Commit 870a396b authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

manual merge

parents 228b665c d309e02f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_UNARY_NOT_HPP
#define MIGRAPHX_GUARD_RTGLIB_UNARY_NOT_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/unary_not.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct hip_unary_not : unary_device<hip_unary_not, device::unary_not>
{
std::string name() const { return "gpu::not"; }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -38,16 +38,19 @@ using namespace migraphx::gpu::gen; // NOLINT
static const char* const concat_kernel = R"__migraphx__(
#include <migraphx/kernels/concat.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <migraphx/kernels/ops.hpp>
#include <args.hpp>
namespace migraphx {
${preamble}
extern "C" {
__global__ void ${kernel}(${params})
{
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto y, auto... xs) {
concat<${axis}>(y, xs...);
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto y, ${concat_params}, auto... xs) {
concat<${axis}>(${concat_args})(${post}, y, xs...);
});
}
......@@ -68,28 +71,42 @@ struct concat_compiler : compiler<concat_compiler>
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
// TODO: Use reduce_dims
auto num_of_concat_inputs = v.get("concat_inputs", inputs.size() - 1);
hip_compile_options options;
options.inputs = inputs;
options.output = inputs.back();
options.params = "-Wno-float-equal";
auto axis = find_fast_axis(options.inputs);
auto vec = vectorize::elements(axis, options.inputs);
options.kernel_name = v.get("kernel", "concat_kernel");
auto axis = find_fast_axis(options.inputs);
auto vec = vectorize::elements(ctx, axis, options.inputs);
options.set_launch_params(
v, compute_global_for(ctx, get_concat_elements(options.inputs) / vec.size, 256));
auto src = interpolate_string(concat_kernel,
{{"kernel", options.kernel_name},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"transformers", make_transformer_args(vec)},
{"axis", v.at("axis").to<std::string>()}});
auto src = interpolate_string(
concat_kernel,
{{"kernel", options.kernel_name},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"concat_params", enum_params(num_of_concat_inputs, "auto concat_x")},
{"concat_args", enum_params(num_of_concat_inputs, "concat_x")},
{"post", v.get("post", std::string{"op::id{}"})},
{"transformers", make_transformer_args(vec)},
{"preamble", v.get("preamble", std::string{})},
{"axis", v.at("axis").to<std::string>()}});
return compile_hip_code_object(src, options);
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
auto v = op.to_value();
if(not ins->module_inputs().empty())
{
auto* pm = ins->module_inputs().front();
v["concat_inputs"] = ins->inputs().size() - pm->get_parameter_names().size();
v["preamble"] = generate_pointwise(*pm, "post_concat");
v["post"] = "MIGRAPHX_LIFT(post_concat)";
v["kernel"] = "concat_" + generate_name_from_ops(*pm) + "_kernel";
}
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
}
};
......
......@@ -21,42 +21,69 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP
#define MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP
#include <migraphx/op/softmax.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/reflect.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
// NOLINTNEXTLINE
static const char* const gather_kernel = R"__migraphx__(
#include <migraphx/kernels/gather.hpp>
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/generic_constant.hpp>
#include <args.hpp>
namespace migraphx {
extern "C" {
struct hip_softmax
__global__ void gather_kernel(void* in_data, void* in_indices, void* output)
{
op::softmax op;
make_tensors()(in_data, in_indices, output)([](auto&&... xs) {
gather<${axis}>(xs...);
});
}
}
} // namespace migraphx
template <class Self, class F>
static auto reflect(Self& self, F f)
)__migraphx__";
struct gather_compiler : compiler<gather_compiler>
{
std::vector<std::string> names() const { return {"gather"}; }
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
return migraphx::reflect(self.op, f);
hip_compile_options options;
const auto& out_s = inputs.back();
options.set_launch_params(v, compute_global_for(ctx, out_s.elements()));
options.inputs = inputs;
options.output = out_s;
options.kernel_name = "gather_kernel";
options.virtual_inputs = inputs;
auto axis = v.at("axis").to<std::string>();
auto src = interpolate_string(gather_kernel, {{"axis", axis}});
return compile_hip_code_object(src, options);
}
std::string name() const { return "gpu::softmax"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return shapes.size() - 1;
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -65,7 +65,7 @@ struct gathernd_compiler : compiler<gathernd_compiler>
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
hip_compile_options options;
auto out_s = inputs.back();
const auto& out_s = inputs.back();
options.set_launch_params(v, compute_global_for(ctx, out_s.elements()));
options.inputs = inputs;
options.output = out_s;
......
......@@ -50,9 +50,8 @@ ${preamble}
extern "C" {
__global__ void ${kernel}(${params})
{
auto idx = make_index();
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto... xs) {
${layernorm}<${axis}>(${post}, xs...);
${layernorm}<${axis}>(${post}, ${eps}, xs...);
});
}
......@@ -78,9 +77,8 @@ struct layernorm_compiler : compiler<layernorm_compiler>
// Vectorize if the axis is a reduction axis
if(axis == faxis)
{
vec = vectorize::elements(faxis, inputs);
vec = vectorize::elements(ctx, faxis, inputs);
}
auto preloads = preload::broadcasts(axis, inputs);
auto relements = inputs[0].lens()[axis] / vec.size;
auto nelements = (inputs.back().elements() / inputs[0].lens()[axis]);
auto block_size = compute_block_size(relements, 256);
......@@ -90,16 +88,18 @@ struct layernorm_compiler : compiler<layernorm_compiler>
options.output = inputs.back();
options.inputs = inputs;
options.kernel_name = v.get("kernel", "layernorm_kernel");
auto eps = v.get("epsilon", 1e-12f);
auto src = interpolate_string(layernorm_kernel,
{{"kernel", options.kernel_name},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"transformers", make_transformer_args(preloads, vec)},
{"transformers", make_transformer_args(vec)},
{"post", v.get("post", std::string{"op::id{}"})},
{"preamble", v.get("preamble", std::string{})},
{"layernorm", v.get("layernorm", std::string{"layernorm"})},
{"axis", to_string(axis)}});
{"axis", to_string(axis)},
{"eps", to_string(eps)}});
return compile_hip_code_object(src, options);
}
......
......@@ -24,7 +24,6 @@
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/mlir.hpp>
namespace migraphx {
......@@ -41,7 +40,7 @@ struct mlir_compiler : compiler<mlir_compiler>
{
auto* smod = ins->module_inputs().front();
assert(smod->get_parameter_names().size() == ins->inputs().size() - 1);
return insert(compile_mlir(ctx, *smod));
return insert(compile_mlir(ctx, *smod, ins->inputs()));
}
compiler_replace insert(code_object_op co) const
......
......@@ -21,65 +21,80 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/batch_norm_inference.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/float_equal.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_batch_norm_inference::compute_shape(const std::vector<shape>& inputs) const
using namespace migraphx::gpu::gen; // NOLINT
static const char* const pointwise_kernel = R"__migraphx__(
#include <migraphx/kernels/pad.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/ops.hpp>
#include <args.hpp>
namespace migraphx {
extern "C" {
__global__ void pad_kernel(void* input_p, void* output_p)
{
check_shapes{inputs, *this}.has(6);
check_shapes{inputs.data(), inputs.data() + 1, *this}.same_ndims().max_ndims(5);
return op.compute_shape({inputs.at(0), inputs.at(1), inputs.at(2), inputs.at(3), inputs.at(4)});
auto offsets = index_ints<${offsets}>{};
auto idx = make_index();
make_tensors()(input_p, output_p)([&](auto input, auto output) {
pad(idx, offsets, input, output, ${pad_val});
});
}
}
inline shape reshape_to_2d(const shape& input)
{
auto dims = input.lens();
if(dims.size() >= 4)
return input;
} // namespace migraphx
std::vector<size_t> new_dims(dims.begin(), dims.end());
std::size_t num = 4 - dims.size();
new_dims.insert(new_dims.end(), num, 1);
return {input.type(), new_dims};
}
)__migraphx__";
argument miopen_batch_norm_inference::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
struct pad_compiler : compiler<pad_compiler>
{
shape x_shape = args[0].get_shape();
shape y_shape = output_shape;
shape bn_shape = args[3].get_shape();
std::vector<std::string> names() const { return {"pad"}; }
auto x_desc = make_tensor(reshape_to_2d(x_shape));
auto y_desc = make_tensor(reshape_to_2d(y_shape));
auto bn_desc = make_tensor(reshape_to_2d(bn_shape));
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
hip_compile_options options;
options.inputs = inputs;
options.output = inputs.back();
options.virtual_inputs = reduce_dims(inputs);
options.kernel_name = "pad_kernel";
options.set_launch_params(v, compute_global_for(ctx, inputs.at(1).elements()));
float alpha = 1.0;
float beta = 0.0f;
auto pad_val = v.get("value", 0.f);
auto pad_val_string = to_string(pad_val);
if(float_equal(pad_val, std::numeric_limits<float>::lowest()))
pad_val_string = "lowest{}";
if(float_equal(pad_val, std::numeric_limits<float>::max()))
pad_val_string = "highest{}";
miopenBatchNormalizationForwardInference(ctx.get_stream().get_miopen(),
miopenBatchNormMode_t(op.bn_mode),
&alpha,
&beta,
x_desc.get(),
args[0].implicit(),
y_desc.get(),
args[5].implicit(),
bn_desc.get(),
args[1].implicit(),
args[2].implicit(),
args[3].implicit(),
args[4].implicit(),
op.epsilon);
auto padding = v.at("pads").to_vector<int64_t>();
auto input_lens = inputs.front().lens();
std::vector<size_t> offsets(input_lens.size());
std::copy(padding.begin(), padding.begin() + offsets.size(), offsets.begin());
return args[5];
}
auto src = interpolate_string(
pointwise_kernel,
{{"pad_val", to_string(pad_val_string)}, {"offsets", to_string_range(offsets)}});
return compile_hip_code_object(src, options);
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -75,20 +75,16 @@ struct pointwise_compiler : compiler<pointwise_compiler>
options.virtual_inputs = reduce_dims(inputs);
options.params = "-Wno-float-equal";
auto axis = find_fast_axis(options.virtual_inputs);
auto vec = vectorize::elements(axis, options.virtual_inputs);
auto preloads = preload::broadcasts(axis, options.virtual_inputs);
auto vec = vectorize::elements(ctx, axis, options.virtual_inputs);
options.kernel_name = v.get("kernel", "kernel");
options.set_launch_params(
v,
compute_global_for(ctx,
options.output.elements() / vec.size,
oversubscribe_if(not preloads.is_preloading())));
v, compute_global_for(ctx, options.output.elements() / vec.size, 256));
auto src = interpolate_string(pointwise_kernel,
{{"kernel", options.kernel_name},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"lambda", v.at("lambda").to<std::string>()},
{"transformers", make_transformer_args(preloads, vec)},
{"transformers", make_transformer_args(vec)},
{"preamble", v.get("preamble", std::string{})}});
return compile_hip_code_object(src, options);
}
......
......@@ -121,7 +121,7 @@ struct reduce_compiler : compiler<reduce_compiler>
// Vectorize if the axis is a reduction axis
if(options.virtual_inputs.back().lens()[faxis] == 1)
{
vec = vectorize::elements(faxis, options.virtual_inputs);
vec = vectorize::elements(ctx, faxis, options.virtual_inputs);
}
auto relements = get_reduce_elements(options.virtual_inputs) / vec.size;
auto nelements = options.virtual_inputs.back().elements();
......@@ -156,16 +156,25 @@ struct reduce_compiler : compiler<reduce_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
value v = value::object{};
auto reduce_elements = get_reduce_elements(ins->inputs());
value v = value::object{};
if(op.name() == "reduce_sum")
{
v["reduction"] = "op::sum{}";
}
else if(op.name() == "reduce_mean")
{
v["reduction"] = "op::sum{}";
v["write"] = "op::mean{" + std::to_string(reduce_elements) + "}";
auto reduce_elements = get_reduce_elements(ins->inputs());
auto reduce_type = ins->inputs().front()->get_shape().type();
v["reduction"] = "op::sum{}";
std::string mean = "op::mean{" + std::to_string(reduce_elements) + "}";
// Use float accumulator when reduction size is too large for half
if(reduce_type == shape::half_type and reduce_elements > 16384)
v["read"] = "compose(" + mean + ", op::convert_to<float>{})";
else if(contains({shape::float_type, shape::half_type, shape::double_type},
reduce_type))
v["read"] = mean;
else
v["write"] = mean;
}
else if(op.name() == "reduce_max")
{
......
......@@ -79,9 +79,10 @@ struct scatternd_compiler : compiler<scatternd_compiler>
{
assert(starts_with(op.name(), "scatternd_"));
auto reduction = op.name().substr(10);
return insert(compile_op(ctx,
to_shapes({ins->inputs().begin() + 1, ins->inputs().end()}),
{{"reduction", reduction}}));
return insert(compile_op(
ctx,
to_shapes(std::vector<instruction_ref>{ins->inputs().begin() + 1, ins->inputs().end()}),
{{"reduction", reduction}}));
}
compiler_replace insert(const operation& op) const
......
......@@ -32,6 +32,8 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_USE_FAST_SOFTMAX)
using namespace migraphx::gpu::gen; // NOLINT
static const char* const softmax_kernel = R"__migraphx__(
......@@ -69,7 +71,7 @@ struct softmax_compiler : compiler<softmax_compiler>
// Vectorize if the axis is a reduction axis
if(faxis == axis)
{
vec = vectorize::elements(faxis, inputs);
vec = vectorize::elements(ctx, faxis, inputs);
}
auto relements = inputs[0].lens()[axis] / vec.size;
auto nelements = (inputs.back().elements() / inputs[0].lens()[axis]);
......@@ -81,6 +83,9 @@ struct softmax_compiler : compiler<softmax_compiler>
options.inputs = inputs;
options.kernel_name = "softmax_kernel";
if(enabled(MIGRAPHX_USE_FAST_SOFTMAX{}))
options.params = "-DMIGRAPHX_USE_FAST_SOFTMAX";
auto src = interpolate_string(
softmax_kernel,
{{"transformers", make_transformer_args(vec)}, {"axis", to_string(axis)}});
......
......@@ -33,49 +33,95 @@
namespace migraphx {
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_ARRAY_OP(op, binary_op) \
template <class U> \
constexpr array& operator op(const array<U, N>& x) \
{ \
for(index_int i = 0; i < N; i++) \
d[i] op x[i]; \
return *this; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
constexpr array& operator op(const U& x) \
{ \
for(index_int i = 0; i < N; i++) \
d[i] op x; \
return *this; \
} \
template <class U> \
friend constexpr auto operator binary_op(const array& x, const array<U, N>& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
for(index_int i = 0; i < N; i++) \
z[i] = x[i] binary_op y[i]; \
return z; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
friend constexpr auto operator binary_op(const array& x, const U& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
for(index_int i = 0; i < N; i++) \
z[i] = x[i] binary_op y; \
return z; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
friend constexpr auto operator binary_op(const U& x, const array& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
for(index_int i = 0; i < N; i++) \
z[i] = x binary_op y[i]; \
return z; \
#define MIGRAPHX_DEVICE_ARRAY_OP(op, binary_op) \
template <class U> \
constexpr array& operator op(const array<U, N>& x) \
{ \
array_detail::array_for_each(*this, x)([](auto& sy, auto sx) { sy op sx; }); \
return *this; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
constexpr array& operator op(const U& x) \
{ \
array_detail::array_for_each (*this)([&](auto& sy) { sy op x; }); \
return *this; \
} \
template <class U> \
friend constexpr auto operator binary_op(const array& x, const array<U, N>& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
array_detail::array_for_each(z, x, y)( \
[&](auto& sz, auto sx, auto sy) { sz = sx binary_op sy; }); \
return z; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
friend constexpr auto operator binary_op(const array& x, const U& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
array_detail::array_for_each(z, x)([&](auto& sz, auto sx) { sz = sx binary_op y; }); \
return z; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
friend constexpr auto operator binary_op(const U& x, const array& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
array_detail::array_for_each(z, y)([&](auto& sz, auto sy) { sz = x binary_op sy; }); \
return z; \
}
namespace array_detail {
template <class T>
constexpr auto is_vectorizable()
{
return not is_same<T, bool>{} and (is_fundamental<T>{} or is_same<T, half>{});
}
template <class T>
__device__ auto& array2vec(T& x)
{
using value_type = typename T::value_type;
constexpr auto size = decltype(x.size()){};
using type = vec<value_type, size>;
if constexpr(is_const<T>{})
return reinterpret_cast<const type&>(x);
else
return reinterpret_cast<type&>(x);
}
template <class T, class... Ts>
constexpr auto array_for_each(T& x, Ts&... xs)
{
MIGRAPHX_ASSERT(((x.size() == xs.size()) and ...));
return [&](auto f) {
constexpr auto size = decltype(x.size()){};
if constexpr((is_vectorizable<typename T::value_type>() or
(is_vectorizable<typename Ts::value_type>() or ...)) and
size <= 8 and size > 1 and (size % 2 == 0))
{
if(__builtin_is_constant_evaluated())
{
for(index_int i = 0; i < size; i++)
f(x[i], xs[i]...);
}
else
{
using vec_type = std::remove_reference_t<decltype(array2vec(x))>;
f(array2vec(x), __builtin_convertvector(array2vec(xs), vec_type)...);
}
}
else
{
for(index_int i = 0; i < size; i++)
f(x[i], xs[i]...);
}
};
}
} // namespace array_detail
template <class T, index_int N>
struct array
{
using value_type = T;
T d[N];
constexpr T& operator[](index_int i)
{
......@@ -108,18 +154,13 @@ struct array
constexpr T dot(const array& x) const
{
T result = 0;
for(index_int i = 0; i < N; i++)
result += x[i] * d[i];
return result;
auto r = x * (*this);
return r.reduce([](auto a, auto b) { return a + b; }, 0);
}
constexpr T product() const
{
T result = 1;
for(index_int i = 0; i < N; i++)
result *= d[i];
return result;
return reduce([](auto x, auto y) { return x * y; }, 1);
}
constexpr T single(index_int width = 100) const
......@@ -134,6 +175,24 @@ struct array
return result;
}
template <class F>
constexpr auto apply(F f) const
{
array<decltype(f(d[0])), N> result;
for(index_int i = 0; i < N; i++)
result[i] = f(d[i]);
return result;
}
template <class F>
constexpr auto reduce(F f, T init) const
{
T result = init;
for(index_int i = 0; i < N; i++)
result = f(result, d[i]);
return result;
}
MIGRAPHX_DEVICE_ARRAY_OP(+=, +)
MIGRAPHX_DEVICE_ARRAY_OP(-=, -)
MIGRAPHX_DEVICE_ARRAY_OP(*=, *)
......@@ -201,6 +260,11 @@ struct array
}
};
template <class T, class... Ts>
constexpr array<T, sizeof...(Ts) + 1> make_array(T x, Ts... xs)
{
return {x, static_cast<T>(xs)...};
}
template <class T, T... Xs>
struct integral_const_array : array<T, sizeof...(Xs)>
{
......
......@@ -41,7 +41,15 @@ constexpr auto concat_slice(Output out, Input, Start)
return Start{} * output_shape.strides[Axis];
});
constexpr auto s = make_shape(lens, strides);
return make_tensor_view(&out[offset], s);
MIGRAPHX_ASSERT(offset < out.get_shape().element_space());
MIGRAPHX_ASSERT((s.element_space() + offset) <= out.get_shape().element_space());
return make_tensor_view(out.data() + offset, s);
}
template <index_int Axis, class Input, class Start, class... Ts>
constexpr auto concat_slices(Input input, Start start, Ts... xs)
{
return [=](auto f) { f(concat_slice<Axis>(xs, input, start)...); };
}
template <index_int Axis, class Input>
......@@ -51,15 +59,19 @@ constexpr auto concat_ends(Input)
return _c<lens[Axis]>;
}
template <index_int Axis, class Output, class... Inputs>
__device__ void concat(Output output, Inputs... inputs)
template <index_int Axis, class... Inputs>
__device__ auto concat(Inputs... inputs)
{
auto idx = make_index();
fold([&](auto start, auto input) {
auto y = concat_slice<Axis>(output, input, start);
idx.global_stride(input.get_shape().elements(), [&](auto i) { y[i] = input[i]; });
return start + concat_ends<Axis>(input);
})(_c<0>, inputs...);
return [=](auto f, auto... ts) {
auto idx = make_index();
fold([&](auto start, auto input) {
concat_slices<Axis>(input, start, ts...)([&](auto y, auto... xs) {
idx.global_stride(input.get_shape().elements(),
[&](auto i) { y[i] = f(input[i], xs[i]...); });
});
return start + concat_ends<Axis>(input);
})(_c<0>, inputs...);
};
}
} // namespace migraphx
......
......@@ -187,6 +187,14 @@ constexpr auto fold(F f)
return [=](auto&&... xs) { return fold_impl(f, static_cast<decltype(xs)&&>(xs)...); };
}
template <class... Fs>
constexpr auto compose(Fs... fs)
{
return fold([](auto f, auto g) {
return [=](auto&&... xs) { return f(g(static_cast<decltype(xs)>(xs)...)); };
})(fs...);
}
template <class... Ts>
constexpr auto pack(Ts... xs)
{
......
......@@ -21,43 +21,44 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_CONVERT_HPP
#define MIGRAPHX_GUARD_RTGLIB_CONVERT_HPP
#ifndef MIGRAPHX_GUARD_KERNELS_GATHER_HPP
#define MIGRAPHX_GUARD_KERNELS_GATHER_HPP
#include <migraphx/argument.hpp>
#include <migraphx/reflect.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/shape.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/tensor_view.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
template <int Axis, class Input, class Indices>
constexpr auto gather_shape(Input input, Indices indices)
{
auto lengths = input.lens;
lengths[Axis] = indices.elements();
return make_shape(lengths, input.strides);
}
struct hip_convert
template <int Axis, class Input, class Indices, class Output>
__device__ void gather(Input input, Indices indices, Output output)
{
op::convert op;
auto ind = make_index();
auto axis_dim_size = input.get_shape().lens[Axis];
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
constexpr auto out_comp = gather_shape<Axis>(get_shape_c<Input>{}, get_shape_c<Indices>{});
std::string name() const { return "gpu::convert"; }
ind.global_stride(output.get_shape().elements(), [&](auto i) {
auto idx = out_comp.multi(i);
auto in_index = indices[idx[Axis]];
shape compute_shape(std::vector<shape> inputs) const;
auto new_in_index = (in_index < 0) ? in_index + axis_dim_size : in_index;
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const;
idx[Axis] = new_in_index;
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
output[i] = input[idx];
});
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -28,9 +28,60 @@
#include <migraphx/kernels/types.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/debug.hpp>
namespace migraphx {
#if defined(MIGRAPHX_NGLOBAL) && defined(MIGRAPHX_NLOCAL)
#define MIGRAPHX_NGROUP ((MIGRAPHX_NGLOBAL + MIGRAPHX_NLOCAL - 1) / MIGRAPHX_NLOCAL)
#endif
inline __device__ __attribute__((const)) index_int compute_global_size()
{
#ifdef MIGRAPHX_NGLOBAL
return MIGRAPHX_NGLOBAL;
#else
// This actualy works even when global is not divisible by local size.
// This doesnt actually do a multiplicatiosn. Instead it calls a device
// function to get the global size, which is why it works.
return blockDim.x * gridDim.x; // NOLINT
#endif
}
// We cant just use blockDim.x to get the local size since its broken on hip
// when global is not divisible by local size. In this case, we calulate the
// size for the last group.
inline __device__ __attribute__((const)) index_int compute_local_size()
{
#ifdef MIGRAPHX_NLOCAL
const auto nlocal = MIGRAPHX_NLOCAL;
#else
const auto nlocal = blockDim.x; // NOLINT
#endif
#ifdef MIGRAPHX_NGROUP
const auto ngroup = MIGRAPHX_NGROUP;
#else
const auto ngroup = gridDim.x; // NOLINT
#endif
const auto group_id = blockIdx.x; // NOLINT
const auto nglobal = compute_global_size();
if(group_id == ngroup - 1)
{
return 1 + (nglobal - 1) % nlocal;
}
else
{
return nlocal; // NOLINT
}
}
#ifdef MIGRAPHX_NGROUP
// If global is divisible by local then local can be a const
#if(MIGRAPHX_NGLOBAL % MIGRAPHX_NLOCAL == 0) || (MIGRAPHX_NGROUP == 1)
#define MIGRAPHX_HAS_CONST_LOCAL 1
#endif
#endif
struct index
{
index_int global = 0;
......@@ -38,20 +89,44 @@ struct index
index_int group = 0;
#ifdef MIGRAPHX_NGLOBAL
constexpr index_constant<MIGRAPHX_NGLOBAL> nglobal() const { return {}; }
constexpr index_constant<MIGRAPHX_NGLOBAL> nglobal() const
{
static_assert(MIGRAPHX_NGLOBAL > 0, "Global size must be greater than 0");
return {};
}
#else
__device__ index_int nglobal() const
{
return blockDim.x * gridDim.x; // NOLINT
MIGRAPHX_ASSERT(compute_global_size() > 0);
return compute_global_size(); // NOLINT
}
#endif
#ifdef MIGRAPHX_NLOCAL
constexpr index_constant<MIGRAPHX_NLOCAL> nlocal() const { return {}; }
#ifdef MIGRAPHX_HAS_CONST_LOCAL
constexpr index_constant<MIGRAPHX_NLOCAL> nlocal() const
{
static_assert(MIGRAPHX_NLOCAL > 0, "Local size must be greater than 0");
return {};
}
#else
__device__ index_int nlocal() const
{
return blockDim.x; // NOLINT
#ifdef MIGRAPHX_NGROUP
static_assert((MIGRAPHX_NGLOBAL % MIGRAPHX_NLOCAL != 0) and (MIGRAPHX_NGROUP > 1),
"Local size should be const");
#endif
MIGRAPHX_ASSERT(compute_local_size() > 0);
return compute_local_size(); // NOLINT
}
#endif
#ifdef MIGRAPHX_NLOCAL
constexpr index_constant<MIGRAPHX_NLOCAL> max_nlocal() const { return {}; }
#else
__device__ index_int max_nlocal() const
{
MIGRAPHX_ASSERT(blockDim.x > 0);
return blockDim.x;
}
#endif
template <class N, class Stride>
......@@ -63,6 +138,7 @@ struct index
template <class F, class N, class Stride>
static constexpr void for_stride(index_int start, N n, Stride stride, F f)
{
MIGRAPHX_ASSERT(start < stride);
if constexpr(not is_integral<N>{} and not is_integral<Stride>{} and
max_stride_iterations(n, stride) == 1)
{
......
......@@ -25,10 +25,17 @@
#define MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
#include <migraphx/kernels/reduce.hpp>
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/vec.hpp>
#include <migraphx/kernels/print.hpp>
namespace migraphx {
template <class T, index_int N, class Op>
constexpr auto vec_reduce(const array<T, N>& a, Op op)
{
return a.apply([&](auto x) { return vec_reduce(x, op); });
}
template <index_int Axis,
class F,
class BinOp,
......@@ -37,46 +44,46 @@ template <index_int Axis,
class Input2,
class... Inputs>
__device__ void generic_binary_layernorm(
F compute, BinOp op, Output output, Input1 input1, Input2 input2, Inputs... inputs)
F compute, BinOp op, float eps, Output output, Input1 input1, Input2 input2, Inputs... inputs)
{
using reduce_output = reduce::with_axis<Input1, Axis>;
reduce::block::run<reduce_output>([&](auto, auto r) {
using value_type = typename Input1::type;
constexpr auto relements = r.template elements<Input1>();
auto mean = [&](auto f) {
return r.reduce(op::sum{}, 0, [&](auto x1, auto x2) {
return f(x1, x2) / value_type{relements};
auto means =
r.reduce(op::sum{}, make_array<vec_type<value_type>>(0, 0), [&](auto x1, auto x2) {
auto x = op(x1, x2);
return make_array(x, x * x) * vec_type<value_type>{1.0 / relements};
})(input1, input2);
};
// mean(x)
auto mean_x = mean(op);
// mean(m ^ 2)
auto mean_m2 = mean([&](auto x1, auto x2) {
auto m = op(x1, x2) - mean_x;
return m * m;
});
auto mean_x = means[0];
auto mean_x2 = means[1];
auto variance = mean_x2 - (mean_x * mean_x);
value_type eps_val = eps; // implicit conversion for eps
r.inner([&](auto& y, auto x1, auto x2, auto... xs) {
auto m = op(x1, x2) - mean_x;
// m * rsqrt(mean(m ^ 2) + 1e-12)
y = compute(m * rsqrt(mean_m2 + value_type{1e-12}), xs...);
auto x = op(x1, x2);
auto m = x - mean_x;
// m * rsqrt(mean(m ^ 2) + epsilon)
y = compute(m * rsqrt(variance + eps_val), xs...);
})(output, input1, input2, inputs...);
});
}
template <index_int Axis, class F, class Output, class Input, class... Inputs>
__device__ void layernorm(F compute, Output output, Input input, Inputs... inputs)
__device__ void layernorm(F compute, float eps, Output output, Input input, Inputs... inputs)
{
generic_binary_layernorm<Axis>(
compute, [](auto x, auto) { return x; }, output, input, input, inputs...);
compute, [](auto x, auto) { return x; }, eps, output, input, input, inputs...);
}
template <index_int Axis, class F, class Output, class Input1, class Input2, class... Inputs>
__device__ void
add_layernorm(F compute, Output output, Input1 input1, Input2 input2, Inputs... inputs)
add_layernorm(F compute, float eps, Output output, Input1 input1, Input2 input2, Inputs... inputs)
{
generic_binary_layernorm<Axis>(
compute, [](auto x1, auto x2) { return x1 + x2; }, output, input1, input2, inputs...);
compute, [](auto x1, auto x2) { return x1 + x2; }, eps, output, input1, input2, inputs...);
}
} // namespace migraphx
......
......@@ -104,6 +104,7 @@ MIGRAPHX_DEVICE_MATH(floor, ::floor)
MIGRAPHX_DEVICE_MATH(isnan, ::isnan)
MIGRAPHX_DEVICE_MATH(log, ::log)
MIGRAPHX_DEVICE_MATH(pow, ::pow)
MIGRAPHX_DEVICE_MATH(remainder, ::remainder)
MIGRAPHX_DEVICE_MATH(round, ::round)
MIGRAPHX_DEVICE_MATH(rsqrt, ::rsqrt)
MIGRAPHX_DEVICE_MATH(sin, ::sin)
......@@ -111,6 +112,7 @@ MIGRAPHX_DEVICE_MATH(sinh, ::sinh)
MIGRAPHX_DEVICE_MATH(sqrt, ::sqrt)
MIGRAPHX_DEVICE_MATH(tan, ::tan)
MIGRAPHX_DEVICE_MATH(tanh, ::tanh)
MIGRAPHX_DEVICE_MATH(fmod, ::fmod)
// Float overloads
MIGRAPHX_DEVICE_MATH_FOR(float, acos, ::acosf)
......@@ -126,12 +128,18 @@ MIGRAPHX_DEVICE_MATH_FOR(float, sin, ::sinf)
MIGRAPHX_DEVICE_MATH_FOR(float, sinh, ::sinhf)
MIGRAPHX_DEVICE_MATH_FOR(float, tan, ::tanf)
MIGRAPHX_DEVICE_MATH_FOR(float, tanh, ::tanhf)
MIGRAPHX_DEVICE_MATH_FOR(float, fmod, ::fmodf)
// Builtin half functions
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, abs, ::__habs)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, ceil, ::hceil)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, cos, ::hcos)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, exp, ::hexp)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, floor, ::hfloor)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, isnan, ::__hisnan)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, log, ::hlog)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, rsqrt, ::hrsqrt)
// MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, sin, ::hsin)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, sqrt, ::hsqrt)
// Use float to compute half overload
......@@ -141,18 +149,15 @@ MIGRAPHX_DEVICE_MATH_HALF(asin, ::asin)
MIGRAPHX_DEVICE_MATH_HALF(asinh, ::asinh)
MIGRAPHX_DEVICE_MATH_HALF(atan, ::atan)
MIGRAPHX_DEVICE_MATH_HALF(atanh, ::atanh)
MIGRAPHX_DEVICE_MATH_HALF(ceil, ::ceil)
MIGRAPHX_DEVICE_MATH_HALF(cos, ::cos)
MIGRAPHX_DEVICE_MATH_HALF(cosh, ::cosh)
MIGRAPHX_DEVICE_MATH_HALF(erf, ::erf)
MIGRAPHX_DEVICE_MATH_HALF(floor, ::floor)
MIGRAPHX_DEVICE_MATH_HALF(isnan, ::isnan)
MIGRAPHX_DEVICE_MATH_HALF(pow, ::pow)
MIGRAPHX_DEVICE_MATH_HALF(remainder, ::remainder)
MIGRAPHX_DEVICE_MATH_HALF(round, ::round)
MIGRAPHX_DEVICE_MATH_HALF(sin, ::sin)
MIGRAPHX_DEVICE_MATH_HALF(sinh, ::sinh)
MIGRAPHX_DEVICE_MATH_HALF(tan, ::tan)
MIGRAPHX_DEVICE_MATH_HALF(tanh, ::tanh)
MIGRAPHX_DEVICE_MATH_HALF(fmod, ::fmod)
// Map math functions to hip half2 functions
// The half2 type is defined in include/hip/amd_detail/hip_fp16_gcc.h and is 2 16-bit floats
......@@ -161,19 +166,19 @@ MIGRAPHX_DEVICE_MATH_HALF(tanh, ::tanh)
// at this time are: exp2, exp10, log2, log10, isinf
MIGRAPHX_DEVICE_MATH_HALF2(abs, ::__habs2)
MIGRAPHX_DEVICE_MATH_HALF2(ceil, ::h2ceil)
MIGRAPHX_DEVICE_MATH_HALF2(floor, ::h2floor)
MIGRAPHX_DEVICE_MATH_HALF2(sin, ::h2sin)
MIGRAPHX_DEVICE_MATH_HALF2(cos, ::h2cos)
MIGRAPHX_DEVICE_MATH_HALF2(exp, ::h2exp)
MIGRAPHX_DEVICE_MATH_HALF2(exp2, ::h2exp2)
MIGRAPHX_DEVICE_MATH_HALF2(exp10, ::h2exp10)
MIGRAPHX_DEVICE_MATH_HALF2(log2, ::h2log2)
MIGRAPHX_DEVICE_MATH_HALF2(exp2, ::h2exp2)
MIGRAPHX_DEVICE_MATH_HALF2(floor, ::h2floor)
MIGRAPHX_DEVICE_MATH_HALF2(isinf, ::__hisinf2)
MIGRAPHX_DEVICE_MATH_HALF2(isnan, ::__hisnan2)
MIGRAPHX_DEVICE_MATH_HALF2(log, ::h2log)
MIGRAPHX_DEVICE_MATH_HALF2(log10, ::h2log10)
MIGRAPHX_DEVICE_MATH_HALF2(log2, ::h2log2)
MIGRAPHX_DEVICE_MATH_HALF2(rsqrt, ::h2rsqrt)
// MIGRAPHX_DEVICE_MATH_HALF2(sin, ::h2sin)
MIGRAPHX_DEVICE_MATH_HALF2(sqrt, ::h2sqrt)
MIGRAPHX_DEVICE_MATH_HALF2(isinf, ::__hisinf2)
MIGRAPHX_DEVICE_MATH_HALF2(isnan, ::__hisnan2)
template <class T, class U>
constexpr auto where(bool cond, const T& a, const U& b)
......@@ -213,6 +218,14 @@ constexpr auto min(const T& a, const U& b)
return min<common_type_t<T, U>>(a, b);
}
// Sin for half is broken on hip, so use cos instead
template <class T, MIGRAPHX_REQUIRES(is_same<vec_type<T>, half>{})>
constexpr T sin(T x)
{
constexpr const T shift = M_PI_2;
return migraphx::cos(shift - x);
}
MIGRAPHX_DEVICE_MATH_VEC(abs)
MIGRAPHX_DEVICE_MATH_VEC(acos)
MIGRAPHX_DEVICE_MATH_VEC(acosh)
......@@ -226,11 +239,13 @@ MIGRAPHX_DEVICE_MATH_VEC(cosh)
MIGRAPHX_DEVICE_MATH_VEC(erf)
MIGRAPHX_DEVICE_MATH_VEC(exp)
MIGRAPHX_DEVICE_MATH_VEC(floor)
MIGRAPHX_DEVICE_MATH_VEC(fmod)
MIGRAPHX_DEVICE_MATH_VEC(isnan)
MIGRAPHX_DEVICE_MATH_VEC(log)
MIGRAPHX_DEVICE_MATH_VEC(max)
MIGRAPHX_DEVICE_MATH_VEC(min)
MIGRAPHX_DEVICE_MATH_VEC(pow)
MIGRAPHX_DEVICE_MATH_VEC(remainder)
MIGRAPHX_DEVICE_MATH_VEC(round)
MIGRAPHX_DEVICE_MATH_VEC(rsqrt)
MIGRAPHX_DEVICE_MATH_VEC(sin)
......
......@@ -56,6 +56,16 @@ struct id
}
};
template <class T>
struct convert_to
{
template <class U>
MIGRAPHX_DEVICE_CONSTEXPR auto operator()(U x) const
{
return convert<T>(x);
}
};
struct mean
{
index_int item_num = 1;
......
......@@ -21,44 +21,43 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_WHERE_HPP
#define MIGRAPHX_GUARD_RTGLIB_WHERE_HPP
#ifndef MIGRAPHX_GUARD_KERNELS_PAD_HPP
#define MIGRAPHX_GUARD_KERNELS_PAD_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/where.hpp>
#include <migraphx/kernels/shape.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/ranges.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct hip_where : ternary_device<hip_where, device::where>
template <class Offsets, class Input, class Output, class PadVal>
__device__ void pad(const index& idx,
const Offsets& offsets,
const Input& input,
Output& output,
const PadVal& pad_val)
{
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(4).same_dims();
auto s1 = inputs.at(1);
auto s2 = inputs.at(2);
if(s1 == s2 and s1.packed())
{
return s1;
}
else if(s1.packed() != s2.packed())
{
return s1.packed() ? s1 : s2;
}
else if(s1.broadcasted() != s2.broadcasted())
{
return s1.broadcasted() ? s2.with_lens(s1.lens()) : s1.with_lens(s1.lens());
}
auto output_shape = output.get_shape();
idx.global_stride(output_shape.elements(), [&](auto i) {
// 1. get current multi-index for output
// 2. get the size of the input to determine input boundaries
// 3. compute the corresponding multi-index for input by accounting for offsets
// 4. if current multi-index is within offsets or input's new multi-index is out of bounds,
// use pad value instead of input's value
auto multi = output_shape.multi(i);
auto input_bounds = input.get_shape().lens;
auto input_idx = multi - offsets;
auto range_multi = range(multi.size());
if(any_of(range_multi.begin(), range_multi.end(), [&](auto j) {
return multi[j] < offsets[j] or input_idx[j] >= input_bounds[j];
}))
output[multi] = pad_val;
else
{
return {s1.type(), s1.lens()};
}
}
};
output[multi] = input[input_idx];
});
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment