Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
7f97b8ef
Unverified
Commit
7f97b8ef
authored
Oct 07, 2022
by
Ted Themistokleous
Committed by
GitHub
Oct 07, 2022
Browse files
Merge branch 'simplify_1_mul_div_ops' into divide_by_zero_check
parents
2ba401f0
d1fed367
Changes
448
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
593 additions
and
184 deletions
+593
-184
src/targets/gpu/jit/layernorm.cpp
src/targets/gpu/jit/layernorm.cpp
+131
-0
src/targets/gpu/jit/pointwise.cpp
src/targets/gpu/jit/pointwise.cpp
+11
-54
src/targets/gpu/jit/reduce.cpp
src/targets/gpu/jit/reduce.cpp
+1
-9
src/targets/gpu/jit/roialign.cpp
src/targets/gpu/jit/roialign.cpp
+0
-9
src/targets/gpu/jit/scatternd.cpp
src/targets/gpu/jit/scatternd.cpp
+0
-8
src/targets/gpu/jit/softmax.cpp
src/targets/gpu/jit/softmax.cpp
+6
-9
src/targets/gpu/kernel.cpp
src/targets/gpu/kernel.cpp
+30
-7
src/targets/gpu/kernels/include/migraphx/kernels/algorithm.hpp
...argets/gpu/kernels/include/migraphx/kernels/algorithm.hpp
+1
-1
src/targets/gpu/kernels/include/migraphx/kernels/array.hpp
src/targets/gpu/kernels/include/migraphx/kernels/array.hpp
+111
-47
src/targets/gpu/kernels/include/migraphx/kernels/concat.hpp
src/targets/gpu/kernels/include/migraphx/kernels/concat.hpp
+66
-0
src/targets/gpu/kernels/include/migraphx/kernels/functional.hpp
...rgets/gpu/kernels/include/migraphx/kernels/functional.hpp
+3
-2
src/targets/gpu/kernels/include/migraphx/kernels/index.hpp
src/targets/gpu/kernels/include/migraphx/kernels/index.hpp
+81
-5
src/targets/gpu/kernels/include/migraphx/kernels/integral_constant.hpp
...pu/kernels/include/migraphx/kernels/integral_constant.hpp
+3
-3
src/targets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
...argets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
+89
-0
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
+7
-0
src/targets/gpu/kernels/include/migraphx/kernels/ops.hpp
src/targets/gpu/kernels/include/migraphx/kernels/ops.hpp
+2
-2
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
+36
-19
src/targets/gpu/kernels/include/migraphx/kernels/softmax.hpp
src/targets/gpu/kernels/include/migraphx/kernels/softmax.hpp
+9
-5
src/targets/gpu/kernels/include/migraphx/kernels/type_traits.hpp
...gets/gpu/kernels/include/migraphx/kernels/type_traits.hpp
+5
-3
src/targets/gpu/kernels/include/migraphx/kernels/vec.hpp
src/targets/gpu/kernels/include/migraphx/kernels/vec.hpp
+1
-1
No files found.
src/targets/gpu/jit/layernorm.cpp
0 → 100644
View file @
7f97b8ef
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
using
namespace
migraphx
::
gpu
::
gen
;
// NOLINT
static
const
char
*
const
layernorm_kernel
=
R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/layernorm.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <migraphx/kernels/preload.hpp>
#include <args.hpp>
namespace migraphx {
${preamble}
extern "C" {
__global__ void ${kernel}(${params})
{
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto... xs) {
${layernorm}<${axis}>(${post}, ${eps}, xs...);
});
}
}
} // namespace migraphx
)__migraphx__"
;
struct
layernorm_compiler
:
compiler
<
layernorm_compiler
>
{
std
::
vector
<
std
::
string
>
names
()
const
{
return
{
"layernorm"
,
"gpu::prelayernorm"
,
"gpu::preadd_layernorm"
};
}
operation
compile_op
(
context
&
ctx
,
const
std
::
vector
<
shape
>&
inputs
,
const
value
&
v
)
const
{
// TODO: Use reduce_dims
auto
axis
=
inputs
.
front
().
lens
().
size
()
-
1
;
auto
faxis
=
find_fast_axis
({
inputs
.
front
()});
vectorize
vec
{};
// Vectorize if the axis is a reduction axis
if
(
axis
==
faxis
)
{
vec
=
vectorize
::
elements
(
ctx
,
faxis
,
inputs
);
}
auto
relements
=
inputs
[
0
].
lens
()[
axis
]
/
vec
.
size
;
auto
nelements
=
(
inputs
.
back
().
elements
()
/
inputs
[
0
].
lens
()[
axis
]);
auto
block_size
=
compute_block_size
(
relements
,
256
);
hip_compile_options
options
;
options
.
set_launch_params
(
v
,
compute_global_for
(
ctx
,
nelements
*
block_size
,
256
),
block_size
);
options
.
output
=
inputs
.
back
();
options
.
inputs
=
inputs
;
options
.
kernel_name
=
v
.
get
(
"kernel"
,
"layernorm_kernel"
);
auto
eps
=
v
.
get
(
"epsilon"
,
1e-12
f
);
auto
src
=
interpolate_string
(
layernorm_kernel
,
{{
"kernel"
,
options
.
kernel_name
},
{
"params"
,
enum_params
(
inputs
.
size
(),
"void * private_p"
)},
{
"args"
,
enum_params
(
inputs
.
size
(),
"private_p"
)},
{
"transformers"
,
make_transformer_args
(
vec
)},
{
"post"
,
v
.
get
(
"post"
,
std
::
string
{
"op::id{}"
})},
{
"preamble"
,
v
.
get
(
"preamble"
,
std
::
string
{})},
{
"layernorm"
,
v
.
get
(
"layernorm"
,
std
::
string
{
"layernorm"
})},
{
"axis"
,
to_string
(
axis
)},
{
"eps"
,
to_string
(
eps
)}});
return
compile_hip_code_object
(
src
,
options
);
}
compiler_replace
compile
(
context
&
ctx
,
instruction_ref
ins
,
const
operation
&
op
)
const
{
auto
v
=
op
.
to_value
();
v
[
"layernorm"
]
=
"layernorm"
;
v
[
"kernel"
]
=
"layernorm_kernel"
;
if
(
op
.
name
()
==
"gpu::preadd_layernorm"
)
{
v
[
"layernorm"
]
=
"add_layernorm"
;
v
[
"kernel"
]
=
"add_layernorm_kernel"
;
}
if
(
not
ins
->
module_inputs
().
empty
())
{
auto
*
pm
=
ins
->
module_inputs
().
front
();
v
[
"preamble"
]
=
generate_pointwise
(
*
pm
,
"post_layernorm"
);
v
[
"post"
]
=
"MIGRAPHX_LIFT(post_layernorm)"
;
v
[
"kernel"
]
=
v
[
"layernorm"
].
to
<
std
::
string
>
()
+
"_"
+
generate_name_from_ops
(
*
pm
)
+
"_kernel"
;
}
return
replace
(
compile_op
(
ctx
,
to_shapes
(
ins
->
inputs
()),
v
));
}
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/jit/pointwise.cpp
View file @
7f97b8ef
...
...
@@ -26,16 +26,7 @@
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/permutation.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/module.hpp>
#include <migraphx/pass_manager.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -65,18 +56,6 @@ __global__ void ${kernel}(${params})
)__migraphx__"
;
static
std
::
vector
<
std
::
string
>
get_op_names
(
const
module
&
m
)
{
std
::
vector
<
std
::
string
>
result
;
for
(
auto
&
ins
:
m
)
{
if
(
starts_with
(
ins
.
name
(),
"@"
))
continue
;
result
.
push_back
(
ins
.
name
());
}
return
result
;
}
struct
pointwise_compiler
:
compiler
<
pointwise_compiler
>
{
std
::
vector
<
std
::
string
>
names
()
const
{
return
{
"pointwise"
,
"contiguous"
};
}
...
...
@@ -96,20 +75,16 @@ struct pointwise_compiler : compiler<pointwise_compiler>
options
.
virtual_inputs
=
reduce_dims
(
inputs
);
options
.
params
=
"-Wno-float-equal"
;
auto
axis
=
find_fast_axis
(
options
.
virtual_inputs
);
auto
vec
=
vectorize
::
elements
(
axis
,
options
.
virtual_inputs
);
auto
preloads
=
preload
::
broadcasts
(
axis
,
options
.
virtual_inputs
);
auto
vec
=
vectorize
::
elements
(
ctx
,
axis
,
options
.
virtual_inputs
);
options
.
kernel_name
=
v
.
get
(
"kernel"
,
"kernel"
);
options
.
set_launch_params
(
v
,
compute_global_for
(
ctx
,
options
.
output
.
elements
()
/
vec
.
size
,
oversubscribe_if
(
not
preloads
.
is_preloading
())));
v
,
compute_global_for
(
ctx
,
options
.
output
.
elements
()
/
vec
.
size
,
256
));
auto
src
=
interpolate_string
(
pointwise_kernel
,
{{
"kernel"
,
options
.
kernel_name
},
{
"params"
,
enum_params
(
inputs
.
size
(),
"void * private_p"
)},
{
"args"
,
enum_params
(
inputs
.
size
(),
"private_p"
)},
{
"lambda"
,
v
.
at
(
"lambda"
).
to
<
std
::
string
>
()},
{
"transformers"
,
make_transformer_args
(
preloads
,
vec
)},
{
"transformers"
,
make_transformer_args
(
vec
)},
{
"preamble"
,
v
.
get
(
"preamble"
,
std
::
string
{})}});
return
compile_hip_code_object
(
src
,
options
);
}
...
...
@@ -126,32 +101,14 @@ struct pointwise_compiler : compiler<pointwise_compiler>
else
{
assert
(
not
ins
->
module_inputs
().
empty
());
auto
*
pm
=
ins
->
module_inputs
().
front
();
run_passes
(
*
pm
,
{
eliminate_common_subexpression
{},
dead_code_elimination
{}});
cpp_generator
g
;
g
.
fmap
([](
const
std
::
string
&
fname
)
{
return
"migraphx::"
+
fname
;
});
g
.
add_point_op
(
"where"
,
"${function:where}(${0}, ${1}, ${2})"
);
g
.
add_point_op
(
"prelu"
,
"${function:where}(${0} < 0, ${0} * ${1}, ${0})"
);
g
.
add_point_op
(
"sign"
,
"${function:where}(${0} > 0, 1, ${function:where}(${0} < 0, -1, 0))"
);
g
.
add_point_op
(
"equal"
,
"migraphx::abs(${0} == ${1})"
);
g
.
add_point_op
(
"less"
,
"migraphx::abs(${0} < ${1})"
);
g
.
add_point_op
(
"greater"
,
"migraphx::abs(${0} > ${1})"
);
g
.
add_point_op
(
"not"
,
"migraphx::abs(not ${0})"
);
// Add explict conversions
g
.
fresult
([](
const
shape
&
s
)
{
return
"migraphx::convert<"
+
shape
::
cpp_type
(
s
.
type
())
+
">"
;
});
auto
name
=
g
.
create_function
(
g
.
generate_module
(
*
pm
).
set_attributes
({
"__device__"
}).
set_generic_types
(
*
pm
));
std
::
string
lambda
=
"MIGRAPHX_LIFT("
+
name
+
")"
;
auto
op_names
=
get_op_names
(
*
pm
);
op_names
.
push_back
(
"kernel"
);
auto
op_name_string
=
join_strings
(
op_names
,
"_"
);
return
replace
(
compile_op
(
ctx
,
to_shapes
(
ins
->
inputs
()),
{{
"lambda"
,
lambda
},
{
"preamble"
,
g
.
str
()},
{
"kernel"
,
op_name_string
}}));
auto
*
pm
=
ins
->
module_inputs
().
front
();
auto
pf
=
generate_pointwise
(
*
pm
,
"inner_pointwise"
);
std
::
string
lambda
=
"MIGRAPHX_LIFT(inner_pointwise)"
;
auto
kernel_name
=
generate_name_from_ops
(
*
pm
)
+
"_kernel"
;
return
replace
(
compile_op
(
ctx
,
to_shapes
(
ins
->
inputs
()),
{{
"lambda"
,
lambda
},
{
"preamble"
,
pf
},
{
"kernel"
,
kernel_name
}}));
}
}
};
...
...
src/targets/gpu/jit/reduce.cpp
View file @
7f97b8ef
...
...
@@ -26,15 +26,7 @@
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/module.hpp>
#include <migraphx/pass_manager.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -129,7 +121,7 @@ struct reduce_compiler : compiler<reduce_compiler>
// Vectorize if the axis is a reduction axis
if
(
options
.
virtual_inputs
.
back
().
lens
()[
faxis
]
==
1
)
{
vec
=
vectorize
::
elements
(
faxis
,
options
.
virtual_inputs
);
vec
=
vectorize
::
elements
(
ctx
,
faxis
,
options
.
virtual_inputs
);
}
auto
relements
=
get_reduce_elements
(
options
.
virtual_inputs
)
/
vec
.
size
;
auto
nelements
=
options
.
virtual_inputs
.
back
().
elements
();
...
...
src/targets/gpu/jit/roialign.cpp
View file @
7f97b8ef
...
...
@@ -24,16 +24,7 @@
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/module.hpp>
#include <migraphx/pass_manager.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
src/targets/gpu/jit/scatternd.cpp
View file @
7f97b8ef
...
...
@@ -24,16 +24,8 @@
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/module.hpp>
#include <migraphx/pass_manager.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
src/targets/gpu/jit/softmax.cpp
View file @
7f97b8ef
...
...
@@ -26,20 +26,14 @@
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/module.hpp>
#include <migraphx/pass_manager.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_USE_FAST_SOFTMAX
)
using
namespace
migraphx
::
gpu
::
gen
;
// NOLINT
static
const
char
*
const
softmax_kernel
=
R"__migraphx__(
...
...
@@ -77,7 +71,7 @@ struct softmax_compiler : compiler<softmax_compiler>
// Vectorize if the axis is a reduction axis
if
(
faxis
==
axis
)
{
vec
=
vectorize
::
elements
(
faxis
,
inputs
);
vec
=
vectorize
::
elements
(
ctx
,
faxis
,
inputs
);
}
auto
relements
=
inputs
[
0
].
lens
()[
axis
]
/
vec
.
size
;
auto
nelements
=
(
inputs
.
back
().
elements
()
/
inputs
[
0
].
lens
()[
axis
]);
...
...
@@ -89,6 +83,9 @@ struct softmax_compiler : compiler<softmax_compiler>
options
.
inputs
=
inputs
;
options
.
kernel_name
=
"softmax_kernel"
;
if
(
enabled
(
MIGRAPHX_USE_FAST_SOFTMAX
{}))
options
.
params
=
"-DMIGRAPHX_USE_FAST_SOFTMAX"
;
auto
src
=
interpolate_string
(
softmax_kernel
,
{{
"transformers"
,
make_transformer_args
(
vec
)},
{
"axis"
,
to_string
(
axis
)}});
...
...
src/targets/gpu/kernel.cpp
View file @
7f97b8ef
...
...
@@ -80,7 +80,9 @@ void launch_kernel(hipFunction_t fun,
std
::
size_t
global
,
std
::
size_t
local
,
void
*
kernargs
,
std
::
size_t
size
)
std
::
size_t
size
,
hipEvent_t
start
,
hipEvent_t
stop
)
{
assert
(
global
>
0
);
assert
(
local
>
0
);
...
...
@@ -97,34 +99,55 @@ void launch_kernel(hipFunction_t fun,
#endif
};
auto
status
=
hipExtModuleLaunchKernel
(
fun
,
global
,
1
,
1
,
local
,
1
,
1
,
0
,
stream
,
nullptr
,
reinterpret_cast
<
void
**>
(
&
config
));
auto
status
=
hipExtModuleLaunchKernel
(
fun
,
global
,
1
,
1
,
local
,
1
,
1
,
0
,
stream
,
nullptr
,
reinterpret_cast
<
void
**>
(
&
config
),
start
,
stop
);
if
(
status
!=
hipSuccess
)
MIGRAPHX_THROW
(
"Failed to launch kernel: "
+
hip_error
(
status
));
if
(
stop
!=
nullptr
)
{
status
=
hipEventSynchronize
(
stop
);
if
(
status
!=
hipSuccess
)
MIGRAPHX_THROW
(
"Failed to sync event: "
+
hip_error
(
status
));
}
}
void
kernel
::
launch
(
hipStream_t
stream
,
std
::
size_t
global
,
std
::
size_t
local
,
std
::
vector
<
void
*>
args
)
const
std
::
vector
<
void
*>
args
,
hipEvent_t
start
,
hipEvent_t
stop
)
const
{
assert
(
impl
!=
nullptr
);
void
*
kernargs
=
args
.
data
();
std
::
size_t
size
=
args
.
size
()
*
sizeof
(
void
*
);
launch_kernel
(
impl
->
fun
,
stream
,
global
,
local
,
kernargs
,
size
);
launch_kernel
(
impl
->
fun
,
stream
,
global
,
local
,
kernargs
,
size
,
start
,
stop
);
}
void
kernel
::
launch
(
hipStream_t
stream
,
std
::
size_t
global
,
std
::
size_t
local
,
const
std
::
vector
<
kernel_argument
>&
args
)
const
const
std
::
vector
<
kernel_argument
>&
args
,
hipEvent_t
start
,
hipEvent_t
stop
)
const
{
assert
(
impl
!=
nullptr
);
std
::
vector
<
char
>
kernargs
=
pack_args
(
args
);
std
::
size_t
size
=
kernargs
.
size
();
launch_kernel
(
impl
->
fun
,
stream
,
global
,
local
,
kernargs
.
data
(),
size
);
launch_kernel
(
impl
->
fun
,
stream
,
global
,
local
,
kernargs
.
data
(),
size
,
start
,
stop
);
}
}
// namespace gpu
...
...
src/targets/gpu/kernels/include/migraphx/kernels/algorithm.hpp
View file @
7f97b8ef
...
...
@@ -163,7 +163,7 @@ constexpr Iterator1 search(Iterator1 first, Iterator1 last, Iterator2 s_first, I
{
return
last
;
}
if
(
!
(
*
it
==
*
s_it
))
if
(
not
(
*
it
==
*
s_it
))
{
break
;
}
...
...
src/targets/gpu/kernels/include/migraphx/kernels/array.hpp
View file @
7f97b8ef
...
...
@@ -33,49 +33,95 @@
namespace
migraphx
{
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_ARRAY_OP(op, binary_op) \
template <class U> \
constexpr array& operator op(const array<U, N>& x) \
{ \
for(index_int i = 0; i < N; i++) \
d[i] op x[i]; \
return *this; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
constexpr array& operator op(const U& x) \
{ \
for(index_int i = 0; i < N; i++) \
d[i] op x; \
return *this; \
} \
template <class U> \
friend constexpr auto operator binary_op(const array& x, const array<U, N>& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
for(index_int i = 0; i < N; i++) \
z[i] = x[i] binary_op y[i]; \
return z; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
friend constexpr auto operator binary_op(const array& x, const U& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
for(index_int i = 0; i < N; i++) \
z[i] = x[i] binary_op y; \
return z; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
friend constexpr auto operator binary_op(const U& x, const array& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
for(index_int i = 0; i < N; i++) \
z[i] = x binary_op y[i]; \
return z; \
#define MIGRAPHX_DEVICE_ARRAY_OP(op, binary_op) \
template <class U> \
constexpr array& operator op(const array<U, N>& x) \
{ \
array_detail::array_for_each(*this, x)([](auto& sy, auto sx) { sy op sx; }); \
return *this; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
constexpr array& operator op(const U& x) \
{ \
array_detail::array_for_each (*this)([&](auto& sy) { sy op x; }); \
return *this; \
} \
template <class U> \
friend constexpr auto operator binary_op(const array& x, const array<U, N>& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
array_detail::array_for_each(z, x, y)( \
[&](auto& sz, auto sx, auto sy) { sz = sx binary_op sy; }); \
return z; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
friend constexpr auto operator binary_op(const array& x, const U& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
array_detail::array_for_each(z, x)([&](auto& sz, auto sx) { sz = sx binary_op y; }); \
return z; \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
friend constexpr auto operator binary_op(const U& x, const array& y) \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
array_detail::array_for_each(z, y)([&](auto& sz, auto sy) { sz = x binary_op sy; }); \
return z; \
}
namespace
array_detail
{
template
<
class
T
>
constexpr
auto
is_vectorizable
()
{
return
not
is_same
<
T
,
bool
>
{}
and
(
is_fundamental
<
T
>
{}
or
is_same
<
T
,
half
>
{});
}
template
<
class
T
>
__device__
auto
&
array2vec
(
T
&
x
)
{
using
value_type
=
typename
T
::
value_type
;
constexpr
auto
size
=
decltype
(
x
.
size
()){};
using
type
=
vec
<
value_type
,
size
>
;
if
constexpr
(
is_const
<
T
>
{})
return
reinterpret_cast
<
const
type
&>
(
x
);
else
return
reinterpret_cast
<
type
&>
(
x
);
}
template
<
class
T
,
class
...
Ts
>
constexpr
auto
array_for_each
(
T
&
x
,
Ts
&
...
xs
)
{
MIGRAPHX_ASSERT
(((
x
.
size
()
==
xs
.
size
())
and
...));
return
[
&
](
auto
f
)
{
constexpr
auto
size
=
decltype
(
x
.
size
()){};
if
constexpr
((
is_vectorizable
<
typename
T
::
value_type
>
()
or
(
is_vectorizable
<
typename
Ts
::
value_type
>
()
or
...))
and
size
<=
8
and
size
>
1
and
(
size
%
2
==
0
))
{
if
(
__builtin_is_constant_evaluated
())
{
for
(
index_int
i
=
0
;
i
<
size
;
i
++
)
f
(
x
[
i
],
xs
[
i
]...);
}
else
{
using
vec_type
=
std
::
remove_reference_t
<
decltype
(
array2vec
(
x
))
>
;
f
(
array2vec
(
x
),
__builtin_convertvector
(
array2vec
(
xs
),
vec_type
)...);
}
}
else
{
for
(
index_int
i
=
0
;
i
<
size
;
i
++
)
f
(
x
[
i
],
xs
[
i
]...);
}
};
}
}
// namespace array_detail
template
<
class
T
,
index_int
N
>
struct
array
{
using
value_type
=
T
;
T
d
[
N
];
constexpr
T
&
operator
[](
index_int
i
)
{
...
...
@@ -108,18 +154,13 @@ struct array
constexpr
T
dot
(
const
array
&
x
)
const
{
T
result
=
0
;
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
result
+=
x
[
i
]
*
d
[
i
];
return
result
;
auto
r
=
x
*
(
*
this
);
return
r
.
reduce
([](
auto
a
,
auto
b
)
{
return
a
+
b
;
},
0
);
}
constexpr
T
product
()
const
{
T
result
=
1
;
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
result
*=
d
[
i
];
return
result
;
return
reduce
([](
auto
x
,
auto
y
)
{
return
x
*
y
;
},
1
);
}
constexpr
T
single
(
index_int
width
=
100
)
const
...
...
@@ -134,6 +175,24 @@ struct array
return
result
;
}
template
<
class
F
>
constexpr
auto
apply
(
F
f
)
const
{
array
<
decltype
(
f
(
d
[
0
])),
N
>
result
;
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
result
[
i
]
=
f
(
d
[
i
]);
return
result
;
}
template
<
class
F
>
constexpr
auto
reduce
(
F
f
,
T
init
)
const
{
T
result
=
init
;
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
result
=
f
(
result
,
d
[
i
]);
return
result
;
}
MIGRAPHX_DEVICE_ARRAY_OP
(
+=
,
+
)
MIGRAPHX_DEVICE_ARRAY_OP
(
-=
,
-
)
MIGRAPHX_DEVICE_ARRAY_OP
(
*=
,
*
)
...
...
@@ -153,7 +212,7 @@ struct array
return
true
;
}
friend
constexpr
bool
operator
!=
(
const
array
&
x
,
const
array
&
y
)
{
return
!
(
x
==
y
);
}
friend
constexpr
bool
operator
!=
(
const
array
&
x
,
const
array
&
y
)
{
return
not
(
x
==
y
);
}
// This uses the product order rather than lexical order
friend
constexpr
bool
operator
<
(
const
array
&
x
,
const
array
&
y
)
{
...
...
@@ -201,6 +260,11 @@ struct array
}
};
template
<
class
T
,
class
...
Ts
>
constexpr
array
<
T
,
sizeof
...(
Ts
)
+
1
>
make_array
(
T
x
,
Ts
...
xs
)
{
return
{
x
,
static_cast
<
T
>
(
xs
)...};
}
template
<
class
T
,
T
...
Xs
>
struct
integral_const_array
:
array
<
T
,
sizeof
...(
Xs
)
>
{
...
...
src/targets/gpu/include/migraphx/
gpu/max
.hpp
→
src/targets/gpu/
kernels/
include/migraphx/
kernels/concat
.hpp
View file @
7f97b8ef
...
...
@@ -21,22 +21,46 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_MAX_HPP
#define MIGRAPHX_GUARD_RTGLIB_MAX_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/max.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/functional.hpp>
#include <migraphx/kernels/tensor_view.hpp>
#ifndef MIGRAPHX_GUARD_KERNELS_CONCAT_HPP
#define MIGRAPHX_GUARD_KERNELS_CONCAT_HPP
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
hip_max
:
binary_device
<
hip_max
,
device
::
max
>
template
<
index_int
Axis
,
class
Output
,
class
Input
,
class
Start
>
constexpr
auto
concat_slice
(
Output
out
,
Input
,
Start
)
{
};
constexpr
auto
lens
=
get_shape_c
<
Input
>
{}.
lens
;
constexpr
auto
strides
=
get_shape_c
<
Output
>
{}.
strides
;
constexpr
auto
offset
=
return_c
([]
{
constexpr
auto
output_shape
=
get_shape_c
<
Output
>
{};
return
Start
{}
*
output_shape
.
strides
[
Axis
];
});
constexpr
auto
s
=
make_shape
(
lens
,
strides
);
return
make_tensor_view
(
&
out
[
offset
],
s
);
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
template
<
index_int
Axis
,
class
Input
>
constexpr
auto
concat_ends
(
Input
)
{
constexpr
auto
lens
=
get_shape_c
<
Input
>
{}.
lens
;
return
_c
<
lens
[
Axis
]
>
;
}
#endif
template
<
index_int
Axis
,
class
Output
,
class
...
Inputs
>
__device__
void
concat
(
Output
output
,
Inputs
...
inputs
)
{
auto
idx
=
make_index
();
fold
([
&
](
auto
start
,
auto
input
)
{
auto
y
=
concat_slice
<
Axis
>
(
output
,
input
,
start
);
idx
.
global_stride
(
input
.
get_shape
().
elements
(),
[
&
](
auto
i
)
{
y
[
i
]
=
input
[
i
];
});
return
start
+
concat_ends
<
Axis
>
(
input
);
})(
_c
<
0
>
,
inputs
...);
}
}
// namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_CONCAT_HPP
src/targets/gpu/kernels/include/migraphx/kernels/functional.hpp
View file @
7f97b8ef
...
...
@@ -31,8 +31,9 @@
->decltype(__VA_ARGS__) { return __VA_ARGS__; }
// NOLINTNEXTLINE
#define MIGRAPHX_LIFT(...) \
[](auto&&... xs) MIGRAPHX_RETURNS((__VA_ARGS__)(static_cast<decltype(xs)>(xs)...))
#define MIGRAPHX_LIFT(...) \
[](auto&&... private_lisft_xs) MIGRAPHX_RETURNS( \
(__VA_ARGS__)(static_cast<decltype(private_lisft_xs)>(private_lisft_xs)...))
namespace
migraphx
{
...
...
src/targets/gpu/kernels/include/migraphx/kernels/index.hpp
View file @
7f97b8ef
...
...
@@ -28,9 +28,60 @@
#include <migraphx/kernels/types.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/debug.hpp>
namespace
migraphx
{
#if defined(MIGRAPHX_NGLOBAL) && defined(MIGRAPHX_NLOCAL)
#define MIGRAPHX_NGROUP ((MIGRAPHX_NGLOBAL + MIGRAPHX_NLOCAL - 1) / MIGRAPHX_NLOCAL)
#endif
inline
__device__
__attribute__
((
const
))
index_int
compute_global_size
()
{
#ifdef MIGRAPHX_NGLOBAL
return
MIGRAPHX_NGLOBAL
;
#else
// This actualy works even when global is not divisible by local size.
// This doesnt actually do a multiplicatiosn. Instead it calls a device
// function to get the global size, which is why it works.
return
blockDim
.
x
*
gridDim
.
x
;
// NOLINT
#endif
}
// We cant just use blockDim.x to get the local size since its broken on hip
// when global is not divisible by local size. In this case, we calulate the
// size for the last group.
inline
__device__
__attribute__
((
const
))
index_int
compute_local_size
()
{
#ifdef MIGRAPHX_NLOCAL
const
auto
nlocal
=
MIGRAPHX_NLOCAL
;
#else
const
auto
nlocal
=
blockDim
.
x
;
// NOLINT
#endif
#ifdef MIGRAPHX_NGROUP
const
auto
ngroup
=
MIGRAPHX_NGROUP
;
#else
const
auto
ngroup
=
gridDim
.
x
;
// NOLINT
#endif
const
auto
group_id
=
blockIdx
.
x
;
// NOLINT
const
auto
nglobal
=
compute_global_size
();
if
(
group_id
==
ngroup
-
1
)
{
return
1
+
(
nglobal
-
1
)
%
nlocal
;
}
else
{
return
nlocal
;
// NOLINT
}
}
#ifdef MIGRAPHX_NGROUP
// If global is divisible by local then local can be a const
#if(MIGRAPHX_NGLOBAL % MIGRAPHX_NLOCAL == 0) || (MIGRAPHX_NGROUP == 1)
#define MIGRAPHX_HAS_CONST_LOCAL 1
#endif
#endif
struct
index
{
index_int
global
=
0
;
...
...
@@ -38,20 +89,44 @@ struct index
index_int
group
=
0
;
#ifdef MIGRAPHX_NGLOBAL
constexpr
index_constant
<
MIGRAPHX_NGLOBAL
>
nglobal
()
const
{
return
{};
}
constexpr
index_constant
<
MIGRAPHX_NGLOBAL
>
nglobal
()
const
{
static_assert
(
MIGRAPHX_NGLOBAL
>
0
,
"Global size must be greater than 0"
);
return
{};
}
#else
__device__
index_int
nglobal
()
const
{
return
blockDim
.
x
*
gridDim
.
x
;
// NOLINT
MIGRAPHX_ASSERT
(
compute_global_size
()
>
0
);
return
compute_global_size
();
// NOLINT
}
#endif
#ifdef MIGRAPHX_NLOCAL
constexpr
index_constant
<
MIGRAPHX_NLOCAL
>
nlocal
()
const
{
return
{};
}
#ifdef MIGRAPHX_HAS_CONST_LOCAL
constexpr
index_constant
<
MIGRAPHX_NLOCAL
>
nlocal
()
const
{
static_assert
(
MIGRAPHX_NLOCAL
>
0
,
"Local size must be greater than 0"
);
return
{};
}
#else
__device__
index_int
nlocal
()
const
{
return
blockDim
.
x
;
// NOLINT
#ifdef MIGRAPHX_NGROUP
static_assert
((
MIGRAPHX_NGLOBAL
%
MIGRAPHX_NLOCAL
!=
0
)
and
(
MIGRAPHX_NGROUP
>
1
),
"Local size should be const"
);
#endif
MIGRAPHX_ASSERT
(
compute_local_size
()
>
0
);
return
compute_local_size
();
// NOLINT
}
#endif
#ifdef MIGRAPHX_NLOCAL
constexpr
index_constant
<
MIGRAPHX_NLOCAL
>
max_nlocal
()
const
{
return
{};
}
#else
__device__
index_int
max_nlocal
()
const
{
MIGRAPHX_ASSERT
(
blockDim
.
x
>
0
);
return
blockDim
.
x
;
}
#endif
template
<
class
N
,
class
Stride
>
...
...
@@ -63,6 +138,7 @@ struct index
template
<
class
F
,
class
N
,
class
Stride
>
static
constexpr
void
for_stride
(
index_int
start
,
N
n
,
Stride
stride
,
F
f
)
{
MIGRAPHX_ASSERT
(
start
<
stride
);
if
constexpr
(
not
is_integral
<
N
>
{}
and
not
is_integral
<
Stride
>
{}
and
max_stride_iterations
(
n
,
stride
)
==
1
)
{
...
...
src/targets/gpu/kernels/include/migraphx/kernels/integral_constant.hpp
View file @
7f97b8ef
...
...
@@ -73,10 +73,10 @@ MIGRAPHX_INTEGRAL_CONSTANT_BINARY_OP(!=)
MIGRAPHX_INTEGRAL_CONSTANT_BINARY_OP
(
&
)
MIGRAPHX_INTEGRAL_CONSTANT_BINARY_OP
(
^
)
MIGRAPHX_INTEGRAL_CONSTANT_BINARY_OP
(
|
)
MIGRAPHX_INTEGRAL_CONSTANT_BINARY_OP
(
&&
)
MIGRAPHX_INTEGRAL_CONSTANT_BINARY_OP
(
||
)
MIGRAPHX_INTEGRAL_CONSTANT_BINARY_OP
(
and
)
MIGRAPHX_INTEGRAL_CONSTANT_BINARY_OP
(
or
)
MIGRAPHX_INTEGRAL_CONSTANT_UNARY_OP
(
!
)
MIGRAPHX_INTEGRAL_CONSTANT_UNARY_OP
(
not
)
MIGRAPHX_INTEGRAL_CONSTANT_UNARY_OP
(
~
)
MIGRAPHX_INTEGRAL_CONSTANT_UNARY_OP
(
+
)
MIGRAPHX_INTEGRAL_CONSTANT_UNARY_OP
(
-
)
...
...
src/targets/gpu/
device/add_sigmoid.c
pp
→
src/targets/gpu/
kernels/include/migraphx/kernels/layernorm.h
pp
View file @
7f97b8ef
...
...
@@ -21,35 +21,69 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/device/add_sigmoid.hpp>
#include <migraphx/gpu/device/nary.hpp>
#ifndef MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
#define MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
#include <migraphx/kernels/reduce.hpp>
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/print.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
add_sigmoid
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg1
,
const
argument
&
arg2
)
template
<
class
T
,
index_int
N
,
class
Op
>
constexpr
auto
vec_reduce
(
const
array
<
T
,
N
>&
a
,
Op
op
)
{
nary
(
stream
,
result
,
arg1
,
arg2
)(
[](
auto
x
,
auto
y
)
__device__
{
return
1.
f
/
(
1.
f
+
::
exp
(
to_hip_type
(
-
(
x
+
y
))));
});
return
a
.
apply
([
&
](
auto
x
)
{
return
vec_reduce
(
x
,
op
);
});
}
void
add_sigmoid
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg1
,
const
argument
&
arg2
,
const
argument
&
arg3
)
template
<
index_int
Axis
,
class
F
,
class
BinOp
,
class
Output
,
class
Input1
,
class
Input2
,
class
...
Inputs
>
__device__
void
generic_binary_layernorm
(
F
compute
,
BinOp
op
,
float
eps
,
Output
output
,
Input1
input1
,
Input2
input2
,
Inputs
...
inputs
)
{
nary
(
stream
,
result
,
arg1
,
arg2
,
arg3
)([](
auto
x
,
auto
y
,
auto
z
)
__device__
{
return
1.
f
/
(
1.
f
+
::
exp
(
to_hip_type
(
-
(
x
+
y
+
z
))));
using
reduce_output
=
reduce
::
with_axis
<
Input1
,
Axis
>
;
reduce
::
block
::
run
<
reduce_output
>
([
&
](
auto
,
auto
r
)
{
using
value_type
=
typename
Input1
::
type
;
constexpr
auto
relements
=
r
.
template
elements
<
Input1
>();
auto
means
=
r
.
reduce
(
op
::
sum
{},
make_array
<
vec_type
<
value_type
>>
(
0
,
0
),
[
&
](
auto
x1
,
auto
x2
)
{
auto
x
=
op
(
x1
,
x2
);
return
make_array
(
x
,
x
*
x
)
*
vec_type
<
value_type
>
{
1.0
/
relements
};
})(
input1
,
input2
);
auto
mean_x
=
means
[
0
];
auto
mean_x2
=
means
[
1
];
auto
variance
=
mean_x2
-
(
mean_x
*
mean_x
);
value_type
eps_val
=
eps
;
// implicit conversion for eps
r
.
inner
([
&
](
auto
&
y
,
auto
x1
,
auto
x2
,
auto
...
xs
)
{
auto
x
=
op
(
x1
,
x2
);
auto
m
=
x
-
mean_x
;
// m * rsqrt(mean(m ^ 2) + epsilon)
y
=
compute
(
m
*
rsqrt
(
variance
+
eps_val
),
xs
...);
})(
output
,
input1
,
input2
,
inputs
...);
});
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
template
<
index_int
Axis
,
class
F
,
class
Output
,
class
Input
,
class
...
Inputs
>
__device__
void
layernorm
(
F
compute
,
float
eps
,
Output
output
,
Input
input
,
Inputs
...
inputs
)
{
generic_binary_layernorm
<
Axis
>
(
compute
,
[](
auto
x
,
auto
)
{
return
x
;
},
eps
,
output
,
input
,
input
,
inputs
...);
}
template
<
index_int
Axis
,
class
F
,
class
Output
,
class
Input1
,
class
Input2
,
class
...
Inputs
>
__device__
void
add_layernorm
(
F
compute
,
float
eps
,
Output
output
,
Input1
input1
,
Input2
input2
,
Inputs
...
inputs
)
{
generic_binary_layernorm
<
Axis
>
(
compute
,
[](
auto
x1
,
auto
x2
)
{
return
x1
+
x2
;
},
eps
,
output
,
input1
,
input2
,
inputs
...);
}
}
// namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
View file @
7f97b8ef
...
...
@@ -104,6 +104,7 @@ MIGRAPHX_DEVICE_MATH(floor, ::floor)
MIGRAPHX_DEVICE_MATH
(
isnan
,
::
isnan
)
MIGRAPHX_DEVICE_MATH
(
log
,
::
log
)
MIGRAPHX_DEVICE_MATH
(
pow
,
::
pow
)
MIGRAPHX_DEVICE_MATH
(
remainder
,
::
remainder
)
MIGRAPHX_DEVICE_MATH
(
round
,
::
round
)
MIGRAPHX_DEVICE_MATH
(
rsqrt
,
::
rsqrt
)
MIGRAPHX_DEVICE_MATH
(
sin
,
::
sin
)
...
...
@@ -111,6 +112,7 @@ MIGRAPHX_DEVICE_MATH(sinh, ::sinh)
MIGRAPHX_DEVICE_MATH
(
sqrt
,
::
sqrt
)
MIGRAPHX_DEVICE_MATH
(
tan
,
::
tan
)
MIGRAPHX_DEVICE_MATH
(
tanh
,
::
tanh
)
MIGRAPHX_DEVICE_MATH
(
fmod
,
::
fmod
)
// Float overloads
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
acos
,
::
acosf
)
...
...
@@ -126,6 +128,7 @@ MIGRAPHX_DEVICE_MATH_FOR(float, sin, ::sinf)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
sinh
,
::
sinhf
)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
tan
,
::
tanf
)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
tanh
,
::
tanhf
)
MIGRAPHX_DEVICE_MATH_FOR
(
float
,
fmod
,
::
fmodf
)
// Builtin half functions
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
abs
,
::
__habs
)
...
...
@@ -148,11 +151,13 @@ MIGRAPHX_DEVICE_MATH_HALF(erf, ::erf)
MIGRAPHX_DEVICE_MATH_HALF
(
floor
,
::
floor
)
MIGRAPHX_DEVICE_MATH_HALF
(
isnan
,
::
isnan
)
MIGRAPHX_DEVICE_MATH_HALF
(
pow
,
::
pow
)
MIGRAPHX_DEVICE_MATH_HALF
(
remainder
,
::
remainder
)
MIGRAPHX_DEVICE_MATH_HALF
(
round
,
::
round
)
MIGRAPHX_DEVICE_MATH_HALF
(
sin
,
::
sin
)
MIGRAPHX_DEVICE_MATH_HALF
(
sinh
,
::
sinh
)
MIGRAPHX_DEVICE_MATH_HALF
(
tan
,
::
tan
)
MIGRAPHX_DEVICE_MATH_HALF
(
tanh
,
::
tanh
)
MIGRAPHX_DEVICE_MATH_HALF
(
fmod
,
::
fmod
)
// Map math functions to hip half2 functions
// The half2 type is defined in include/hip/amd_detail/hip_fp16_gcc.h and is 2 16-bit floats
...
...
@@ -226,11 +231,13 @@ MIGRAPHX_DEVICE_MATH_VEC(cosh)
MIGRAPHX_DEVICE_MATH_VEC
(
erf
)
MIGRAPHX_DEVICE_MATH_VEC
(
exp
)
MIGRAPHX_DEVICE_MATH_VEC
(
floor
)
MIGRAPHX_DEVICE_MATH_VEC
(
fmod
)
MIGRAPHX_DEVICE_MATH_VEC
(
isnan
)
MIGRAPHX_DEVICE_MATH_VEC
(
log
)
MIGRAPHX_DEVICE_MATH_VEC
(
max
)
MIGRAPHX_DEVICE_MATH_VEC
(
min
)
MIGRAPHX_DEVICE_MATH_VEC
(
pow
)
MIGRAPHX_DEVICE_MATH_VEC
(
remainder
)
MIGRAPHX_DEVICE_MATH_VEC
(
round
)
MIGRAPHX_DEVICE_MATH_VEC
(
rsqrt
)
MIGRAPHX_DEVICE_MATH_VEC
(
sin
)
...
...
src/targets/gpu/kernels/include/migraphx/kernels/ops.hpp
View file @
7f97b8ef
...
...
@@ -90,7 +90,7 @@ struct lowest
template
<
class
T
>
constexpr
operator
T
()
const
{
return
numeric_lowest
<
T
>
();
return
numeric_lowest
<
vec_type
<
T
>
>
();
}
};
...
...
@@ -99,7 +99,7 @@ struct highest
template
<
class
T
>
constexpr
operator
T
()
const
{
return
numeric_max
<
T
>
();
return
numeric_max
<
vec_type
<
T
>
>
();
}
};
}
// namespace migraphx
...
...
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
View file @
7f97b8ef
...
...
@@ -94,16 +94,17 @@ MIGRAPHX_DPP_REDUCE(op::max, v_max)
MIGRAPHX_DPP_REDUCE
(
op
::
min
,
v_min
)
MIGRAPHX_DPP_REDUCE
(
op
::
product
,
v_mul
)
template
<
class
Op
,
class
T
,
class
F
>
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
i
ndex
_int
n
,
F
f
)
template
<
class
Op
,
class
T
,
class
Index
,
class
F
>
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
I
ndex
n
,
F
f
)
{
MIGRAPHX_ASSERT
(
idx
.
max_nlocal
()
==
idx
.
nlocal
());
#if __AMDGCN_WAVEFRONT_SIZE == 32
constexpr
index_int
lanes_per_thread
=
16
;
#else
constexpr
index_int
lanes_per_thread
=
64
;
#endif
using
type
=
decltype
(
f
(
0
));
__shared__
type
buffer
[
idx
.
nlocal
()
/
lanes_per_thread
];
__shared__
type
buffer
[
idx
.
max_
nlocal
()
/
lanes_per_thread
];
type
x
=
init
;
idx
.
local_stride
(
n
,
[
&
](
auto
i
)
{
x
=
op
(
x
,
f
(
i
));
});
dpp_reduce
(
x
,
op
);
...
...
@@ -123,12 +124,12 @@ __device__ auto block_reduce(index idx, Op op, T init, index_int n, F f)
return
y
;
}
#else
template
<
class
Op
,
class
T
,
class
F
>
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
i
ndex
_int
n
,
F
f
)
template
<
class
Op
,
class
T
,
class
Index
,
class
F
>
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
I
ndex
n
,
F
f
)
{
MIGRAPHX_ASSERT
(
idx
.
max_nlocal
()
==
idx
.
nlocal
());
using
type
=
decltype
(
f
(
0
));
__shared__
type
buffer
[
idx
.
nlocal
()];
__shared__
type
buffer
[
idx
.
max_
nlocal
()];
type
x
=
init
;
idx
.
local_stride
(
n
,
[
&
](
auto
i
)
{
x
=
op
(
x
,
f
(
i
));
});
buffer
[
idx
.
local
]
=
x
;
...
...
@@ -196,17 +197,14 @@ struct block
struct
reducer
{
index
idx
;
Slicer
slice
r
;
Slicer
slice
;
template
<
class
Op
,
class
T
,
class
Read
>
__device__
auto
reduce
(
Op
op
,
T
init
,
Read
read
)
const
{
return
sliced
(
slicer
,
[
=
](
auto
x
,
auto
...
xs
)
{
return
vec_reduce
(
block_reduce
(
idx
,
op
,
init
,
x
.
get_shape
().
elements
(),
[
&
](
auto
j
)
{
return
read
(
x
[
j
],
xs
[
j
]...);
}),
op
);
return
sliced
(
slice
,
[
=
](
auto
x
,
auto
...
xs
)
{
return
block_reduce
(
idx
,
op
,
init
,
x
.
get_shape
().
elements
(),
[
&
](
auto
j
)
{
return
vec_reduce
(
read
(
x
[
j
],
xs
[
j
]...),
op
);
});
});
}
...
...
@@ -220,10 +218,22 @@ struct block
template
<
class
F
>
__device__
auto
inner
(
F
f
)
const
{
return
sliced
(
slice
r
,
[
=
](
auto
x
,
auto
...
xs
)
{
return
sliced
(
slice
,
[
=
](
auto
x
,
auto
...
xs
)
{
idx
.
local_stride
(
x
.
get_shape
().
elements
(),
[
&
](
auto
j
)
{
f
(
x
[
j
],
xs
[
j
]...);
});
});
}
template
<
class
Input
>
constexpr
auto
elements
()
const
{
using
reduce_type
=
decltype
(
slice
(
Input
{}));
using
value_type
=
typename
Input
::
type
;
constexpr
auto
relements
=
get_shape_c
<
reduce_type
>
{}.
elements
();
if
constexpr
(
vec_size
<
value_type
>
()
>
1
)
return
relements
*
vec_size
<
value_type
>
();
else
return
relements
;
}
};
template
<
class
Slicer
>
...
...
@@ -250,11 +260,11 @@ struct lane
struct
reducer
{
index
idx
;
Slicer
slice
r
;
Slicer
slice
;
template
<
class
Op
,
class
T
,
class
Read
>
__device__
auto
reduce
(
Op
op
,
T
init
,
Read
read
)
const
{
return
sliced
(
slice
r
,
[
=
](
auto
x
,
auto
...
xs
)
{
return
sliced
(
slice
,
[
=
](
auto
x
,
auto
...
xs
)
{
using
type
=
typename
decltype
(
x
)
::
type
;
type
r
=
init
;
for
(
index_int
j
=
0
;
j
<
x
.
get_shape
().
elements
();
j
++
)
...
...
@@ -274,13 +284,20 @@ struct lane
template
<
class
F
>
__device__
auto
inner
(
F
f
)
const
{
return
sliced
(
slice
r
,
[
=
](
auto
x
,
auto
...
xs
)
{
return
sliced
(
slice
,
[
=
](
auto
x
,
auto
...
xs
)
{
for
(
index_int
j
=
0
;
j
<
x
.
get_shape
().
elements
();
j
++
)
{
f
(
x
[
j
],
xs
[
j
]...);
}
});
}
template
<
class
Input
>
constexpr
auto
elements
()
const
{
using
reduce_type
=
decltype
(
slice
(
Input
{}));
return
get_shape_c
<
reduce_type
>
{}.
elements
();
}
};
template
<
class
Slicer
>
...
...
src/targets/gpu/kernels/include/migraphx/kernels/softmax.hpp
View file @
7f97b8ef
...
...
@@ -33,11 +33,15 @@ template <index_int Axis, class Input, class Output>
__device__
void
softmax
(
Input
input
,
Output
output
)
{
reduce
::
block
::
run
<
reduce
::
with_axis
<
Input
,
Axis
>>
([
&
](
auto
,
auto
r
)
{
auto
batch_max
=
r
.
reduce
(
op
::
max
{},
lowest
{},
op
::
id
{})(
input
);
auto
batch_sum
=
r
.
reduce
(
op
::
sum
{},
0
,
[
&
](
auto
x
)
{
return
migraphx
::
exp
(
x
-
batch_max
);
})(
input
);
r
.
inner
([
&
](
auto
&
y
,
auto
x
)
{
y
=
migraphx
::
exp
(
x
-
batch_max
)
/
batch_sum
;
})(
output
,
input
);
#ifdef MIGRAPHX_USE_FAST_SOFTMAX
const
auto
c
=
vec_at
(
r
.
slice
(
input
)[
0
],
0
);
#else
const
auto
c
=
r
.
reduce
(
op
::
max
{},
lowest
{},
op
::
id
{})(
input
);
#endif
auto
batch_sum
=
r
.
reduce
(
op
::
sum
{},
0
,
[
&
](
auto
x
)
{
return
migraphx
::
convert
<
float
>
(
migraphx
::
exp
(
x
-
c
));
})(
input
);
r
.
inner
([
&
](
auto
&
y
,
auto
x
)
{
y
=
migraphx
::
exp
(
x
-
c
)
/
batch_sum
;
})(
output
,
input
);
});
}
...
...
src/targets/gpu/kernels/include/migraphx/kernels/type_traits.hpp
View file @
7f97b8ef
...
...
@@ -192,9 +192,13 @@ struct common_type<T, U, Us...>
template
<
class
...
Ts
>
using
common_type_t
=
typename
common_type
<
Ts
...
>::
type
;
#define MIGRAPHX_REQUIRES(...) class = enable_if_t<__VA_ARGS__>
constexpr
unsigned
long
int_max
(
unsigned
long
n
)
{
return
(
1u
<<
(
n
*
8
))
-
1
;
}
template
<
class
T
>
template
<
class
T
,
MIGRAPHX_REQUIRES
(
is_integral
<
T
>{}
or
is_floating_point
<
T
>
{}
or
is_same
<
T
,
migraphx
::
half
>
{})
>
constexpr
T
numeric_max
()
{
if
constexpr
(
is_integral
<
T
>
{})
...
...
@@ -230,8 +234,6 @@ constexpr T numeric_lowest()
}
}
#define MIGRAPHX_REQUIRES(...) class = enable_if_t<__VA_ARGS__>
}
// namespace migraphx
#endif
src/targets/gpu/kernels/include/migraphx/kernels/vec.hpp
View file @
7f97b8ef
...
...
@@ -175,7 +175,7 @@ template <class T, class Op>
constexpr
auto
vec_reduce
(
T
x
,
Op
op
)
{
if
constexpr
(
vec_size
<
T
>
()
<
2
)
return
x
;
return
vec_type
<
T
>
{
x
}
;
else
{
vec_type
<
T
>
result
=
x
[
0
];
...
...
Prev
1
…
13
14
15
16
17
18
19
20
21
…
23
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment