Unverified Commit 7f97b8ef authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'simplify_1_mul_div_ops' into divide_by_zero_check

parents 2ba401f0 d1fed367
...@@ -26,43 +26,27 @@ ...@@ -26,43 +26,27 @@
#include <migraphx/manage_ptr.hpp> #include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp> #include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp> #include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp> #include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp> #include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/if_op.hpp> #include <migraphx/op/if_op.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp> #include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp> #include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp> #include <migraphx/op/quant_dot.hpp>
#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp> #include <migraphx/gpu/batch_norm_inference.hpp>
#include <migraphx/gpu/context.hpp> #include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp> #include <migraphx/gpu/convolution.hpp>
#include <migraphx/gpu/deconvolution.hpp> #include <migraphx/gpu/deconvolution.hpp>
#include <migraphx/gpu/device_name.hpp> #include <migraphx/gpu/device_name.hpp>
#include <migraphx/gpu/elu.hpp>
#include <migraphx/gpu/equal.hpp>
#include <migraphx/gpu/gemm.hpp> #include <migraphx/gpu/gemm.hpp>
#include <migraphx/gpu/greater.hpp>
#include <migraphx/gpu/int8_conv_pack.hpp> #include <migraphx/gpu/int8_conv_pack.hpp>
#include <migraphx/gpu/leaky_relu.hpp>
#include <migraphx/gpu/less.hpp>
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp> #include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp> #include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp> #include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/unary_not.hpp>
#include <migraphx/gpu/where.hpp>
#include <migraphx/gpu/compiler.hpp> #include <migraphx/gpu/compiler.hpp>
#include <migraphx/iterator_for.hpp> #include <migraphx/iterator_for.hpp>
#include <migraphx/program.hpp> #include <migraphx/program.hpp>
...@@ -99,78 +83,21 @@ struct miopen_apply ...@@ -99,78 +83,21 @@ struct miopen_apply
(void)i; (void)i;
} }
const std::unordered_set<std::string>& get_rocblas_fp32_archs()
{
static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
return supported_archs;
}
void init() void init()
{ {
assert(mod != nullptr); assert(mod != nullptr);
assert(pass != nullptr); assert(pass != nullptr);
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38 auto& ctx = get_context();
auto& ctx = get_context(); int8_x4_format = get_int8_x4_format(ctx);
const auto device_name = trim(split_string(get_device_name(), ':').front()); compute_fp32 = get_compute_fp32_flag();
if(contains(get_rocblas_fp32_archs(), device_name))
compute_fp32 = true;
rocblas_gemm_flags flag;
rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif
offload_copy = (mod->name() == "main") ? pass->offload_copy : false; offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
add_generic_op("acos");
add_generic_op("acosh");
add_generic_op("add");
add_generic_op("asin");
add_generic_op("asinh");
add_generic_op("atan");
add_generic_op("atanh");
add_generic_op("ceil");
add_generic_op("contiguous"); add_generic_op("contiguous");
add_generic_op("cos");
add_generic_op("cosh");
add_generic_op("div");
add_generic_op("equal");
add_generic_op("erf");
add_generic_op("exp");
add_generic_op("floor");
add_generic_op("greater");
add_generic_op("less");
add_generic_op("log");
add_generic_op("logical_and");
add_generic_op("logical_or");
add_generic_op("logical_xor");
add_generic_op("max");
add_generic_op("min");
add_generic_op("mul");
add_generic_op("not");
add_generic_op("pow");
add_generic_op("prelu");
add_generic_op("recip");
add_generic_op("relu");
add_generic_op("round");
add_generic_op("rsqrt");
add_generic_op("sigmoid");
add_generic_op("sign");
add_generic_op("sin");
add_generic_op("sinh");
add_generic_op("sqdiff");
add_generic_op("sqrt");
add_generic_op("sub");
add_generic_op("tan");
add_generic_op("tanh");
add_generic_op("where");
add_extend_op("abs");
add_extend_op("argmax"); add_extend_op("argmax");
add_extend_op("argmin"); add_extend_op("argmin");
add_extend_op("clip");
add_extend_op("concat");
add_extend_op("convert");
add_extend_op("elu"); add_extend_op("elu");
add_extend_op("gather"); add_extend_op("gather");
add_extend_op("leaky_relu"); add_extend_op("leaky_relu");
...@@ -246,7 +173,8 @@ struct miopen_apply ...@@ -246,7 +173,8 @@ struct miopen_apply
init(); init();
for(auto it = mod->begin(); it != mod->end(); it++) for(auto it = mod->begin(); it != mod->end(); it++)
{ {
auto s = it->get_shape(); auto s = it->get_shape();
auto attrs = it->get_operator().attributes();
if(apply_map.count(it->name()) > 0) if(apply_map.count(it->name()) > 0)
{ {
check_shape(s, apply_map.at(it->name())(it)); check_shape(s, apply_map.at(it->name())(it));
...@@ -255,11 +183,37 @@ struct miopen_apply ...@@ -255,11 +183,37 @@ struct miopen_apply
{ {
check_shape(s, insert_precompile_op(it)); check_shape(s, insert_precompile_op(it));
} }
else if(attrs.contains("target"))
{
check_shape(s, insert_custom_op(it, attrs));
}
} }
copy_params(); copy_params();
} }
instruction_ref insert_custom_op(instruction_ref ins, const value& attrs) const
{
const auto& custom_op = ins->get_operator();
if(attrs.at("target") == "cpu")
{
auto s = ins->get_shape();
std::vector<instruction_ref> cpu_inputs;
auto inputs = ins->inputs();
auto output = inputs.back();
std::transform(
inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
});
cpu_inputs.front() =
mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
auto cpu_out = mod->insert_instruction(ins, custom_op, cpu_inputs);
auto gpu_out =
mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
return mod->replace_instruction(ins, gpu_out);
}
return ins;
}
instruction_ref insert_precompile_op(instruction_ref ins) const instruction_ref insert_precompile_op(instruction_ref ins) const
{ {
auto output = insert_allocation(ins, ins->get_shape()); auto output = insert_allocation(ins, ins->get_shape());
...@@ -341,7 +295,7 @@ struct miopen_apply ...@@ -341,7 +295,7 @@ struct miopen_apply
catch(migraphx::exception&) catch(migraphx::exception&)
{ {
// In case no solver supports the default format, retry using the other format. // In case no solver supports the default format, retry using the other format.
compile_quant_conv_with_format(!int8_x4_format); compile_quant_conv_with_format(not int8_x4_format);
} }
auto args = ins->inputs(); auto args = ins->inputs();
......
...@@ -44,9 +44,14 @@ ...@@ -44,9 +44,14 @@
#include <migraphx/gpu/context.hpp> #include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/device_name.hpp> #include <migraphx/gpu/device_name.hpp>
#include <migraphx/iterator_for.hpp> #include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/perfdb.hpp>
#include <deque> #include <deque>
#include <variant> #include <variant>
#if defined(MLIR_MIGRAPHX_DIALECT_API_VERSION) && MLIR_MIGRAPHX_DIALECT_API_VERSION >= 2
#define MIGRAPHX_MLIR_BARE_POINTER
#endif
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace gpu { namespace gpu {
...@@ -73,7 +78,7 @@ struct mlir_handle ...@@ -73,7 +78,7 @@ struct mlir_handle
friend bool operator==(ptr x, ptr y) { return x.get_value() == y.get_value(); } friend bool operator==(ptr x, ptr y) { return x.get_value() == y.get_value(); }
friend bool operator!=(ptr x, ptr y) { return !(x == y); } friend bool operator!=(ptr x, ptr y) { return not(x == y); }
T obj{}; T obj{};
}; };
...@@ -145,6 +150,12 @@ std::string mlir_print(F f, T x) ...@@ -145,6 +150,12 @@ std::string mlir_print(F f, T x)
return ss.str(); return ss.str();
} }
const std::unordered_set<std::string>& get_xdlops_archs()
{
static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
return supported_archs;
}
struct mlir_program struct mlir_program
{ {
mlir_program() mlir_program()
...@@ -487,6 +498,17 @@ struct mlir_program ...@@ -487,6 +498,17 @@ struct mlir_program
ops.add_attribute_value(get_operator_value(ins->get_operator())); ops.add_attribute_value(get_operator_value(ins->get_operator()));
if(ins->name() != "@return") if(ins->name() != "@return")
ops.add_results({get_shape(ins)}); ops.add_results({get_shape(ins)});
if(ins->name() == "convolution")
{
pp =
problem_params{ins->get_operator(), to_shapes(ins->inputs()), ins->get_shape()};
std::string tuned = get_tune_params();
if(not tuned.empty())
ops.add_attributes({{"perf_config", tuned}});
// check if HW supports xdlops
if(contains(get_xdlops_archs(), target_name))
ops.add_attributes({{"xdlopsV2", true}});
}
std::vector<MlirValue> inputs; std::vector<MlirValue> inputs;
transform( transform(
...@@ -508,14 +530,7 @@ struct mlir_program ...@@ -508,14 +530,7 @@ struct mlir_program
// 1st pipeline to call // 1st pipeline to call
mlirMIGraphXAddHighLevelPipeline(pm.get()); mlirMIGraphXAddHighLevelPipeline(pm.get());
// 2nd pipeline to call // 2nd pipeline to call
std::string tname = get_device_name(); mlirMIGraphXAddBackendPipeline(pm.get(), target_name.c_str(), "amdgcn-amd-amdhsa", "");
// HACK: Since MLIR can't handle the full target name
auto hacked_tname = tname.substr(0, tname.find(':'));
if(tname.size() != hacked_tname.size())
std::cout
<< "*************** WARNING: MLIR may not compile the correct target features for: "
<< tname << std::endl;
mlirMIGraphXAddBackendPipeline(pm.get(), hacked_tname.c_str(), "amdgcn-amd-amdhsa", "");
mlirPassManagerRun(pm.get(), mmodule.get()); mlirPassManagerRun(pm.get(), mmodule.get());
code_object_op op{}; code_object_op op{};
...@@ -525,6 +540,17 @@ struct mlir_program ...@@ -525,6 +540,17 @@ struct mlir_program
return op; return op;
} }
void find_target()
{
std::string tname = get_device_name();
// HACK: Since MLIR can't handle the full target name
target_name = trim(split_string(tname, ':').front());
if(tname.size() != target_name.size())
std::cout
<< "*************** WARNING: MLIR may not compile the correct target features for: "
<< tname << std::endl;
}
std::pair<std::size_t, std::size_t> get_launch_params() const std::pair<std::size_t, std::size_t> get_launch_params() const
{ {
uint32_t attrs[2]; uint32_t attrs[2];
...@@ -545,10 +571,14 @@ struct mlir_program ...@@ -545,10 +571,14 @@ struct mlir_program
MIGRAPHX_THROW("Failed to compile mlir program"); MIGRAPHX_THROW("Failed to compile mlir program");
} }
std::string get_tune_params() { return get_mlir_perf_for_conv(pp); }
mlir_context ctx; mlir_context ctx;
MlirLocation location; MlirLocation location;
mlir_module mmodule; mlir_module mmodule;
problem_params pp;
std::deque<std::string> strings{}; std::deque<std::string> strings{};
std::string target_name;
}; };
std::string dump_mlir(const module& m) std::string dump_mlir(const module& m)
...@@ -565,6 +595,7 @@ code_object_op compile_mlir(const context&, const module& m) ...@@ -565,6 +595,7 @@ code_object_op compile_mlir(const context&, const module& m)
if(trace) if(trace)
std::cout << m << std::endl; std::cout << m << std::endl;
mlir_program mp; mlir_program mp;
mp.find_target();
mp.parse(m); mp.parse(m);
auto mod_op = mlirModuleGetOperation(mp.mmodule.get()); auto mod_op = mlirModuleGetOperation(mp.mmodule.get());
if(trace) if(trace)
...@@ -579,9 +610,15 @@ instruction_ref insert_mlir(module& m, ...@@ -579,9 +610,15 @@ instruction_ref insert_mlir(module& m,
code_object_op co, code_object_op co,
const std::vector<instruction_ref>& inputs) const std::vector<instruction_ref>& inputs)
{ {
std::vector<instruction_ref> refs; std::vector<instruction_ref> refs;
std::size_t last = 0;
#ifdef MIGRAPHX_MLIR_BARE_POINTER
refs.reserve(inputs.size());
std::copy(inputs.begin(), inputs.end(), std::back_inserter(refs));
last = refs.size() - 1;
#else
refs.reserve(inputs.size() * 15); refs.reserve(inputs.size() * 15);
std::unordered_map<uint64_t, instruction_ref> literal_map{}; std::unordered_map<uint64_t, instruction_ref> literal_map{};
auto get_literal = [&](uint64_t value) { auto get_literal = [&](uint64_t value) {
auto fi = literal_map.find(value); auto fi = literal_map.find(value);
...@@ -592,7 +629,6 @@ instruction_ref insert_mlir(module& m, ...@@ -592,7 +629,6 @@ instruction_ref insert_mlir(module& m,
return lit; return lit;
}; };
std::size_t last = 0;
for(auto input : inputs) for(auto input : inputs)
{ {
const size_t offset = 0; const size_t offset = 0;
...@@ -616,6 +652,7 @@ instruction_ref insert_mlir(module& m, ...@@ -616,6 +652,7 @@ instruction_ref insert_mlir(module& m,
[&](const auto& lval) { return get_literal(lval); }); [&](const auto& lval) { return get_literal(lval); });
// refs.push_back(get_literal(1)); // G // refs.push_back(get_literal(1)); // G
} }
#endif
co.expected_inputs = to_shapes(refs); co.expected_inputs = to_shapes(refs);
co.output_arg = last; co.output_arg = last;
return m.insert_instruction(ins, co, refs); return m.insert_instruction(ins, co, refs);
......
...@@ -154,7 +154,7 @@ void pack_int8_args::apply(module& m) const ...@@ -154,7 +154,7 @@ void pack_int8_args::apply(module& m) const
bool transa = inputs[0]->get_shape().transposed(); bool transa = inputs[0]->get_shape().transposed();
bool transb = inputs[1]->get_shape().transposed(); bool transb = inputs[1]->get_shape().transposed();
if(!transb) if(not transb)
{ {
auto packed_b = m.insert_instruction( auto packed_b = m.insert_instruction(
ins, make_op("hip::allocate", {{"shape", to_value(inputs[1]->get_shape())}})); ins, make_op("hip::allocate", {{"shape", to_value(inputs[1]->get_shape())}}));
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/perfdb.hpp>
#include <migraphx/value.hpp>
#include <migraphx/sqlite.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/permutation.hpp>
#include <fstream>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace {
std::string get_layout(const shape& s, std::string labels)
{
auto result = labels;
auto p = find_permutation(s);
std::transform(p.begin(), p.end(), result.begin(), [&](auto i) { return labels[i]; });
return "'" + result + "'";
}
std::string get_type(const shape& s)
{
static const std::unordered_map<shape::type_t, std::string> m = {
{shape::float_type, "'FP32'"},
{shape::half_type, "'FP16'"},
{shape::double_type, "'FP64'"},
{shape::int8_type, "'INT8'"},
{shape::int32_type, "'INT32'"},
};
auto it = m.find(s.type());
if(it == m.end())
return "UNKNOWN";
return it->second;
}
std::string generate_miopen_config(const problem_params& pp)
{
value v = pp.op.to_value();
auto input = pp.inputs[0].lens();
auto weights = pp.inputs[1].lens();
auto padding = v["padding"].to_vector<std::size_t>();
auto stride = v["stride"].to_vector<std::size_t>();
auto dilation = v["dilation"].to_vector<std::size_t>();
if(padding.size() != stride.size())
padding.erase(padding.begin() + padding.size() / 2, padding.end());
return to_string_range({std::string{" C.in_channels="}, to_string(input[1]),
std::string{" AND C.in_h="}, to_string(input[2]),
std::string{" AND C.in_w="}, to_string(input[3]),
std::string{" AND C.fil_h="}, to_string(weights[2]),
std::string{" AND C.fil_w="}, to_string(weights[3]),
std::string{" AND C.out_channels="}, to_string(weights[0]),
std::string{" AND C.batchsize="}, to_string(input[0]),
std::string{" AND C.pad_h="}, to_string(padding[0]),
std::string{" AND C.pad_w="}, to_string(padding[2]),
std::string{" AND C.dilation_h="}, to_string(dilation[0]),
std::string{" AND C.dilation_w="}, to_string(dilation[1]),
std::string{" AND C.conv_stride_h="}, to_string(stride[0]),
std::string{" AND C.conv_stride_w="}, to_string(stride[1]),
std::string{" AND C.layout="}, get_layout(pp.inputs[0], "NCHW"),
std::string{" AND C.data_type="}, get_type(pp.inputs[0]),
std::string{" AND C.direction="}, std::string{"'F'"}},
" ");
}
auto query_miopen_db(const std::string& query)
{
// TODO: Store db as a static variable
const auto dbpath = fs::path{"/opt"} / "rocm" / "share" / "miopen" / "db" / "miopen.db";
// Check if db file exists.
std::ifstream dbs(dbpath);
if(dbs.is_open())
{
dbs.close();
}
else
{
std::vector<std::unordered_map<std::string, std::string>> empty;
return empty;
}
auto db = sqlite::read(dbpath);
return db.execute(query);
}
} // namespace
std::string get_mlir_perf_for_conv(const problem_params& pp)
{
std::string query = "select P.* \
from perf_db P, config C \
where P.config = C.id AND \
P.solver = 'ConvMlirIgemmFwdXdlops' AND \
${config}";
auto results =
query_miopen_db(interpolate_string(query, {{"config", generate_miopen_config(pp)}}));
if(results.empty())
return "";
return results.front().at("params");
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -23,13 +23,62 @@ ...@@ -23,13 +23,62 @@
*/ */
#include <migraphx/gpu/prefuse_ops.hpp> #include <migraphx/gpu/prefuse_ops.hpp>
#include <migraphx/match/layernorm.hpp> #include <migraphx/match/layernorm.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace gpu { namespace gpu {
namespace { namespace {
template <class Derived, std::size_t N>
struct layernorm_base
{
float epsilon = 1e-12f;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.epsilon, "epsilon"));
}
shape compute_shape(std::vector<shape> inputs, std::vector<module_ref> mods) const
{
std::size_t nargs = 1;
if(not mods.empty())
{
auto* pm = mods.front();
nargs = pm->get_parameter_names().size();
}
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(nargs + N);
auto s = inputs.at(0);
if(s.scalar())
{
return s;
}
else if(s.broadcasted())
{
return {s.type(), s.lens()};
}
else
{
return s.with_lens(s.lens());
}
}
};
struct layernorm : layernorm_base<layernorm, 0>
{
std::string name() const { return "gpu::prelayernorm"; }
};
MIGRAPHX_REGISTER_OP(layernorm);
struct add_layernorm : layernorm_base<add_layernorm, 1>
{
std::string name() const { return "gpu::preadd_layernorm"; }
};
MIGRAPHX_REGISTER_OP(add_layernorm);
struct find_layernorm struct find_layernorm
{ {
auto matcher() const { return match::layernorm(); } auto matcher() const { return match::layernorm(); }
...@@ -38,60 +87,33 @@ struct find_layernorm ...@@ -38,60 +87,33 @@ struct find_layernorm
{ {
auto ins = r.result; auto ins = r.result;
auto x_ins = r.instructions["x"]; auto x_ins = r.instructions["x"];
auto eps = r.instructions["eps"]->eval().at<float>();
if(not x_ins->get_shape().standard()) m.replace_instruction(ins, layernorm{eps}, x_ins);
x_ins = m.insert_instruction(ins, make_op("contiguous"), x_ins);
auto relements = x_ins->get_shape().lens().back();
if(relements > 1024 or (relements % 4 != 0 and relements > 256))
return;
auto a = m.insert_instruction(
ins, make_op("hip::allocate", {{"shape", to_value(x_ins->get_shape())}}));
m.replace_instruction(ins, make_op("gpu::layernorm"), x_ins, a);
} }
}; };
struct find_triaddlayernorm struct find_add_layernorm
{ {
auto matcher() const auto matcher() const
{ {
auto add1 = return match::layernorm()(match::var("x")(match::name("add").bind("add")));
match::name("add")(match::none_of(match::is_constant()),
match::args(match::any().bind("z1"), match::any().bind("z2")));
auto add2 = match::name("add")(match::either_arg(0, 1)(add1, match::any().bind("z3")));
return match::layernorm()(match::var("x")(add2));
} }
void apply(module& m, const match::matcher_result& r) const void apply(module& m, const match::matcher_result& r) const
{ {
auto ins = r.result; auto ins = r.result;
auto x_ins = r.instructions["z1"]; auto add_ins = r.instructions["add"];
auto y_ins = r.instructions["z2"]; auto eps = r.instructions["eps"]->eval().at<float>();
auto z_ins = r.instructions["z3"];
for(auto* pins : {&x_ins, &y_ins, &z_ins})
{
if(not(*pins)->get_shape().standard())
*pins = m.insert_instruction(ins, make_op("contiguous"), *pins);
}
auto relements = x_ins->get_shape().lens().back();
if(relements > 1024 or (relements % 4 != 0 and relements > 256))
return;
auto a = m.insert_instruction( m.replace_instruction(ins, add_layernorm{eps}, add_ins->inputs());
ins, make_op("hip::allocate", {{"shape", to_value(x_ins->get_shape())}}));
m.replace_instruction(ins, make_op("gpu::triadd_layernorm"), x_ins, y_ins, z_ins, a);
} }
}; };
} // namespace } // namespace
void prefuse_ops::apply(module& m) const void prefuse_ops::apply(module& m) const
{ {
match::find_matches(m, find_triaddlayernorm{}, find_layernorm{}); match::find_matches(m, find_add_layernorm{}, find_layernorm{});
} }
} // namespace gpu } // namespace gpu
......
...@@ -22,7 +22,6 @@ ...@@ -22,7 +22,6 @@
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include <migraphx/gpu/quant_convolution.hpp> #include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/device/convert.hpp>
#include <migraphx/gpu/context.hpp> #include <migraphx/gpu/context.hpp>
#include <migraphx/generate.hpp> #include <migraphx/generate.hpp>
......
...@@ -21,7 +21,13 @@ ...@@ -21,7 +21,13 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include <unordered_set>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/gpu/rocblas.hpp> #include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/context.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -41,6 +47,33 @@ rocblas_handle_ptr create_rocblas_handle_ptr(hipStream_t s) ...@@ -41,6 +47,33 @@ rocblas_handle_ptr create_rocblas_handle_ptr(hipStream_t s)
return rb; return rb;
} }
const std::unordered_set<std::string>& get_rocblas_fp32_archs()
{
static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
return supported_archs;
}
bool get_compute_fp32_flag()
{
bool compute_fp32 = false;
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
const auto device_name = trim(split_string(get_device_name(), ':').front());
if(contains(get_rocblas_fp32_archs(), device_name))
compute_fp32 = true;
#endif
return compute_fp32;
}
bool get_int8_x4_format(context& ctx)
{
bool int8_x4_format = true;
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
rocblas_gemm_flags flag;
rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif
return int8_x4_format;
}
} // namespace gpu } // namespace gpu
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/softmax.hpp>
#include <migraphx/gpu/device/softmax.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/tune_axis.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape hip_softmax::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(2).standard();
return op.normalize_compute_shape({inputs.at(0)});
}
argument hip_softmax::compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
auto n_dim = args.front().get_shape().lens().size();
auto tuned_axis = tune_axis(n_dim, op.axis, op.name());
device::softmax(ctx.get_stream().get(), args.back(), args.front(), tuned_axis);
return args.back();
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -42,6 +42,7 @@ ...@@ -42,6 +42,7 @@
#include <migraphx/register_target.hpp> #include <migraphx/register_target.hpp>
#include <migraphx/replace_allocate.hpp> #include <migraphx/replace_allocate.hpp>
#include <migraphx/rewrite_batchnorm.hpp> #include <migraphx/rewrite_batchnorm.hpp>
#include <migraphx/rewrite_gelu.hpp>
#include <migraphx/rewrite_pooling.hpp> #include <migraphx/rewrite_pooling.hpp>
#include <migraphx/rewrite_quantization.hpp> #include <migraphx/rewrite_quantization.hpp>
#include <migraphx/rewrite_rnn.hpp> #include <migraphx/rewrite_rnn.hpp>
...@@ -116,6 +117,8 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti ...@@ -116,6 +117,8 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
inline_module{}, inline_module{},
rewrite_pooling{}, rewrite_pooling{},
dead_code_elimination{}, dead_code_elimination{},
rewrite_gelu{},
dead_code_elimination{},
eliminate_common_subexpression{}, eliminate_common_subexpression{},
dead_code_elimination{}, dead_code_elimination{},
simplify_algebra{}, simplify_algebra{},
...@@ -134,8 +137,6 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti ...@@ -134,8 +137,6 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
lowering{&ctx, options.offload_copy}, lowering{&ctx, options.offload_copy},
eliminate_contiguous{"gpu::contiguous"}, eliminate_contiguous{"gpu::contiguous"},
dead_code_elimination{}, dead_code_elimination{},
replace_allocate{gpu_allocation_model{}, options.offload_copy},
dead_code_elimination{},
eliminate_concat{concat_gpu_optimization{}}, eliminate_concat{concat_gpu_optimization{}},
dead_code_elimination{}, dead_code_elimination{},
pack_int8_args{}, pack_int8_args{},
...@@ -144,6 +145,8 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti ...@@ -144,6 +145,8 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{}, dead_code_elimination{},
fuse_ops{&ctx, options.fast_math}, fuse_ops{&ctx, options.fast_math},
dead_code_elimination{}, dead_code_elimination{},
replace_allocate{gpu_allocation_model{}, options.offload_copy},
dead_code_elimination{},
compile_ops{&ctx}, compile_ops{&ctx},
dead_code_elimination{}, dead_code_elimination{},
write_literals{&ctx}, write_literals{&ctx},
......
...@@ -51,6 +51,8 @@ ...@@ -51,6 +51,8 @@
#include <migraphx/register_op.hpp> #include <migraphx/register_op.hpp>
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp> #include <migraphx/tune_axis.hpp>
#include <migraphx/pad_calc.hpp>
#include <unordered_map> #include <unordered_map>
#include <utility> #include <utility>
#include <iostream> #include <iostream>
...@@ -231,8 +233,30 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>> ...@@ -231,8 +233,30 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>>
{ {
return op.normalize_compute_shape(inputs); return op.normalize_compute_shape(inputs);
} }
argument compute(context&, shape output_shape, std::vector<argument> args) const argument compute(context&, shape output_shape, std::vector<argument> args) const
{ {
std::vector<std::size_t> padding;
if(op.use_dynamic_same_auto_pad)
{
auto input_lens = args[0].get_shape().lens();
std::vector<std::size_t> img_lens{input_lens.begin() + 2, input_lens.end()};
auto weights_lens = args[1].get_shape().lens();
std::vector<std::size_t> k_lens{weights_lens.begin() + 2, weights_lens.end()};
padding = calc_dyn_auto_pad(img_lens, k_lens, op.stride, op.dilation);
output_shape =
compute_padded_shape({args.at(0).get_shape(), args.at(1).get_shape()}, padding);
}
else
{
padding = op.padding;
if(output_shape.dynamic())
{
output_shape =
op.normalize_compute_shape({args.at(0).get_shape(), args.at(1).get_shape()});
}
}
argument result{output_shape}; argument result{output_shape};
visit_quantize(result, args[0], args[1])([&](auto output, auto input, auto weights) { visit_quantize(result, args[0], args[1])([&](auto output, auto input, auto weights) {
auto in_lens = input.get_shape().lens(); auto in_lens = input.get_shape().lens();
...@@ -252,7 +276,7 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>> ...@@ -252,7 +276,7 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>>
{ {
auto d_2 = dim - 2; auto d_2 = dim - 2;
win_start.push_back(std::ptrdiff_t(idx_o[dim] * op.stride[d_2]) - win_start.push_back(std::ptrdiff_t(idx_o[dim] * op.stride[d_2]) -
std::ptrdiff_t(op.padding[d_2])); std::ptrdiff_t(padding[d_2]));
} }
const auto group_id = w / (wei_n / op.group); const auto group_id = w / (wei_n / op.group);
...@@ -289,6 +313,34 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>> ...@@ -289,6 +313,34 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>>
}); });
return result; return result;
} }
private:
/*!
* Used for dynamic auto padding since padding needs to be computed at evaulation time.
* \param inputs two fixed shape inputs [input_tensor, weights]
* \param padding from auto_pad calculation
*/
shape compute_padded_shape(const std::vector<shape>& inputs,
const std::vector<std::size_t>& padding) const
{
const shape& input = inputs.at(0);
const shape& weights = inputs.at(1);
const size_t num_spatial_dims = input.lens().size() - 2;
std::vector<size_t> output_lens{input.lens()[0], weights.lens()[0]};
// calculate the output shape of the convolution: ((W - K + 2P) / S) + 1
for(size_t i = 0; i < num_spatial_dims; i++)
{
auto padding_factor = padding[i] + padding[i + num_spatial_dims];
output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
1,
(input.lens()[i + 2] - (1 + op.dilation[i] * (weights.lens()[i + 2] - 1)) +
padding_factor) /
op.stride[i] +
1)));
}
return inputs[0].with_lens(output_lens);
}
}; };
struct ref_im2col struct ref_im2col
......
...@@ -100,7 +100,7 @@ struct parse_conv : op_parser<parse_conv> ...@@ -100,7 +100,7 @@ struct parse_conv : op_parser<parse_conv>
{ {
MIGRAPHX_THROW("padding should have 4 values"); MIGRAPHX_THROW("padding should have 4 values");
} }
if(padding[0] != padding[2] || padding[1] != padding[3]) if(padding[0] != padding[2] or padding[1] != padding[3])
{ {
MIGRAPHX_THROW("migraphx does not support asymetric padding"); MIGRAPHX_THROW("migraphx does not support asymetric padding");
} }
......
...@@ -90,7 +90,7 @@ struct parse_depthwiseconv : op_parser<parse_depthwiseconv> ...@@ -90,7 +90,7 @@ struct parse_depthwiseconv : op_parser<parse_depthwiseconv>
calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h); calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w); calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
if(pads[0] != pads[2] || pads[1] != pads[3]) if(pads[0] != pads[2] or pads[1] != pads[3])
{ {
std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]}; std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
l0 = info.add_instruction(migraphx::make_op("pad", {{"pads", padding}}), l0); l0 = info.add_instruction(migraphx::make_op("pad", {{"pads", padding}}), l0);
......
...@@ -42,7 +42,7 @@ struct parse_pooling : op_parser<parse_pooling> ...@@ -42,7 +42,7 @@ struct parse_pooling : op_parser<parse_pooling>
tf_parser::node_info info, tf_parser::node_info info,
std::vector<instruction_ref> args) const std::vector<instruction_ref> args) const
{ {
if(!starts_with(opd.tf_name, "Max") && !starts_with(opd.tf_name, "Av")) if(not starts_with(opd.tf_name, "Max") and not starts_with(opd.tf_name, "Av"))
{ {
MIGRAPHX_THROW("tf pooling mode must be Max or Average"); MIGRAPHX_THROW("tf pooling mode must be Max or Average");
} }
......
...@@ -41,8 +41,9 @@ struct parse_relu6 : op_parser<parse_relu6> ...@@ -41,8 +41,9 @@ struct parse_relu6 : op_parser<parse_relu6>
const tf_parser::node_info& info, const tf_parser::node_info& info,
std::vector<instruction_ref> args) const std::vector<instruction_ref> args) const
{ {
auto min_val = info.add_literal(0.0f); shape::type_t output_type = args[0]->get_shape().type();
auto max_val = info.add_literal(6.0f); auto min_val = info.add_literal(migraphx::literal{migraphx::shape{output_type}, {0.0f}});
auto max_val = info.add_literal(migraphx::literal{migraphx::shape{output_type}, {6.0f}});
return info.add_common_op("clip", args[0], min_val, max_val); return info.add_common_op("clip", args[0], min_val, max_val);
} }
......
...@@ -347,7 +347,7 @@ void tf_parser::parse_node(const std::string& name) ...@@ -347,7 +347,7 @@ void tf_parser::parse_node(const std::string& name)
// input was from a node with multiple outputs // input was from a node with multiple outputs
if(contains(input_name, ':')) if(contains(input_name, ':'))
{ {
input_name = input_name.substr(0, input.find(':')); input_name.resize(input.find(':'));
} }
else else
{ {
...@@ -371,7 +371,7 @@ void tf_parser::parse_node(const std::string& name) ...@@ -371,7 +371,7 @@ void tf_parser::parse_node(const std::string& name)
{ {
result = ops[node.op()](*this, {get_attributes(node), node.op(), mm}, args); result = ops[node.op()](*this, {get_attributes(node), node.op(), mm}, args);
} }
assert(!result.empty()); assert(not result.empty());
// First output has no ":" delimiter // First output has no ":" delimiter
instructions[name] = result.front(); instructions[name] = result.front();
for(size_t i = 1; i < result.size(); i++) for(size_t i = 1; i < result.size(); i++)
...@@ -458,7 +458,7 @@ literal tf_parser::parse_tensor(const tensorflow::TensorProto& t) const ...@@ -458,7 +458,7 @@ literal tf_parser::parse_tensor(const tensorflow::TensorProto& t) const
{ {
std::vector<size_t> dims = parse_dims(t.tensor_shape()); std::vector<size_t> dims = parse_dims(t.tensor_shape());
size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>()); size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
if(!t.tensor_content().empty()) // has raw data if(not t.tensor_content().empty()) // has raw data
{ {
const std::string& s = t.tensor_content(); const std::string& s = t.tensor_content();
switch(t.dtype()) switch(t.dtype())
......
...@@ -78,7 +78,7 @@ void tmp_dir::execute(const std::string& exe, const std::string& args) const ...@@ -78,7 +78,7 @@ void tmp_dir::execute(const std::string& exe, const std::string& args) const
tmp_dir::~tmp_dir() tmp_dir::~tmp_dir()
{ {
if(!enabled(MIGRAPHX_DEBUG_SAVE_TEMP_DIR{})) if(not enabled(MIGRAPHX_DEBUG_SAVE_TEMP_DIR{}))
{ {
fs::remove_all(this->path); fs::remove_all(this->path);
} }
......
...@@ -400,7 +400,7 @@ std::pair<value*, bool> value::insert(const value& v) ...@@ -400,7 +400,7 @@ std::pair<value*, bool> value::insert(const value& v)
{ {
if(v.key.empty()) if(v.key.empty())
{ {
if(!x) if(not x)
x = std::make_shared<array_value_holder>(); x = std::make_shared<array_value_holder>();
get_array_impl(x).push_back(v); get_array_impl(x).push_back(v);
assert(this->if_array()); assert(this->if_array());
...@@ -408,7 +408,7 @@ std::pair<value*, bool> value::insert(const value& v) ...@@ -408,7 +408,7 @@ std::pair<value*, bool> value::insert(const value& v)
} }
else else
{ {
if(!x) if(not x)
x = std::make_shared<object_value_holder>(); x = std::make_shared<object_value_holder>();
auto p = x->if_object()->emplace(v.key, get_array_impl(x).size()); auto p = x->if_object()->emplace(v.key, get_array_impl(x).size());
if(p.second) if(p.second)
...@@ -420,7 +420,7 @@ std::pair<value*, bool> value::insert(const value& v) ...@@ -420,7 +420,7 @@ std::pair<value*, bool> value::insert(const value& v)
value* value::insert(const value* pos, const value& v) value* value::insert(const value* pos, const value& v)
{ {
assert(v.key.empty()); assert(v.key.empty());
if(!x) if(not x)
x = std::make_shared<array_value_holder>(); x = std::make_shared<array_value_holder>();
auto&& a = get_array_impl(x); auto&& a = get_array_impl(x);
auto it = a.insert(a.begin() + (pos - begin()), v); auto it = a.insert(a.begin() + (pos - begin()), v);
...@@ -466,7 +466,7 @@ bool compare(const value& x, const value& y, F f) ...@@ -466,7 +466,7 @@ bool compare(const value& x, const value& y, F f)
value::type_t value::get_type() const value::type_t value::get_type() const
{ {
if(!x) if(not x)
return null_type; return null_type;
return x->get_type(); return x->get_type();
} }
...@@ -511,14 +511,7 @@ void print_value(std::ostream& os, const std::vector<value>& x) ...@@ -511,14 +511,7 @@ void print_value(std::ostream& os, const std::vector<value>& x)
os << "}"; os << "}";
} }
void print_value(std::ostream& os, const value::binary& x) void print_value(std::ostream& os, const value::binary& x) { os << x; }
{
// Convert binary to integers
std::vector<int> v(x.begin(), x.end());
os << "{";
os << to_string_range(v);
os << "}";
}
std::ostream& operator<<(std::ostream& os, const value& d) std::ostream& operator<<(std::ostream& os, const value& d)
{ {
......
...@@ -43,6 +43,8 @@ struct sigmoid_custom_op final : migraphx::experimental_custom_op_base ...@@ -43,6 +43,8 @@ struct sigmoid_custom_op final : migraphx::experimental_custom_op_base
return inputs[1]; return inputs[1];
} }
virtual bool runs_on_offload_target() const override { return true; }
virtual migraphx::shape compute_shape(migraphx::shapes inputs) const override virtual migraphx::shape compute_shape(migraphx::shapes inputs) const override
{ {
if(inputs.size() != 2) if(inputs.size() != 2)
...@@ -111,4 +113,45 @@ TEST_CASE(run_sigmoid_with_incorrect_shape) ...@@ -111,4 +113,45 @@ TEST_CASE(run_sigmoid_with_incorrect_shape)
"Error in compute_shape of: sigmoid_custom_op: op must have two inputs")); "Error in compute_shape of: sigmoid_custom_op: op must have two inputs"));
} }
struct identity_custom_op final : migraphx::experimental_custom_op_base
{
virtual std::string name() const override { return "identity_custom_op"; }
virtual migraphx::argument
compute(migraphx::context, migraphx::shape, migraphx::arguments inputs) const override
{
return inputs[0];
}
virtual bool runs_on_offload_target() const override { return true; }
virtual migraphx::shape compute_shape(migraphx::shapes inputs) const override
{
if(inputs.size() != 1)
{
throw std::runtime_error("Identity op must have only one input");
}
return inputs.back();
}
virtual std::vector<size_t> output_alias(migraphx::shapes) const override { return {0, 1}; }
};
TEST_CASE(run_custom_op_with_invalid_output_alias)
{
identity_custom_op i_op;
migraphx::register_experimental_custom_op(i_op);
auto op = migraphx::operation("identity_custom_op");
EXPECT(op.name() == "identity_custom_op");
migraphx::program p;
migraphx::shape s{migraphx_shape_float_type, {12}};
migraphx::module m = p.get_main_module();
auto x = m.add_parameter("x", s);
auto i_ins = m.add_instruction(migraphx::operation("identity_custom_op"), {x});
migraphx_test_private_disable_exception_catch(true);
EXPECT(test::throws<std::exception>(
[&] { p.compile(migraphx::target("ref")); },
"Currently, CustomOps in MIGraphX only supports one output_alias"));
}
int main(int argc, const char* argv[]) { test::run(argc, argv); } int main(int argc, const char* argv[]) { test::run(argc, argv); }
...@@ -24,40 +24,89 @@ ...@@ -24,40 +24,89 @@
#include <hip/hip_runtime_api.h> #include <hip/hip_runtime_api.h>
#include <migraphx/migraphx.h> #include <migraphx/migraphx.h>
#include <migraphx/migraphx.hpp> #include <migraphx/migraphx.hpp>
#include <numeric>
#include <stdexcept> #include <stdexcept>
#include "test.hpp" #include "test.hpp"
#define MIGRAPHX_HIP_ASSERT(x) (EXPECT(x == hipSuccess)) #define MIGRAPHX_HIP_ASSERT(x) (EXPECT(x == hipSuccess))
struct simple_custom_op final : migraphx::experimental_custom_op_base
struct half_copy_host final : migraphx::experimental_custom_op_base
{ {
virtual std::string name() const override { return "simple_custom_op"; } virtual std::string name() const override { return "half_copy_host"; }
virtual bool runs_on_offload_target() const override { return false; }
virtual migraphx::argument virtual migraphx::argument
compute(migraphx::context ctx, migraphx::shape, migraphx::arguments inputs) const override compute(migraphx::context ctx, migraphx::shape, migraphx::arguments inputs) const override
{ {
// sets first half size_bytes of the input 0, and rest of the half bytes are copied. // This custom op simply sets first half size_bytes of the input to 0, and rest of the half
int* h_output = nullptr; // bytes are copied. for this custom_op, it does its computation on the host. Therefore,
auto* d_output = reinterpret_cast<int*>(inputs[0].data()); // `runs_on_offload_target()` is set to false. MIGraphX would inject necessary buffer copies
auto input_bytes = inputs[0].get_shape().bytes(); // to and from GPU to Host based on `runs_on_offload_targe()` flag for input buffers as well
auto* output_ptr = inputs[1].data(); // as the output buffers
auto copy_bytes = input_bytes / 2; auto* input_buffer_ptr = inputs[0].data();
auto* output_buffer_ptr = inputs[1].data();
auto input_bytes = inputs[0].get_shape().bytes();
auto copy_bytes = input_bytes / 2;
MIGRAPHX_HIP_ASSERT(hipSetDevice(0)); MIGRAPHX_HIP_ASSERT(hipSetDevice(0));
MIGRAPHX_HIP_ASSERT(hipHostMalloc(&h_output, input_bytes)); MIGRAPHX_HIP_ASSERT(hipMemcpyAsync(output_buffer_ptr,
MIGRAPHX_HIP_ASSERT(hipMemcpyAsync( input_buffer_ptr,
h_output, d_output, input_bytes, hipMemcpyDeviceToHost, ctx.get_queue<hipStream_t>())); input_bytes,
hipMemcpyHostToHost,
ctx.get_queue<hipStream_t>()));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize()); MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
MIGRAPHX_HIP_ASSERT(hipMemset(h_output, 0, copy_bytes)); MIGRAPHX_HIP_ASSERT(hipMemset(output_buffer_ptr, 0, copy_bytes));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize()); MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
MIGRAPHX_HIP_ASSERT(hipMemcpy(output_ptr, h_output, input_bytes, hipMemcpyHostToDevice)); return inputs[1];
}
virtual migraphx::shape compute_shape(migraphx::shapes inputs) const override
{
if(not inputs[0].standard() or not inputs[1].standard())
{
throw std::runtime_error("Input args must be standard shaped");
}
if(inputs.size() != 2)
{
throw std::runtime_error("number of inputs must be 2");
}
return inputs.back();
}
};
struct half_copy_device final : migraphx::experimental_custom_op_base
{
virtual std::string name() const override { return "half_copy_device"; }
virtual bool runs_on_offload_target() const override { return true; }
virtual migraphx::argument
compute(migraphx::context ctx, migraphx::shape, migraphx::arguments inputs) const override
{
// This custom op simply sets first half size_bytes of the input to 0, and rest of the half
// bytes are copied. for this custom_op, it does its computation on the "GPU". Therefore,
// `runs_on_offload_target()` is set to "true".
auto* input_buffer_ptr = inputs[0].data();
auto* output_buffer_ptr = inputs[1].data();
auto input_bytes = inputs[0].get_shape().bytes();
auto copy_bytes = input_bytes / 2;
MIGRAPHX_HIP_ASSERT(hipSetDevice(0));
MIGRAPHX_HIP_ASSERT(hipMemcpyAsync(output_buffer_ptr,
input_buffer_ptr,
input_bytes,
hipMemcpyDeviceToDevice,
ctx.get_queue<hipStream_t>()));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
MIGRAPHX_HIP_ASSERT(hipMemset(output_buffer_ptr, 0, copy_bytes));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize()); MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
MIGRAPHX_HIP_ASSERT(hipHostFree(h_output));
return inputs[1]; return inputs[1];
} }
virtual migraphx::shape compute_shape(migraphx::shapes inputs) const override virtual migraphx::shape compute_shape(migraphx::shapes inputs) const override
{ {
if(!inputs[0].standard()) if(not inputs[0].standard() or not inputs[1].standard())
{ {
throw std::runtime_error("first arg must be standard shaped"); throw std::runtime_error("Input args must be standard shaped");
} }
if(inputs.size() != 2) if(inputs.size() != 2)
{ {
...@@ -67,36 +116,208 @@ struct simple_custom_op final : migraphx::experimental_custom_op_base ...@@ -67,36 +116,208 @@ struct simple_custom_op final : migraphx::experimental_custom_op_base
} }
}; };
TEST_CASE(run_simple_custom_op) // overwrites input buffer
struct half_copy_device_same_buffer final : migraphx::experimental_custom_op_base
{ {
simple_custom_op simple_op; virtual std::string name() const override { return "half_copy_device_same_buffer"; }
migraphx::register_experimental_custom_op(simple_op);
virtual bool runs_on_offload_target() const override { return true; }
virtual migraphx::argument
compute(migraphx::context, migraphx::shape, migraphx::arguments inputs) const override
{
// This custom op simply sets first half size_bytes of the input 0, and rest of the half
// bytes are copied. for this custom_op, it does its computation on the "device". Therefore,
// `runs_on_offload_target()` is set to "true"
auto* buffer_ptr = inputs[0].data();
auto input_bytes = inputs[0].get_shape().bytes();
auto copy_bytes = input_bytes / 2;
MIGRAPHX_HIP_ASSERT(hipSetDevice(0));
MIGRAPHX_HIP_ASSERT(hipMemset(buffer_ptr, 0, copy_bytes));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
return inputs[0];
}
virtual migraphx::shape compute_shape(migraphx::shapes inputs) const override
{
if(not inputs[0].standard())
{
throw std::runtime_error("Input arg must be standard shaped");
}
return inputs.front();
}
};
TEST_CASE(register_half_copy_op)
{
half_copy_host hch;
migraphx::register_experimental_custom_op(hch);
auto op = migraphx::operation("half_copy_host");
EXPECT(op.name() == "half_copy_host");
half_copy_device hcd;
migraphx::register_experimental_custom_op(hcd);
op = migraphx::operation("half_copy_device");
EXPECT(op.name() == "half_copy_device");
half_copy_device_same_buffer hcdsb;
migraphx::register_experimental_custom_op(hcdsb);
op = migraphx::operation("half_copy_device_same_buffer");
EXPECT(op.name() == "half_copy_device_same_buffer");
}
TEST_CASE(half_copy_custom_op_test)
{
auto run_test_prog = [](const std::string& op_name, bool buffer_alloc) {
migraphx::program p;
migraphx::module m = p.get_main_module();
migraphx::shape s{migraphx_shape_float_type, {4, 3}};
auto x = m.add_parameter("x", s);
migraphx::instructions inputs = {x};
if(buffer_alloc)
{
auto alloc = m.add_allocation(s);
inputs = {x, alloc};
}
auto half_copy_ins = m.add_instruction(migraphx::operation(op_name.c_str()), inputs);
m.add_return({half_copy_ins});
migraphx::compile_options options;
options.set_offload_copy();
p.compile(migraphx::target("gpu"), options);
migraphx::program_parameters pp;
std::vector<float> x_data(12);
std::iota(x_data.begin(), x_data.end(), 0);
pp.add("x", migraphx::argument(s, x_data.data()));
auto results = p.eval(pp);
auto result = results[0];
auto result_vec = result.as_vector<float>();
std::vector<float> expected_result(12, 0);
std::iota(expected_result.begin() + 6, expected_result.end(), 6);
EXPECT(bool{result == migraphx::argument(s, expected_result.data())});
};
// register all the ops
half_copy_host hch;
migraphx::register_experimental_custom_op(hch);
half_copy_device hcd;
migraphx::register_experimental_custom_op(hcd);
half_copy_device_same_buffer hcdsb;
migraphx::register_experimental_custom_op(hcdsb);
std::vector<std::pair<std::string, bool>> tests_config = {
{"half_copy_host", true},
{"half_copy_device", true},
{"half_copy_device_same_buffer", false}};
for(const auto& i : tests_config)
{
run_test_prog(i.first, i.second);
}
}
struct stride_two final : migraphx::experimental_custom_op_base
{
virtual std::string name() const override { return "stride_two"; }
virtual migraphx::argument
compute(migraphx::context, migraphx::shape out_shape, migraphx::arguments inputs) const override
{
return {out_shape, inputs[0].data()};
}
virtual migraphx::shape compute_shape(migraphx::shapes inputs) const override
{
if(inputs.size() != 1)
{
throw std::runtime_error("stride_two op must have only one input argument");
};
if(not inputs[0].standard())
{
throw std::runtime_error("stride_two op only works on the standard input shapes");
}
migraphx::shape input_s = inputs[0];
std::vector<size_t> dims = input_s.lengths();
std::vector<size_t> new_dims;
std::vector<size_t> strides = input_s.strides();
std::vector<size_t> new_strides;
std::for_each(dims.begin(), dims.end(), [&](auto i) { new_dims.push_back(i / 2); });
std::for_each(
strides.begin(), strides.end(), [&](auto i) { new_strides.push_back(i * 2); });
migraphx::shape output_shape{input_s.type(), new_dims, new_strides};
return output_shape;
}
virtual bool runs_on_offload_target() const override { return true; }
virtual std::vector<size_t> output_alias(migraphx::shapes) const override { return {0}; };
};
TEST_CASE(stride_two_custom_op_test)
{
stride_two st;
migraphx::register_experimental_custom_op(st);
migraphx::program p;
migraphx::module m = p.get_main_module();
migraphx::shape s{migraphx_shape_float_type, {4, 4, 4}};
auto x = m.add_parameter("x", s);
auto stride_two_ins = m.add_instruction(migraphx::operation("stride_two"), {x});
m.add_return({stride_two_ins});
migraphx::compile_options options;
options.set_offload_copy();
p.compile(migraphx::target("gpu"), options);
migraphx::program_parameters pp;
std::vector<float> x_data(64);
std::iota(x_data.begin(), x_data.end(), 0);
pp.add("x", migraphx::argument(s, x_data.data()));
auto results = p.eval(pp);
auto result = results[0];
auto result_vec = result.as_vector<float>();
std::vector<float> expected_result = {0, 2, 8, 10, 32, 34, 40, 42};
EXPECT(result_vec == expected_result);
}
TEST_CASE(custom_op_with_pre_and_post_subgraph_test)
{
half_copy_host hco;
migraphx::register_experimental_custom_op(hco);
stride_two st;
migraphx::register_experimental_custom_op(st);
migraphx::program p; migraphx::program p;
migraphx::shape s{migraphx_shape_int32_type, {4, 3}}; migraphx::shape s{migraphx_shape_float_type, {4, 6}};
migraphx::shape trans_shape{migraphx_shape_int32_type, {3, 4}};
migraphx::module m = p.get_main_module(); migraphx::module m = p.get_main_module();
auto x = m.add_parameter("x", s); auto x = m.add_parameter("x", s);
auto neg = m.add_instruction(migraphx::operation("neg"), x); // pre-subgraph
auto alloc = m.add_allocation(trans_shape); auto neg_ins = m.add_instruction(migraphx::operation("neg"), x);
auto neg_trans = auto trans_ins =
m.add_instruction(migraphx::operation("transpose", "{permutation: [1, 0]}"), {neg}); m.add_instruction(migraphx::operation("transpose", "{permutation: [1, 0]}"), {neg_ins});
auto neg_cont = m.add_instruction(migraphx::operation("contiguous"), {neg_trans}); auto cont_ins = m.add_instruction(migraphx::operation("contiguous"), {trans_ins});
auto custom_kernel = // custom_op
m.add_instruction(migraphx::operation("simple_custom_op"), {neg_cont, alloc}); migraphx::shape trans_shape{migraphx_shape_float_type, {6, 4}};
auto relu = m.add_instruction(migraphx::operation("relu"), custom_kernel); auto alloc = m.add_allocation(trans_shape);
m.add_return({relu}); auto half_copy_ins =
m.add_instruction(migraphx::operation("half_copy_host"), {cont_ins, alloc});
// post-subgraph
auto abs_ins = m.add_instruction(migraphx::operation("abs"), {half_copy_ins});
// another custom_op
auto stride_two_ins = m.add_instruction(migraphx::operation("stride_two"), {abs_ins});
// post-subgraph
auto relu_ins = m.add_instruction(migraphx::operation("relu"), {stride_two_ins});
m.add_return({relu_ins});
migraphx::compile_options options; migraphx::compile_options options;
options.set_offload_copy(); options.set_offload_copy();
p.compile(migraphx::target("gpu"), options); p.compile(migraphx::target("gpu"), options);
migraphx::program_parameters pp; migraphx::program_parameters pp;
std::vector<int> x_data(12, -3); std::vector<float> x_data(s.elements());
std::iota(x_data.begin(), x_data.end(), 0);
pp.add("x", migraphx::argument(s, x_data.data())); pp.add("x", migraphx::argument(s, x_data.data()));
auto results = p.eval(pp); auto results = p.eval(pp);
auto result = results[0]; auto result = results[0];
auto result_vec = result.as_vector<int>(); auto result_vec = result.as_vector<float>();
std::vector<int> expected_result(12, 0); std::vector<float> expected_result = {0, 0, 0, 0, 4, 16};
std::fill(expected_result.begin() + 6, expected_result.end(), 3); EXPECT(bool{result == migraphx::argument(migraphx::shape{migraphx_shape_float_type, {3, 2}},
EXPECT(bool{result == migraphx::argument(trans_shape, expected_result.data())}); expected_result.data())});
} }
int main(int argc, const char* argv[]) { test::run(argc, argv); } int main(int argc, const char* argv[]) { test::run(argc, argv); }
...@@ -25,6 +25,8 @@ ...@@ -25,6 +25,8 @@
#include <hip/hip_runtime_api.h> #include <hip/hip_runtime_api.h>
#include <migraphx/migraphx.h> #include <migraphx/migraphx.h>
#include <migraphx/migraphx.hpp> #include <migraphx/migraphx.hpp>
#include <migraphx/manage_ptr.hpp>
#include "test.hpp" #include "test.hpp"
TEST_CASE(load_and_run) TEST_CASE(load_and_run)
...@@ -44,11 +46,67 @@ TEST_CASE(load_and_run) ...@@ -44,11 +46,67 @@ TEST_CASE(load_and_run)
{ {
pp.add(name, migraphx::argument::generate(param_shapes[name])); pp.add(name, migraphx::argument::generate(param_shapes[name]));
} }
auto outputs = p.eval(pp); auto outputs = p.eval(pp);
CHECK(shapes_before.size() == outputs.size()); CHECK(shapes_before.size() == outputs.size());
CHECK(bool{shapes_before.front() == outputs.front().get_shape()}); CHECK(bool{shapes_before.front() == outputs.front().get_shape()});
} }
using hip_ptr = MIGRAPHX_MANAGE_PTR(void, hipFree);
using stream_ptr = MIGRAPHX_MANAGE_PTR(hipStream_t, hipStreamDestroy);
stream_ptr get_stream()
{
hipStream_t stream;
auto err = hipStreamCreateWithFlags(&stream, 0);
EXPECT(err == hipSuccess);
return stream_ptr{stream};
}
hip_ptr get_hip_buffer(size_t size)
{
void* ptr;
auto err = hipMalloc(&ptr, size);
EXPECT(err == hipSuccess);
return hip_ptr{ptr};
}
TEST_CASE(load_and_run_async)
{
auto p = migraphx::parse_onnx("conv_relu_maxpool_test.onnx");
auto shapes_before = p.get_output_shapes();
migraphx::compile_options options;
options.set_offload_copy(false);
p.compile(migraphx::target("gpu"), options);
auto shapes_after = p.get_output_shapes();
CHECK(shapes_before.size() == 1);
CHECK(shapes_before.size() == shapes_after.size());
CHECK(bool{shapes_before.front() == shapes_after.front()});
migraphx::program_parameters pp;
auto param_shapes = p.get_parameter_shapes();
stream_ptr stream = get_stream();
std::vector<hip_ptr> buffs;
std::vector<migraphx::argument> args;
for(auto&& name : param_shapes.names())
{
args.push_back(migraphx::argument::generate(param_shapes[name]));
buffs.push_back(get_hip_buffer(args.rbegin()->get_shape().bytes()));
auto err = hipMemcpy(buffs.rbegin()->get(),
args.rbegin()->data(),
args.rbegin()->get_shape().bytes(),
hipMemcpyHostToDevice);
EXPECT(err == hipSuccess);
pp.add(name, migraphx::argument(args.rbegin()->get_shape(), buffs.rbegin()->get()));
}
auto outputs = p.run_async(pp, stream.get());
CHECK(shapes_before.size() == outputs.size());
CHECK(bool{shapes_before.front() == outputs.front().get_shape()});
}
TEST_CASE(load_and_run_ctx) TEST_CASE(load_and_run_ctx)
{ {
auto p = migraphx::parse_onnx("conv_relu_maxpool_test.onnx"); auto p = migraphx::parse_onnx("conv_relu_maxpool_test.onnx");
...@@ -82,10 +140,10 @@ TEST_CASE(if_pl_test) ...@@ -82,10 +140,10 @@ TEST_CASE(if_pl_test)
migraphx::program_parameters pp; migraphx::program_parameters pp;
auto param_shapes = p.get_parameter_shapes(); auto param_shapes = p.get_parameter_shapes();
auto xs = param_shapes["x"]; auto xs = param_shapes["x"];
std::vector<float> xd(xs.bytes() / sizeof(float), 1.0); std::vector<float> xd(xs.elements(), 1.0);
pp.add("x", migraphx::argument(xs, xd.data())); pp.add("x", migraphx::argument(xs, xd.data()));
auto ys = param_shapes["y"]; auto ys = param_shapes["y"];
std::vector<float> yd(ys.bytes() / sizeof(float), 2.0); std::vector<float> yd(ys.elements(), 2.0);
pp.add("y", migraphx::argument(ys, yd.data())); pp.add("y", migraphx::argument(ys, yd.data()));
char ccond = cond; char ccond = cond;
pp.add("cond", migraphx::argument(param_shapes["cond"], &ccond)); pp.add("cond", migraphx::argument(param_shapes["cond"], &ccond));
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment