape_c
<
Input
>
{},
get_shape_c
<
Indices
>
{});
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::convert"
;
}
ind
.
global_stride
(
output
.
get_shape
().
elements
(),
[
&
](
auto
i
)
{
auto
idx
=
out_comp
.
multi
(
i
);
auto
in_index
=
indices
[
idx
[
Axis
]];
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
;
auto
new_in_index
=
(
in_index
<
0
)
?
in_index
+
axis_dim_size
:
in_index
;
argument
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
;
idx
[
Axis
]
=
new_in_index
;
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
output
[
i
]
=
input
[
idx
];
{
});
return
shapes
.
size
()
-
1
;
}
}
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
}
// namespace migraphx
#endif
#endif
src/targets/gpu/kernels/include/migraphx/kernels/index.hpp
View file @
870a396b
...
@@ -28,9 +28,60 @@
...
@@ -28,9 +28,60 @@
#include <migraphx/kernels/types.hpp>
#include <migraphx/kernels/types.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/debug.hpp>
namespace
migraphx
{
namespace
migraphx
{
#if defined(MIGRAPHX_NGLOBAL) && defined(MIGRAPHX_NLOCAL)
#define MIGRAPHX_NGROUP ((MIGRAPHX_NGLOBAL + MIGRAPHX_NLOCAL - 1) / MIGRAPHX_NLOCAL)
#endif
inline
__device__
__attribute__
((
const
))
index_int
compute_global_size
()
{
#ifdef MIGRAPHX_NGLOBAL
return
MIGRAPHX_NGLOBAL
;
#else
// This actualy works even when global is not divisible by local size.
// This doesnt actually do a multiplicatiosn. Instead it calls a device
// function to get the global size, which is why it works.
return
blockDim
.
x
*
gridDim
.
x
;
// NOLINT
#endif
}
// We cant just use blockDim.x to get the local size since its broken on hip
// when global is not divisible by local size. In this case, we calulate the
// size for the last group.
inline
__device__
__attribute__
((
const
))
index_int
compute_local_size
()
{
#ifdef MIGRAPHX_NLOCAL
const
auto
nlocal
=
MIGRAPHX_NLOCAL
;
#else
const
auto
nlocal
=
blockDim
.
x
;
// NOLINT
#endif
#ifdef MIGRAPHX_NGROUP
const
auto
ngroup
=
MIGRAPHX_NGROUP
;
#else
const
auto
ngroup
=
gridDim
.
x
;
// NOLINT
#endif
const
auto
group_id
=
blockIdx
.
x
;
// NOLINT
const
auto
nglobal
=
compute_global_size
();
if
(
group_id
==
ngroup
-
1
)
{
return
1
+
(
nglobal
-
1
)
%
nlocal
;
}
else
{
return
nlocal
;
// NOLINT
}
}
#ifdef MIGRAPHX_NGROUP
// If global is divisible by local then local can be a const
#if(MIGRAPHX_NGLOBAL % MIGRAPHX_NLOCAL == 0) || (MIGRAPHX_NGROUP == 1)
#define MIGRAPHX_HAS_CONST_LOCAL 1
#endif
#endif
struct
index
struct
index
{
{
index_int
global
=
0
;
index_int
global
=
0
;
...
@@ -38,20 +89,44 @@ struct index
...
@@ -38,20 +89,44 @@ struct index
index_int
group
=
0
;
index_int
group
=
0
;
#ifdef MIGRAPHX_NGLOBAL
#ifdef MIGRAPHX_NGLOBAL
constexpr
index_constant
<
MIGRAPHX_NGLOBAL
>
nglobal
()
const
{
return
{};
}
constexpr
index_constant
<
MIGRAPHX_NGLOBAL
>
nglobal
()
const
{
static_assert
(
MIGRAPHX_NGLOBAL
>
0
,
"Global size must be greater than 0"
);
return
{};
}
#else
#else
__device__
index_int
nglobal
()
const
__device__
index_int
nglobal
()
const
{
{
return
blockDim
.
x
*
gridDim
.
x
;
// NOLINT
MIGRAPHX_ASSERT
(
compute_global_size
()
>
0
);
return
compute_global_size
();
// NOLINT
}
}
#endif
#endif
#ifdef MIGRAPHX_NLOCAL
#ifdef MIGRAPHX_HAS_CONST_LOCAL
constexpr
index_constant
<
MIGRAPHX_NLOCAL
>
nlocal
()
const
{
return
{};
}
constexpr
index_constant
<
MIGRAPHX_NLOCAL
>
nlocal
()
const
{
static_assert
(
MIGRAPHX_NLOCAL
>
0
,
"Local size must be greater than 0"
);
return
{};
}
#else
#else
__device__
index_int
nlocal
()
const
__device__
index_int
nlocal
()
const
{
{
return
blockDim
.
x
;
// NOLINT
#ifdef MIGRAPHX_NGROUP
static_assert
((
MIGRAPHX_NGLOBAL
%
MIGRAPHX_NLOCAL
!=
0
)
and
(
MIGRAPHX_NGROUP
>
1
),
"Local size should be const"
);
#endif
MIGRAPHX_ASSERT
(
compute_local_size
()
>
0
);
return
compute_local_size
();
// NOLINT
}
#endif
#ifdef MIGRAPHX_NLOCAL
constexpr
index_constant
<
MIGRAPHX_NLOCAL
>
max_nlocal
()
const
{
return
{};
}
#else
__device__
index_int
max_nlocal
()
const
{
MIGRAPHX_ASSERT
(
blockDim
.
x
>
0
);
return
blockDim
.
x
;
}
}
#endif
#endif
template
<
class
N
,
class
Stride
>
template
<
class
N
,
class
Stride
>
...
@@ -63,6 +138,7 @@ struct index
...
@@ -63,6 +138,7 @@ struct index
template
<
class
F
,
class
N
,
class
Stride
>
template
<
class
F
,
class
N
,
class
Stride
>
static
constexpr
void
for_stride
(
index_int
start
,
N
n
,
Stride
stride
,
F
f
)
static
constexpr
void
for_stride
(
index_int
start
,
N
n
,
Stride
stride
,
F
f
)
{
{
MIGRAPHX_ASSERT
(
start
<
stride
);
if
constexpr
(
not
is_integral
<
N
>
{}
and
not
is_integral
<
Stride
>
{}
and
if
constexpr
(
not
is_integral
<
N
>
{}
and
not
is_integral
<
Stride
>
{}
and
max_stride_iterations
(
n
,
stride
)
==
1
)
max_stride_iterations
(
n
,
stride
)
==
1
)
{
{
...
...
src/targets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
View file @
870a396b
...
@@ -25,10 +25,17 @@
...
@@ -25,10 +25,17 @@
#define MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
#define MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
#include <migraphx/kernels/reduce.hpp>
#include <migraphx/kernels/reduce.hpp>
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/vec.hpp>
#include <migraphx/kernels/print.hpp>
#include <migraphx/kernels/print.hpp>
namespace
migraphx
{
namespace
migraphx
{
template
<
class
T
,
index_int
N
,
class
Op
>
constexpr
auto
vec_reduce
(
const
array
<
T
,
N
>&
a
,
Op
op
)
{
return
a
.
apply
([
&
](
auto
x
)
{
return
vec_reduce
(
x
,
op
);
});
}
template
<
index_int
Axis
,
template
<
index_int
Axis
,
class
F
,
class
F
,
class
BinOp
,
class
BinOp
,
...
@@ -37,46 +44,46 @@ template <index_int Axis,
...
@@ -37,46 +44,46 @@ template <index_int Axis,
class
Input2
,
class
Input2
,
class
...
Inputs
>
class
...
Inputs
>
__device__
void
generic_binary_layernorm
(
__device__
void
generic_binary_layernorm
(
F
compute
,
BinOp
op
,
Output
output
,
Input1
input1
,
Input2
input2
,
Inputs
...
inputs
)
F
compute
,
BinOp
op
,
float
eps
,
Output
output
,
Input1
input1
,
Input2
input2
,
Inputs
...
inputs
)
{
{
using
reduce_output
=
reduce
::
with_axis
<
Input1
,
Axis
>
;
using
reduce_output
=
reduce
::
with_axis
<
Input1
,
Axis
>
;
reduce
::
block
::
run
<
reduce_output
>
([
&
](
auto
,
auto
r
)
{
reduce
::
block
::
run
<
reduce_output
>
([
&
](
auto
,
auto
r
)
{
using
value_type
=
typename
Input1
::
type
;
using
value_type
=
typename
Input1
::
type
;
constexpr
auto
relements
=
r
.
template
elements
<
Input1
>();
constexpr
auto
relements
=
r
.
template
elements
<
Input1
>();
auto
mean
=
[
&
](
auto
f
)
{
auto
means
=
return
r
.
reduce
(
op
::
sum
{},
0
,
[
&
](
auto
x1
,
auto
x2
)
{
r
.
reduce
(
op
::
sum
{},
make_array
<
vec_type
<
value_type
>>
(
0
,
0
),
[
&
](
auto
x1
,
auto
x2
)
{
return
f
(
x1
,
x2
)
/
value_type
{
relements
};
auto
x
=
op
(
x1
,
x2
);
return
make_array
(
x
,
x
*
x
)
*
vec_type
<
value_type
>
{
1.0
/
relements
};
})(
input1
,
input2
);
})(
input1
,
input2
);
};
// mean(x)
auto
mean_x
=
means
[
0
];
auto
mean_x
=
mean
(
op
);
auto
mean_x2
=
means
[
1
];
// mean(m ^ 2)
auto
variance
=
mean_x2
-
(
mean_x
*
mean_x
);
auto
mean_m2
=
mean
([
&
](
auto
x1
,
auto
x2
)
{
value_type
eps_val
=
eps
;
// implicit conversion for eps
auto
m
=
op
(
x1
,
x2
)
-
mean_x
;
return
m
*
m
;
});
r
.
inner
([
&
](
auto
&
y
,
auto
x1
,
auto
x2
,
auto
...
xs
)
{
r
.
inner
([
&
](
auto
&
y
,
auto
x1
,
auto
x2
,
auto
...
xs
)
{
auto
m
=
op
(
x1
,
x2
)
-
mean_x
;
auto
x
=
op
(
x1
,
x2
);
// m * rsqrt(mean(m ^ 2) + 1e-12)
auto
m
=
x
-
mean_x
;
y
=
compute
(
m
*
rsqrt
(
mean_m2
+
value_type
{
1e-12
}),
xs
...);
// m * rsqrt(mean(m ^ 2) + epsilon)
y
=
compute
(
m
*
rsqrt
(
variance
+
eps_val
),
xs
...);
})(
output
,
input1
,
input2
,
inputs
...);
})(
output
,
input1
,
input2
,
inputs
...);
});
});
}
}
template
<
index_int
Axis
,
class
F
,
class
Output
,
class
Input
,
class
...
Inputs
>
template
<
index_int
Axis
,
class
F
,
class
Output
,
class
Input
,
class
...
Inputs
>
__device__
void
layernorm
(
F
compute
,
Output
output
,
Input
input
,
Inputs
...
inputs
)
__device__
void
layernorm
(
F
compute
,
float
eps
,
Output
output
,
Input
input
,
Inputs
...
inputs
)
{
{
generic_binary_layernorm
<
Axis
>
(
generic_binary_layernorm
<
Axis
>
(
compute
,
[](
auto
x
,
auto
)
{
return
x
;
},
output
,
input
,
input
,
inputs
...);
compute
,
[](
auto
x
,
auto
)
{
return
x
;
},
eps
,
output
,
input
,
input
,
inputs
...);
}
}
template
<
index_int
Axis
,
class
F
,
class
Output
,
class
Input1
,
class
Input2
,
class
...
Inputs
>
template
<
index_int
Axis
,
class
F
,
class
Output
,
class
Input1
,
class
Input2
,
class
...
Inputs
>
__device__
void
__device__
void
add_layernorm
(
F
compute
,
Output
output
,
Input1
input1
,
Input2
input2
,
Inputs
...
inputs
)
add_layernorm
(
F
compute
,
float
eps
,
Output
output
,
Input1
input1
,
Input2
input2
,
Inputs
...
inputs
)
{
{
generic_binary_layernorm
<
Axis
>
(
generic_binary_layernorm
<
Axis
>
(
compute
,
[](
auto
x1
,
auto
x2
)
{
return
x1
+
x2
;
},
output
,
input1
,
input2
,
inputs
...);
compute
,
[](
auto
x1
,
auto
x2
)
{
return
x1
+
x2
;
},
eps
,
output
,
input1
,
input2
,
inputs
...);
}
}
}
// namespace migraphx
}
// namespace migraphx
...
...
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
View file @
870a396b
...
@@ -104,6 +104,7 @@ MIGRAPHX_DEVICE_MATH(floor, ::floor)
...
@@ -104,6 +104,7 @@ MIGRAPHX_DEVICE_MATH(floor, ::floor)
MIGRAPHX_DEVICE_MATH
(
isnan
,
::
isnan
)
MIGRAPHX_DEVICE_MATH
(
isnan
,
::
isnan
)
MIGRAPHX_DEVICE_MATH
(
log
,
::
log
)
MIGRAPHX_DEVICE_MATH
(
log
,
::
log
)
MIGRAPHX_DEVICE_MATH
(
pow
,
::
pow
)
MIGRAPHX_DEVICE_MATH
(
pow
,
::
pow
)
MIGRAPHX_DEVICE_MATH
(
remainder
,
::
remainder
)
MIGRAPHX_DEVICE_MATH
(
round
,
::
round
)
MIGRAPHX_DEVICE_MATH
(
round
,
::
round
)
MIGRAPHX_DEVICE_MATH
(
rsqrt
,
::
rsqrt
)
MIGRAPHX_DEVICE_MATH
(
rsqrt
,
::
rsqrt
)
MIGRAPHX_DEVICE_MATH
(
sin
,
::
sin
)
MIGRAPHX_DEVICE_MATH
(
sin
,
::
sin
)
...
@@ -111,6 +112,7 @@ MIGRAPHX_DEVICE_MATH(sinh, ::sinh)
...
@@ -111,6 +112,7 @@ MIGRAPHX_DEVICE_MATH(sinh, ::sinh)
MIGRAPHX_DEVICE_MATH
(
sqrt
,
::
sqrt
)
MIGRAPHX_DEVICE_MATH
(
sqrt
,
::
sqrt
)
MIGRAPHX_DEVICE_MATH
(
tan
,
::
tan
)
MIGRAPHX_DEVICE_MATH
(
tan
,
::
tan
)
MIGRAPHX_DEVICE_MATH
(
tanh
,
::
tanh
)
MIGRAPHX_DEVICE_MATH
(
tanh
,
::
tanh
)
MIGRAPHX_DEVICE_MATH
(
fmod
,
::
fmod
)
// Float overloads
// Float overloads
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
acos
,
::
acosf
)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
acos
,
::
acosf
)
...
@@ -126,12 +128,18 @@ MIGRAPHX_DEVICE_MATH_FOR(float, sin, ::sinf)
...
@@ -126,12 +128,18 @@ MIGRAPHX_DEVICE_MATH_FOR(float, sin, ::sinf)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
sinh
,
::
sinhf
)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
sinh
,
::
sinhf
)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
tan
,
::
tanf
)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
tan
,
::
tanf
)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
tanh
,
::
tanhf
)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
tanh
,
::
tanhf
)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
fmod
,
::
fmodf
)
// Builtin half functions
// Builtin half functions
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
abs
,
::
__habs
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
abs
,
::
__habs
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
ceil
,
::
hceil
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
cos
,
::
hcos
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
exp
,
::
hexp
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
exp
,
::
hexp
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
floor
,
::
hfloor
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
isnan
,
::
__hisnan
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
log
,
::
hlog
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
log
,
::
hlog
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
rsqrt
,
::
hrsqrt
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
rsqrt
,
::
hrsqrt
)
// MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, sin, ::hsin)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
sqrt
,
::
hsqrt
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
sqrt
,
::
hsqrt
)
// Use float to compute half overload
// Use float to compute half overload
...
@@ -141,18 +149,15 @@ MIGRAPHX_DEVICE_MATH_HALF(asin, ::asin)
...
@@ -141,18 +149,15 @@ MIGRAPHX_DEVICE_MATH_HALF(asin, ::asin)
MIGRAPHX_DEVICE_MATH_HALF
(
asinh
,
::
asinh
)
MIGRAPHX_DEVICE_MATH_HALF
(
asinh
,
::
asinh
)
MIGRAPHX_DEVICE_MATH_HALF
(
atan
,
::
atan
)
MIGRAPHX_DEVICE_MATH_HALF
(
atan
,
::
atan
)
MIGRAPHX_DEVICE_MATH_HALF
(
atanh
,
::
atanh
)
MIGRAPHX_DEVICE_MATH_HALF
(
atanh
,
::
atanh
)
MIGRAPHX_DEVICE_MATH_HALF
(
ceil
,
::
ceil
)
MIGRAPHX_DEVICE_MATH_HALF
(
cos
,
::
cos
)
MIGRAPHX_DEVICE_MATH_HALF
(
cosh
,
::
cosh
)
MIGRAPHX_DEVICE_MATH_HALF
(
cosh
,
::
cosh
)
MIGRAPHX_DEVICE_MATH_HALF
(
erf
,
::
erf
)
MIGRAPHX_DEVICE_MATH_HALF
(
erf
,
::
erf
)
MIGRAPHX_DEVICE_MATH_HALF
(
floor
,
::
floor
)
MIGRAPHX_DEVICE_MATH_HALF
(
isnan
,
::
isnan
)
MIGRAPHX_DEVICE_MATH_HALF
(
pow
,
::
pow
)
MIGRAPHX_DEVICE_MATH_HALF
(
pow
,
::
pow
)
MIGRAPHX_DEVICE_MATH_HALF
(
remainder
,
::
remainder
)
MIGRAPHX_DEVICE_MATH_HALF
(
round
,
::
round
)
MIGRAPHX_DEVICE_MATH_HALF
(
round
,
::
round
)
MIGRAPHX_DEVICE_MATH_HALF
(
sin
,
::
sin
)
MIGRAPHX_DEVICE_MATH_HALF
(
sinh
,
::
sinh
)
MIGRAPHX_DEVICE_MATH_HALF
(
sinh
,
::
sinh
)
MIGRAPHX_DEVICE_MATH_HALF
(
tan
,
::
tan
)
MIGRAPHX_DEVICE_MATH_HALF
(
tan
,
::
tan
)
MIGRAPHX_DEVICE_MATH_HALF
(
tanh
,
::
tanh
)
MIGRAPHX_DEVICE_MATH_HALF
(
tanh
,
::
tanh
)
MIGRAPHX_DEVICE_MATH_HALF
(
fmod
,
::
fmod
)
// Map math functions to hip half2 functions
// Map math functions to hip half2 functions
// The half2 type is defined in include/hip/amd_detail/hip_fp16_gcc.h and is 2 16-bit floats
// The half2 type is defined in include/hip/amd_detail/hip_fp16_gcc.h and is 2 16-bit floats
...
@@ -161,19 +166,19 @@ MIGRAPHX_DEVICE_MATH_HALF(tanh, ::tanh)
...
@@ -161,19 +166,19 @@ MIGRAPHX_DEVICE_MATH_HALF(tanh, ::tanh)
// at this time are: exp2, exp10, log2, log10, isinf
// at this time are: exp2, exp10, log2, log10, isinf
MIGRAPHX_DEVICE_MATH_HALF2
(
abs
,
::
__habs2
)
MIGRAPHX_DEVICE_MATH_HALF2
(
abs
,
::
__habs2
)
MIGRAPHX_DEVICE_MATH_HALF2
(
ceil
,
::
h2ceil
)
MIGRAPHX_DEVICE_MATH_HALF2
(
ceil
,
::
h2ceil
)
MIGRAPHX_DEVICE_MATH_HALF2
(
floor
,
::
h2floor
)
MIGRAPHX_DEVICE_MATH_HALF2
(
sin
,
::
h2sin
)
MIGRAPHX_DEVICE_MATH_HALF2
(
cos
,
::
h2cos
)
MIGRAPHX_DEVICE_MATH_HALF2
(
cos
,
::
h2cos
)
MIGRAPHX_DEVICE_MATH_HALF2
(
exp
,
::
h2exp
)
MIGRAPHX_DEVICE_MATH_HALF2
(
exp
,
::
h2exp
)
MIGRAPHX_DEVICE_MATH_HALF2
(
exp2
,
::
h2exp2
)
MIGRAPHX_DEVICE_MATH_HALF2
(
exp10
,
::
h2exp10
)
MIGRAPHX_DEVICE_MATH_HALF2
(
exp10
,
::
h2exp10
)
MIGRAPHX_DEVICE_MATH_HALF2
(
log2
,
::
h2log2
)
MIGRAPHX_DEVICE_MATH_HALF2
(
exp2
,
::
h2exp2
)
MIGRAPHX_DEVICE_MATH_HALF2
(
floor
,
::
h2floor
)
MIGRAPHX_DEVICE_MATH_HALF2
(
isinf
,
::
__hisinf2
)
MIGRAPHX_DEVICE_MATH_HALF2
(
isnan
,
::
__hisnan2
)
MIGRAPHX_DEVICE_MATH_HALF2
(
log
,
::
h2log
)
MIGRAPHX_DEVICE_MATH_HALF2
(
log
,
::
h2log
)
MIGRAPHX_DEVICE_MATH_HALF2
(
log10
,
::
h2log10
)
MIGRAPHX_DEVICE_MATH_HALF2
(
log10
,
::
h2log10
)
MIGRAPHX_DEVICE_MATH_HALF2
(
log2
,
::
h2log2
)
MIGRAPHX_DEVICE_MATH_HALF2
(
rsqrt
,
::
h2rsqrt
)
MIGRAPHX_DEVICE_MATH_HALF2
(
rsqrt
,
::
h2rsqrt
)
// MIGRAPHX_DEVICE_MATH_HALF2(sin, ::h2sin)
MIGRAPHX_DEVICE_MATH_HALF2
(
sqrt
,
::
h2sqrt
)
MIGRAPHX_DEVICE_MATH_HALF2
(
sqrt
,
::
h2sqrt
)
MIGRAPHX_DEVICE_MATH_HALF2
(
isinf
,
::
__hisinf2
)
MIGRAPHX_DEVICE_MATH_HALF2
(
isnan
,
::
__hisnan2
)
template
<
class
T
,
class
U
>
template
<
class
T
,
class
U
>
constexpr
auto
where
(
bool
cond
,
const
T
&
a
,
const
U
&
b
)
constexpr
auto
where
(
bool
cond
,
const
T
&
a
,
const
U
&
b
)
...
@@ -213,6 +218,14 @@ constexpr auto min(const T& a, const U& b)
...
@@ -213,6 +218,14 @@ constexpr auto min(const T& a, const U& b)
return
min
<
common_type_t
<
T
,
U
>>
(
a
,
b
);
return
min
<
common_type_t
<
T
,
U
>>
(
a
,
b
);
}
}
// Sin for half is broken on hip, so use cos instead
template
<
class
T
,
MIGRAPHX_REQUIRES
(
is_same
<
vec_type
<
T
>,
half
>
{})
>
constexpr
T
sin
(
T
x
)
{
constexpr
const
T
shift
=
M_PI_2
;
return
migraphx
::
cos
(
shift
-
x
);
}
MIGRAPHX_DEVICE_MATH_VEC
(
abs
)
MIGRAPHX_DEVICE_MATH_VEC
(
abs
)
MIGRAPHX_DEVICE_MATH_VEC
(
acos
)
MIGRAPHX_DEVICE_MATH_VEC
(
acos
)
MIGRAPHX_DEVICE_MATH_VEC
(
acosh
)
MIGRAPHX_DEVICE_MATH_VEC
(
acosh
)
...
@@ -226,11 +239,13 @@ MIGRAPHX_DEVICE_MATH_VEC(cosh)
...
@@ -226,11 +239,13 @@ MIGRAPHX_DEVICE_MATH_VEC(cosh)
MIGRAPHX_DEVICE_MATH_VEC
(
erf
)
MIGRAPHX_DEVICE_MATH_VEC
(
erf
)
MIGRAPHX_DEVICE_MATH_VEC
(
exp
)
MIGRAPHX_DEVICE_MATH_VEC
(
exp
)
MIGRAPHX_DEVICE_MATH_VEC
(
floor
)
MIGRAPHX_DEVICE_MATH_VEC
(
floor
)
MIGRAPHX_DEVICE_MATH_VEC
(
fmod
)
MIGRAPHX_DEVICE_MATH_VEC
(
isnan
)
MIGRAPHX_DEVICE_MATH_VEC
(
isnan
)
MIGRAPHX_DEVICE_MATH_VEC
(
log
)
MIGRAPHX_DEVICE_MATH_VEC
(
log
)
MIGRAPHX_DEVICE_MATH_VEC
(
max
)
MIGRAPHX_DEVICE_MATH_VEC
(
max
)
MIGRAPHX_DEVICE_MATH_VEC
(
min
)
MIGRAPHX_DEVICE_MATH_VEC
(
min
)
MIGRAPHX_DEVICE_MATH_VEC
(
pow
)
MIGRAPHX_DEVICE_MATH_VEC
(
pow
)
MIGRAPHX_DEVICE_MATH_VEC
(
remainder
)
MIGRAPHX_DEVICE_MATH_VEC
(
round
)
MIGRAPHX_DEVICE_MATH_VEC
(
round
)
MIGRAPHX_DEVICE_MATH_VEC
(
rsqrt
)
MIGRAPHX_DEVICE_MATH_VEC
(
rsqrt
)
MIGRAPHX_DEVICE_MATH_VEC
(
sin
)
MIGRAPHX_DEVICE_MATH_VEC
(
sin
)
...
...
src/targets/gpu/kernels/include/migraphx/kernels/ops.hpp
View file @
870a396b
...
@@ -56,6 +56,16 @@ struct id
...
@@ -56,6 +56,16 @@ struct id
}
}
};
};
template
<
class
T
>
struct
convert_to
{
template
<
class
U
>
MIGRAPHX_DEVICE_CONSTEXPR
auto
operator
()(
U
x
)
const
{
return
convert
<
T
>
(
x
);
}
};
struct
mean
struct
mean
{
{
index_int
item_num
=
1
;
index_int
item_num
=
1
;
...
...
src/targets/gpu/include/migraphx/
gpu/where
.hpp
→
src/targets/gpu/
kernels/
include/migraphx/
kernels/pad
.hpp
View file @
870a396b
...
@@ -21,44 +21,43 @@
...
@@ -21,44 +21,43 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
* THE SOFTWARE.
*/
*/
#ifndef MIGRAPHX_GUARD_
RTGLIB_WHERE
_HPP
#ifndef MIGRAPHX_GUARD_
KERNELS_PAD
_HPP
#define MIGRAPHX_GUARD_
RTGLIB_WHERE
_HPP
#define MIGRAPHX_GUARD_
KERNELS_PAD
_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/kernels/shape.hpp>
#include <migraphx/gpu/device/where.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/ranges.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
hip_where
:
ternary_device
<
hip_where
,
device
::
where
>
template
<
class
Offsets
,
class
Input
,
class
Output
,
class
PadVal
>
__device__
void
pad
(
const
index
&
idx
,
const
Offsets
&
offsets
,
const
Input
&
input
,
Output
&
output
,
const
PadVal
&
pad_val
)
{
{
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
auto
output_shape
=
output
.
get_shape
();
{
idx
.
global_stride
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
check_shapes
{
inputs
,
*
this
}.
has
(
4
).
same_dims
();
// 1. get current multi-index for output
auto
s1
=
inputs
.
at
(
1
);
// 2. get the size of the input to determine input boundaries
auto
s2
=
inputs
.
at
(
2
);
// 3. compute the corresponding multi-index for input by accounting for offsets
if
(
s1
==
s2
and
s1
.
packed
())
// 4. if current multi-index is within offsets or input's new multi-index is out of bounds,
{
// use pad value instead of input's value
return
s1
;
auto
multi
=
output_shape
.
multi
(
i
);
}
auto
input_bounds
=
input
.
get_shape
().
lens
;
else
if
(
s1
.
packed
()
!=
s2
.
packed
())
auto
input_idx
=
multi
-
offsets
;
{
auto
range_multi
=
range
(
multi
.
size
());
return
s1
.
packed
()
?
s1
:
s2
;
}
if
(
any_of
(
range_multi
.
begin
(),
range_multi
.
end
(),
[
&
](
auto
j
)
{
else
if
(
s1
.
broadcasted
()
!=
s2
.
broadcasted
())
return
multi
[
j
]
<
offsets
[
j
]
or
input_idx
[
j
]
>=
input_bounds
[
j
];
{
}))
return
s1
.
broadcasted
()
?
s2
.
with_lens
(
s1
.
lens
())
:
s1
.
with_lens
(
s1
.
lens
());
output
[
multi
]
=
pad_val
;
}
else
else
{
output
[
multi
]
=
input
[
input_idx
];
return
{
s1
.
type
(),
s1
.
lens
()};
});
}
}
}
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
}
// namespace migraphx
#endif
#endif
Prev
1
…
12
13
14
15
16
17
18
19
20
…
24
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment