Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
78a300ff
Commit
78a300ff
authored
Oct 07, 2022
by
Alan Turner
Browse files
Update tuning method
parent
dea0555f
Changes
159
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
7070 additions
and
0 deletions
+7070
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_contraction_multiple_d.hpp
...tion/gpu/device/device_grouped_contraction_multiple_d.hpp
+72
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
...ce/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
+907
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp
...on/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp
+67
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
...eration/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
+65
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_multiple_r.hpp
.../device/device_grouped_conv_fwd_multiple_d_multiple_r.hpp
+77
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
...e_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
+1106
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
...evice/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
+952
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_gemm.hpp
...de/ck/tensor_operation/gpu/device/device_grouped_gemm.hpp
+51
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp
...n/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp
+69
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
...device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
+959
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
...k/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
+666
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_layernorm_impl.hpp
.../ck/tensor_operation/gpu/device/device_layernorm_impl.hpp
+468
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_multiple_reduce.hpp
...ck/tensor_operation/gpu/device/device_multiple_reduce.hpp
+58
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_multiple_reduce_multiblock.hpp
...peration/gpu/device/device_multiple_reduce_multiblock.hpp
+595
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_multiple_reduce_threadwise.hpp
...peration/gpu/device/device_multiple_reduce_threadwise.hpp
+422
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_normalization.hpp
...e/ck/tensor_operation/gpu/device/device_normalization.hpp
+87
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_permute.hpp
...include/ck/tensor_operation/gpu/device/device_permute.hpp
+37
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_pool2d_fwd.hpp
...lude/ck/tensor_operation/gpu/device/device_pool2d_fwd.hpp
+40
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_pool2d_fwd_nhwc_nhwc.hpp
...nsor_operation/gpu/device/device_pool2d_fwd_nhwc_nhwc.hpp
+327
-0
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_reduce.hpp
.../include/ck/tensor_operation/gpu/device/device_reduce.hpp
+45
-0
No files found.
Too many changes to show.
To preserve performance only
159 of 159+
files are displayed.
Plain diff
Email patch
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_contraction_multiple_d.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumDTensor
>
struct
ContractionDesc
{
std
::
vector
<
index_t
>
a_ms_ks_lengths
;
std
::
vector
<
index_t
>
a_ms_ks_strides
;
std
::
vector
<
index_t
>
b_ns_ks_lengths
;
std
::
vector
<
index_t
>
b_ns_ks_strides
;
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>
ds_ms_ns_lengths
;
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>
ds_ms_ns_strides
;
std
::
vector
<
index_t
>
e_ms_ns_lengths
;
std
::
vector
<
index_t
>
e_ms_ns_strides
;
};
// Tensor Contraction:
// input : A
// input : B
// input : D0, D1, ...
// output : E
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// A[M0, M1, M2, ..., K0, K1, K2, ...]
// B[N0, N1, N2, ..., K0, K1, K2, ...]
// D[M0, M1, M2, ..., N0, N1, N2, ...]
// E[M0, M1, M2, ..., N0, N1, N2, ...]
template
<
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceGroupedContractionMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b_vec
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_ds_vec
,
std
::
vector
<
void
*>
p_e_vec
,
std
::
vector
<
ContractionDesc
<
NumDTensor
>>
contraction_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
ContractionMultiDKernelArg
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_contraction_multiple_d_xdl_cshuffle
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
contraction_args
,
const
index_t
group_count
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
contraction_arg_ptr
=
reinterpret_cast
<
const
ContractionMultiDKernelArg
*>
(
cast_pointer_to_generic_address_space
(
contraction_args
));
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
((
!
(
block_id
>=
contraction_arg_ptr
[
group_id
].
block_start_
&&
block_id
<
contraction_arg_ptr
[
group_id
].
block_end_
))
&&
left
<=
right
)
{
if
(
block_id
<
contraction_arg_ptr
[
group_id
].
block_start_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
contraction_arg_ptr
[
group_id
].
p_a_grid_
,
contraction_arg_ptr
[
group_id
].
p_b_grid_
,
contraction_arg_ptr
[
group_id
].
p_ds_grid_
,
contraction_arg_ptr
[
group_id
].
p_e_grid_
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
contraction_arg_ptr
[
group_id
].
a_grid_desc_ak0_m_ak1_
,
contraction_arg_ptr
[
group_id
].
b_grid_desc_bk0_n_bk1_
,
contraction_arg_ptr
[
group_id
].
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
contraction_arg_ptr
[
group_id
].
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
contraction_arg_ptr
[
group_id
].
block_2_etile_map_
);
#else
ignore
=
contraction_args
;
ignore
=
group_count
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
#endif
}
}
// namespace ck
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Tensor Contraction:
// input : A
// input : B
// input : D0, D1, ...
// output : E
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// A[M0, M1, M2, ..., K0, K1, K2, ...]
// B[N0, N1, N2, ..., K0, K1, K2, ...]
// D[M0, M1, M2, ..., N0, N1, N2, ...]
// E[M0, M1, M2, ..., N0, N1, N2, ...]
template
<
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
TensorSpecialization
ASpec
,
TensorSpecialization
BSpec
,
TensorSpecialization
DESpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedContractionMultipleD_Xdl_CShuffle
:
public
DeviceGroupedContractionMultipleD
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedContractionMultipleD_Xdl_CShuffle
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
// Assume: A[M0, M1, M2, ..., K0, K1, K2, ...]
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
vector
<
index_t
>&
a_ms_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides_vec
)
{
assert
(
a_ms_ks_lengths_vec
.
size
()
==
NumDimM
+
NumDimK
&&
a_ms_ks_strides_vec
.
size
()
==
NumDimM
+
NumDimK
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
num
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
i
];
},
num
);
};
const
auto
a_ms_ks_lengths
=
to_tuple
(
a_ms_ks_lengths_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
const
auto
a_ms_ks_strides
=
to_tuple
(
a_ms_ks_strides_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for K0, K1, ...
constexpr
auto
kDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimK
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
a_ms_ks_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
kLengths
=
get_container_subset
(
a_ms_ks_lengths
,
kDimIds
);
if
constexpr
(
ASpec
==
TensorSpecialization
::
Packed
)
{
auto
M
=
container_reduce
(
mLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
K
=
container_reduce
(
kLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
a_grid_desc_mraw_kraw
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
a_ms_ks_strides
[
Number
<
NumDimM
-
1
>
{}],
a_ms_ks_strides
[
Number
<
NumDimM
+
NumDimK
-
1
>
{}]));
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
else
{
// naive tensor A[M0, M1, M2, ..., K0, K1, K2...]
const
auto
a_grid_desc_ms_ks
=
make_naive_tensor_descriptor
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
// transformed tensor A[MRaw = M0 * M1 * M2 * ... , KRaw = K0 * K1 * K2 * ...]
const
auto
a_grid_desc_mraw_kraw
=
transform_tensor_descriptor
(
a_grid_desc_ms_ks
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
kLengths
)),
make_tuple
(
mDimIds
,
kDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
}
// Assume: B[N0, N1, N2, ..., K0, K1, K2, ...]
static
auto
MakeBGridDescriptor_N_K
(
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides_vec
)
{
assert
(
b_ns_ks_lengths_vec
.
size
()
==
NumDimN
+
NumDimK
&&
b_ns_ks_strides_vec
.
size
()
==
NumDimN
+
NumDimK
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
num
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
i
];
},
num
);
};
const
auto
b_ns_ks_lengths
=
to_tuple
(
b_ns_ks_lengths_vec
,
Number
<
NumDimN
+
NumDimK
>
{});
const
auto
b_ns_ks_strides
=
to_tuple
(
b_ns_ks_strides_vec
,
Number
<
NumDimN
+
NumDimK
>
{});
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimN
,
1
>::
type
{};
// dimension Ids for K0, K1, ...
constexpr
auto
kDimIds
=
typename
arithmetic_sequence_gen
<
NumDimN
,
NumDimN
+
NumDimK
,
1
>::
type
{};
// lengths for K0, K1, ...
const
auto
kLengths
=
get_container_subset
(
b_ns_ks_lengths
,
kDimIds
);
// lengths for N0, N1, ...
const
auto
nLengths
=
get_container_subset
(
b_ns_ks_lengths
,
nDimIds
);
if
constexpr
(
BSpec
==
TensorSpecialization
::
Packed
)
{
auto
N
=
container_reduce
(
nLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
K
=
container_reduce
(
kLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
b_grid_desc_nraw_kraw
=
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
b_ns_ks_strides
[
Number
<
NumDimN
-
1
>
{}],
b_ns_ks_strides
[
Number
<
NumDimN
+
NumDimK
-
1
>
{}]));
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
else
{
// naive tensor B[N0, N1, N2, ..., K0, K1, K2, ...]
const
auto
b_grid_desc_ns_ks
=
make_naive_tensor_descriptor
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
// transformed tensor B[NRaw = N0 * N1 * N2 * ..., KRaw = K0 * K1 * K2 * ...]
const
auto
b_grid_desc_nraw_kraw
=
transform_tensor_descriptor
(
b_grid_desc_ns_ks
,
make_tuple
(
make_merge_transform
(
nLengths
),
make_merge_transform
(
kLengths
)),
make_tuple
(
nDimIds
,
kDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
}
// assume E[M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
e_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
e_ms_ns_strides_vec
)
{
assert
(
e_ms_ns_lengths_vec
.
size
()
==
NumDimM
+
NumDimN
&&
e_ms_ns_strides_vec
.
size
()
==
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
num
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
i
];
},
num
);
};
const
auto
e_ms_ns_lengths
=
to_tuple
(
e_ms_ns_lengths_vec
,
Number
<
NumDimM
+
NumDimN
>
{});
const
auto
e_ms_ns_strides
=
to_tuple
(
e_ms_ns_strides_vec
,
Number
<
NumDimM
+
NumDimN
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
e_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
e_ms_ns_lengths
,
nDimIds
);
if
constexpr
(
DESpec
==
TensorSpecialization
::
Packed
)
{
auto
M
=
container_reduce
(
mLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
N
=
container_reduce
(
nLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
e_grid_desc_mraw_nraw
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
e_ms_ns_strides
[
Number
<
NumDimM
-
1
>
{}],
e_ms_ns_strides
[
Number
<
NumDimM
+
NumDimN
-
1
>
{}]));
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
else
{
// naive tensor E[M0, M1, M2, ..., N0, N1, N2...]
const
auto
e_grid_desc_ms_ns
=
make_naive_tensor_descriptor
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
// transformed tensor E[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 * N2 * ...]
const
auto
e_grid_desc_mraw_nraw
=
transform_tensor_descriptor
(
e_grid_desc_ms_ns
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_ms_ns_lengths_vec
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_ms_ns_strides_vec
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
DeviceOp
::
MakeEGridDescriptor_M_N
(
ds_ms_ns_lengths_vec
[
i
],
ds_ms_ns_strides_vec
[
i
]);
},
Number
<
NumDTensor
>
{});
}
using
AGridDesc_M_K
=
decltype
(
MakeAGridDescriptor_M_K
({},
{}));
using
BGridDesc_N_K
=
decltype
(
MakeBGridDescriptor_N_K
({},
{}));
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({{}},
{{}}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
({},
{}));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
// desc for blockwise copy
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
struct
GroupedContractionBlock2ETileMap
{
// block-to-e-tile map
using
Block2ETileMap
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{}))
>
;
GroupedContractionBlock2ETileMap
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
,
ck
::
index_t
BlockStart
)
{
default_block_2_etile_map_
=
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n
);
block_start_
=
BlockStart
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
return
default_block_2_etile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
I0
]
-
block_start_
));
}
// it's actually E-Tile
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
return
default_block_2_etile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
__host__
bool
CheckValidity
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
const
{
return
default_block_2_etile_map_
.
CheckValidity
(
e_grid_desc_m_n
);
}
Block2ETileMap
default_block_2_etile_map_
;
ck
::
index_t
block_start_
;
};
struct
ContractionMultiDKernelArg
{
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// lock-to-e-tile map
GroupedContractionBlock2ETileMap
block_2_etile_map_
;
ck
::
index_t
block_start_
,
block_end_
;
};
struct
ContractionMultiDDeviceArg
{
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// Strides for the last M/N/K dimensions of A/B/Ds/E
// for sanity check of vector load/store
index_t
a_mz_stride_
;
index_t
a_kz_stride_
;
index_t
b_nz_stride_
;
index_t
b_kz_stride_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_nz_stride_
;
// index_t e_mz_stride_;
index_t
e_nz_stride_
;
};
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b_vec
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_ds_vec
,
std
::
vector
<
void
*>
p_e_vec
,
std
::
vector
<
ContractionDesc
<
NumDTensor
>>
contraction_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
group_count_
=
contraction_descs
.
size
();
if
(
!
(
group_count_
==
p_a_vec
.
size
()
&&
group_count_
==
p_b_vec
.
size
()
&&
group_count_
==
p_e_vec
.
size
()))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != a/b/e_vec.size"
);
}
contraction_multi_d_kernel_args_
.
reserve
(
group_count_
);
grid_size_
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count_
;
i
++
)
{
const
auto
p_a_grid
=
static_cast
<
const
ADataType
*>
(
p_a_vec
[
i
]);
const
auto
p_b_grid
=
static_cast
<
const
BDataType
*>
(
p_b_vec
[
i
]);
const
auto
p_e_grid
=
static_cast
<
EDataType
*>
(
p_e_vec
[
i
]);
const
auto
a_grid_desc_m_k
=
DeviceOp
::
MakeAGridDescriptor_M_K
(
contraction_descs
[
i
].
a_ms_ks_lengths
,
contraction_descs
[
i
].
a_ms_ks_strides
);
const
auto
b_grid_desc_n_k
=
DeviceOp
::
MakeBGridDescriptor_N_K
(
contraction_descs
[
i
].
b_ns_ks_lengths
,
contraction_descs
[
i
].
b_ns_ks_strides
);
DsGridDesc_M_N
ds_grid_desc_m_n
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid
;
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid
(
j
)
=
static_cast
<
const
DDataType
*>
(
p_ds_vec
[
i
][
j
]);
// D desc
ds_grid_desc_m_n
(
j
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
(
contraction_descs
[
i
].
ds_ms_ns_lengths
[
j
],
contraction_descs
[
i
].
ds_ms_ns_strides
[
j
]);
});
const
auto
e_grid_desc_m_n
=
DeviceOp
::
MakeEGridDescriptor_M_N
(
contraction_descs
[
i
].
e_ms_ns_lengths
,
contraction_descs
[
i
].
e_ms_ns_strides
);
const
auto
a_grid_desc_ak0_m_ak1
=
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k
);
const
auto
b_grid_desc_bk0_n_bk1
=
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k
);
const
auto
ds_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
);
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n
);
const
index_t
grid_size_grp
=
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n
)
.
CalculateGridSize
(
e_grid_desc_m_n
);
const
index_t
BlockStart
=
grid_size_
;
const
index_t
BlockEnd
=
grid_size_
+
grid_size_grp
;
grid_size_
+=
grid_size_grp
;
const
auto
block_2_etile_map
=
GroupedContractionBlock2ETileMap
(
e_grid_desc_m_n
,
BlockStart
);
// for sanity check of vector memory access
const
index_t
a_mz_stride
=
contraction_descs
[
i
].
a_ms_ks_strides
[
NumDimM
-
1
];
const
index_t
a_kz_stride
=
contraction_descs
[
i
].
a_ms_ks_strides
[
NumDimM
+
NumDimK
-
1
];
const
index_t
b_nz_stride
=
contraction_descs
[
i
].
b_ns_ks_strides
[
NumDimN
-
1
];
const
index_t
b_kz_stride
=
contraction_descs
[
i
].
b_ns_ks_strides
[
NumDimN
+
NumDimK
-
1
];
std
::
array
<
index_t
,
NumDTensor
>
ds_nz_stride
;
for
(
index_t
j
=
0
;
j
<
NumDTensor
;
++
j
)
{
ds_nz_stride
[
j
]
=
contraction_descs
[
i
].
ds_ms_ns_strides
[
j
][
NumDimM
+
NumDimN
-
1
];
}
const
index_t
e_nz_stride
=
contraction_descs
[
i
].
e_ms_ns_strides
[
NumDimM
+
NumDimN
-
1
];
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k
,
b_grid_desc_n_k
,
ds_grid_desc_m_n
,
e_grid_desc_m_n
,
block_2_etile_map
))
{
contraction_multi_d_kernel_args_
.
push_back
(
{
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
,
BlockStart
,
BlockEnd
});
contraction_multi_d_device_args_
.
push_back
({
a_grid_desc_m_k
,
b_grid_desc_n_k
,
ds_grid_desc_m_n
,
e_grid_desc_m_n
,
a_mz_stride
,
a_kz_stride
,
b_nz_stride
,
b_kz_stride
,
ds_nz_stride
,
e_nz_stride
});
}
}
}
std
::
vector
<
ContractionMultiDKernelArg
>
contraction_multi_d_kernel_args_
;
std
::
vector
<
ContractionMultiDDeviceArg
>
contraction_multi_d_device_args_
;
std
::
size_t
group_count_
;
index_t
grid_size_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
bool
has_main_k_block_loop
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
const
auto
K
=
arg
.
contraction_multi_d_kernel_args_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
contraction_multi_d_kernel_args_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
)
!=
has_main_k_block_loop
)
{
throw
std
::
runtime_error
(
"wrong! not all gemm has_main_k_block_loop"
);
}
}
hipGetErrorString
(
hipMemcpy
(
arg
.
p_workspace_
,
arg
.
contraction_multi_d_kernel_args_
.
data
(),
arg
.
contraction_multi_d_kernel_args_
.
size
()
*
sizeof
(
ContractionMultiDKernelArg
),
hipMemcpyHostToDevice
));
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_contraction_multiple_d_xdl_cshuffle
<
GridwiseGemm
,
ContractionMultiDKernelArg
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
group_count_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
);
};
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
const
auto
a_grid_desc_m_k_
=
arg
.
contraction_multi_d_device_args_
[
i
].
a_grid_desc_m_k_
;
const
auto
b_grid_desc_n_k_
=
arg
.
contraction_multi_d_device_args_
[
i
].
b_grid_desc_n_k_
;
const
auto
ds_grid_desc_m_n_
=
arg
.
contraction_multi_d_device_args_
[
i
].
ds_grid_desc_m_n_
;
const
auto
e_grid_desc_m_n_
=
arg
.
contraction_multi_d_device_args_
[
i
].
e_grid_desc_m_n_
;
const
auto
a_grid_desc_ak0_m_ak1_
=
arg
.
contraction_multi_d_kernel_args_
[
i
].
a_grid_desc_ak0_m_ak1_
;
const
auto
b_grid_desc_bk0_n_bk1_
=
arg
.
contraction_multi_d_kernel_args_
[
i
].
b_grid_desc_bk0_n_bk1_
;
const
auto
ds_grid_desc_mblock_mperblock_nblock_nperblock_
=
arg
.
contraction_multi_d_kernel_args_
[
i
]
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
arg
.
contraction_multi_d_kernel_args_
[
i
]
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
const
auto
block_2_etile_map_
=
arg
.
contraction_multi_d_kernel_args_
[
i
].
block_2_etile_map_
;
const
auto
a_mz_stride_
=
arg
.
contraction_multi_d_device_args_
[
i
].
a_mz_stride_
;
const
auto
a_kz_stride_
=
arg
.
contraction_multi_d_device_args_
[
i
].
a_kz_stride_
;
const
auto
b_nz_stride_
=
arg
.
contraction_multi_d_device_args_
[
i
].
b_nz_stride_
;
const
auto
b_kz_stride_
=
arg
.
contraction_multi_d_device_args_
[
i
].
b_kz_stride_
;
const
auto
ds_nz_stride_
=
arg
.
contraction_multi_d_device_args_
[
i
].
ds_nz_stride_
;
const
auto
e_nz_stride_
=
arg
.
contraction_multi_d_device_args_
[
i
].
e_nz_stride_
;
if
(
!
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k_
,
b_grid_desc_n_k_
,
ds_grid_desc_m_n_
,
e_grid_desc_m_n_
,
block_2_etile_map_
))
{
return
false
;
}
// check vector access
static_assert
((
ABlockTransferSrcVectorDim
==
1
||
ABlockTransferSrcVectorDim
==
2
)
&&
(
BBlockTransferSrcVectorDim
==
1
||
BBlockTransferSrcVectorDim
==
2
),
"wrong!"
);
// vector memory access of A: could be on M or AK1 dimension
if
constexpr
(
ABlockTransferSrcVectorDim
==
1
)
{
if
(
!
(
a_mz_stride_
==
1
&&
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
)
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
if
(
!
(
a_kz_stride_
==
1
&&
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
)
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
// vector memory access of B: could be on N or BK1 dimension
if
constexpr
(
BBlockTransferSrcVectorDim
==
1
)
{
if
(
!
(
b_nz_stride_
==
1
&&
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
)
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
if
(
!
(
b_kz_stride_
==
1
&&
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I2
)
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
// vector memory access of Ds: always on NPerBlock dimension
bool
valid_d_access
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
if
(
!
(
ds_nz_stride_
[
j
]
==
1
&&
ds_grid_desc_mblock_mperblock_nblock_nperblock_
[
j
].
GetLength
(
I3
)
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
valid_d_access
=
false
;
}
});
if
(
valid_d_access
==
false
)
{
return
false
;
}
// vector memory access of E: always on NPerBlock dimension
if
(
!
(
e_nz_stride_
==
1
&&
e_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetLength
(
I3
)
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
}
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b_vec
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_ds_vec
,
std
::
vector
<
void
*>
p_e_vec
,
std
::
vector
<
ContractionDesc
<
NumDTensor
>>
contraction_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
p_a_vec
,
p_b_vec
,
p_ds_vec
,
p_e_vec
,
contraction_descs
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b_vec
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_ds_vec
,
std
::
vector
<
void
*>
p_e_vec
,
std
::
vector
<
ContractionDesc
<
NumDTensor
>>
contraction_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a_vec
,
p_b_vec
,
p_ds_vec
,
p_e_vec
,
contraction_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedContractionMultipleD_Xdl_CShuffle"
<<
"<"
<<
NumDimM
<<
", "
<<
NumDimN
<<
", "
<<
NumDimK
<<
", "
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
ABlockTransferSrcVectorDim
<<
", "
<<
BBlockTransferSrcVectorDim
<<
">"
;
// clang-format on
return
str
.
str
();
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
ContractionMultiDKernelArg
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Conv backward data multiple D:
// input : output image A[G, N, K, Ho, Wo]
// input : weight B[G, K, C, Y, X],
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
// output : input image E[G, N, C, Hi, Wi],
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template
<
ck
::
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceGroupedConvBwdDataMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
NumDTensor
==
DsLayout
::
Size
(),
"wrong! Inconsistent NumDTensor"
);
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
// output image
const
void
*
p_b
,
// weight
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
// bias
void
*
p_e
,
// input image
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_k_wos_lengths
,
// output image
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_k_wos_strides
,
// output image
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
// weight
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
// bias
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
// bias
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_c_wis_lengths
,
// input image
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_c_wis_strides
,
// input image
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Convolution Forward:
// input : input image A[G, N, C, Hi, Wi],
// input : weight B[G, K, C, Y, X],
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
// output : output image E[G, N, K, Ho, Wo]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceGroupedConvFwdMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
NumDTensor
==
DsLayout
::
Size
(),
"wrong! Inconsistent NumDTensor"
);
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
// input image
const
void
*
p_b
,
// weight
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
// output image
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_multiple_r.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Grouped Convolution Forward:
// input : input image A[G, N, C, Hi, Wi],
// input : weight B[G, K, C, Y, X],
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
// output : output image E[G, N, K, Ho, Wo]
// output : R0[G, N, Ho, Wo], R1[G, N, Ho, Wo], ...
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Q0 = reduce0(q_op0(E)), Q1 = reduce1(q_op0(E)), ...
// R0 = r_op0(Q0), R1 = r_op1(Q1), ...
// Assume:
// D0, D1, ... and E have the same layout
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DELayout
,
typename
RLayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
RsDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
QsElementwiseOperation
,
typename
RsElementwiseOperation
>
struct
DeviceGroupedConvFwdMultipleDMultipleR
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
index_t
NumRTensor
=
RsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
std
::
array
<
void
*
,
NumRTensor
>
p_rs
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
QsElementwiseOperation
&
qs_element_op
,
const
RsElementwiseOperation
&
rs_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_multiple_r.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
{
template
<
index_t
NumDTensor
,
index_t
NumRTensor
>
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
()
=
default
;
ComputePtrOffsetOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs
,
index_t
BatchStrideE
,
Array
<
ck
::
index_t
,
NumRTensor
>
BatchStrideRs
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideDs_
(
BatchStrideDs
),
BatchStrideE_
(
BatchStrideE
),
BatchStrideRs_
(
BatchStrideRs
)
{
}
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
auto
GetDsPtrOffset
(
index_t
g_idx
)
const
{
Array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideDs_
[
i
]);
});
return
ds_offset
;
}
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
);
}
__host__
__device__
constexpr
auto
GetRsPtrOffset
(
index_t
g_idx
)
const
{
Array
<
long_index_t
,
NumRTensor
>
rs_offset
;
static_for
<
0
,
NumRTensor
,
1
>
{}(
[
&
](
auto
i
)
{
rs_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideRs_
[
i
]);
});
return
rs_offset
;
}
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs_
;
index_t
BatchStrideE_
;
Array
<
ck
::
index_t
,
NumRTensor
>
BatchStrideRs_
;
};
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for \link
* DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the computing of
* pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template
<
typename
GridwiseGemm
,
typename
ABDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
RsPointer
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
QsElementwiseOperation
,
typename
RsElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
RsGridDescriptor_MBlock_MPerBlock
,
typename
Block2ETileMap
,
typename
ComputePtrOffsetOfBatch
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_batch_gemm_multiple_d_xdl_cshuffle
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
RsPointer
p_rs_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
QsElementwiseOperation
qs_element_op
,
const
RsElementwiseOperation
rs_element_op
,
const
index_t
batch_count
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_k0_m_k1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_k0_n_k1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
const
RsGridDescriptor_MBlock_MPerBlock
rs_grid_desc_mblock_mperblock
,
const
Block2ETileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
const
auto
rs_batch_offset
=
compute_ptr_offset_of_batch
.
GetRsPtrOffset
(
g_idx
);
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
DsPointer
p_ds_grid_grp
;
static
constexpr
index_t
NumDTensor
=
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
::
Size
();
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_ds_grid_grp
(
i
)
=
p_ds_grid
[
i
]
+
ds_batch_offset
[
i
];
});
RsPointer
p_rs_grid_grp
;
static
constexpr
index_t
NumRTensor
=
RsGridDescriptor_MBlock_MPerBlock
::
Size
();
static_for
<
0
,
NumRTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_rs_grid_grp
(
i
)
=
p_rs_grid
[
i
]
+
rs_batch_offset
[
i
];
});
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_ds_grid_grp
,
p_e_grid
+
e_batch_offset
,
p_rs_grid_grp
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
rs_grid_desc_mblock_mperblock
,
block_2_ctile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
p_rs_grid
;
ignore
=
batch_count
;
ignore
=
a_grid_desc_k0_m_k1
;
ignore
=
b_grid_desc_k0_n_k1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
ignore
=
rs_grid_desc_mblock_mperblock
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
qs_element_op
;
ignore
=
rs_element_op
;
ignore
=
compute_ptr_offset_of_batch
;
ignore
=
block_2_ctile_map
;
#endif
}
}
// namespace
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DELayout
,
typename
RLayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
ReduceAccDataType
,
typename
RsDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
QsElementwiseOperation
,
typename
RsElementwiseOperation
,
typename
ThreadReduceOperations
,
typename
RsGlobalMemoryDataOperation
,
ConvolutionForwardSpecialization
ConvForwardSpecialization
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDRThreadTransferClusterLengths_MPerBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
index_t
RThreadTransferDstScalarPerVector_MPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
:
public
DeviceGroupedConvFwdMultipleDMultipleR
<
NDimSpatial
,
ALayout
,
BLayout
,
DELayout
,
RLayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
RsDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
RsElementwiseOperation
,
QsElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
index_t
NumRTensor
=
RsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvFwdToGemm
<
NDimSpatial
,
ConvForwardSpecialization
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
template
<
typename
ALay
>
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
auto
in_gemmmraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeADescriptor_M_K
<
ALay
>(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
return
in_gemmm_gemmk_desc
;
}
template
<
typename
BLay
>
static
auto
MakeBGridDescriptor_N_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
)
{
const
auto
wei_gemmnraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeBDescriptor_N_K
<
BLay
>(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
);
const
auto
wei_gemmn_gemmk_desc
=
matrix_padder
.
PadBDescriptor_N_K
(
wei_gemmnraw_gemmkraw_desc
);
return
wei_gemmn_gemmk_desc
;
}
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
return
out_gemmm_gemmn_desc
;
}
template
<
typename
Descriptor
>
static
auto
GetPaddedRGridDescriptor
(
Descriptor
descriptor
,
index_t
MRaw
)
{
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M
return
transform_tensor_descriptor
(
descriptor
,
make_tuple
(
make_right_pad_transform
(
descriptor
,
MPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
}
else
{
// not pad M
return
descriptor
;
}
}
template
<
typename
RLay
,
typename
std
::
enable_if
<
is_same_v
<
RLay
,
tensor_layout
::
convolution
::
GNW
>
||
is_same_v
<
RLay
,
tensor_layout
::
convolution
::
GNHW
>
||
is_same_v
<
RLay
,
tensor_layout
::
convolution
::
GNDHW
>
,
bool
>::
type
=
false
>
static
auto
MakeRGridDescriptor_M
(
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
/* r_g_n_wos_strides */
)
{
const
index_t
N
=
r_g_n_wos_lengths
[
1
];
const
index_t
NHoWo
=
N
*
std
::
accumulate
(
r_g_n_wos_lengths
.
begin
()
+
2
,
r_g_n_wos_lengths
.
begin
()
+
2
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
const
auto
r_grid_desc_mraw
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
NHoWo
));
return
GetPaddedRGridDescriptor
(
r_grid_desc_mraw
,
NHoWo
);
}
template
<
typename
RLay
,
typename
std
::
enable_if
<
is_same_v
<
RLay
,
tensor_layout
::
convolution
::
G_NW
>
||
is_same_v
<
RLay
,
tensor_layout
::
convolution
::
G_NHW
>
||
is_same_v
<
RLay
,
tensor_layout
::
convolution
::
G_NDHW
>
||
is_same_v
<
RLay
,
tensor_layout
::
convolution
::
NWG
>
||
is_same_v
<
RLay
,
tensor_layout
::
convolution
::
NHWG
>
||
is_same_v
<
RLay
,
tensor_layout
::
convolution
::
NDHWG
>
,
bool
>::
type
=
false
>
static
auto
MakeRGridDescriptor_M
(
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_strides
)
{
const
index_t
N
=
r_g_n_wos_lengths
[
1
];
const
index_t
WoStride
=
r_g_n_wos_strides
[
NDimSpatial
+
2
];
const
index_t
NHoWo
=
N
*
std
::
accumulate
(
r_g_n_wos_lengths
.
begin
()
+
2
,
r_g_n_wos_lengths
.
begin
()
+
2
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
const
auto
r_grid_desc_mraw
=
make_naive_tensor_descriptor
(
make_tuple
(
NHoWo
),
make_tuple
(
WoStride
));
return
GetPaddedRGridDescriptor
(
r_grid_desc_mraw
,
NHoWo
);
}
using
AGridDesc_M_K
=
remove_cvref_t
<
decltype
(
MakeAGridDescriptor_M_K
<
ALayout
>
({},
{},
{},
{},
{},
{},
{},
{},
{},
{}))
>
;
using
BGridDesc_N_K
=
remove_cvref_t
<
decltype
(
MakeBGridDescriptor_N_K
<
BLayout
>
({},
{}))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
DELayout
>
({},
{}))
>
;
using
RGridDesc_M
=
remove_cvref_t
<
decltype
(
MakeRGridDescriptor_M
<
RLayout
>
({},
{}))
>
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleDMultipleR_k0mk1_k0nk1_mn_xdl_cshuffle_v1
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
QsElementwiseOperation
,
RsElementwiseOperation
,
ThreadReduceOperations
,
InMemoryDataOperationEnum
::
Set
,
RsGlobalMemoryDataOperation
,
AGridDesc_M_K
,
BGridDesc_N_K
,
EGridDesc_M_N
,
RGridDesc_M
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDRThreadTransferClusterLengths_MPerBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
RThreadTransferDstScalarPerVector_MPerBlock
,
LoopSched
>
;
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
Block2ETileMap
=
typename
GridwiseGemm
::
DefaultBlock2ETileMap
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
std
::
array
<
void
*
,
NumRTensor
>
p_rs
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
QsElementwiseOperation
&
qs_element_op
,
const
RsElementwiseOperation
&
rs_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
p_rs_grid_
{},
// FIXME
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
<
ALayout
>
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
<
BLayout
>
(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
)},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
DELayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
r_grid_desc_m_
{
DeviceOp
::
MakeRGridDescriptor_M
<
RLayout
>
(
r_g_n_wos_lengths
,
r_g_n_wos_strides
)},
a_grid_desc_ak0_m_ak1_
{
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k_
)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
rs_grid_desc_mblock_mperblock_
{},
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
compute_ptr_offset_of_batch_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
qs_element_op_
{
qs_element_op
},
rs_element_op_
{
rs_element_op
},
a_g_n_c_wis_lengths_
{
a_g_n_c_wis_lengths
},
a_g_n_c_wis_strides_
{
a_g_n_c_wis_strides
},
b_g_k_c_xs_lengths_
{
b_g_k_c_xs_lengths
},
b_g_k_c_xs_strides_
{
b_g_k_c_xs_strides
},
ds_g_n_k_wos_lengths_
{
ds_g_n_k_wos_lengths
},
ds_g_n_k_wos_strides_
{
ds_g_n_k_wos_strides
},
e_g_n_k_wos_lengths_
{
e_g_n_k_wos_lengths
},
e_g_n_k_wos_strides_
{
e_g_n_k_wos_strides
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
// A/B/E Batch Stride
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
// populate desc for Ds/E
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k_
,
b_grid_desc_n_k_
,
e_grid_desc_m_n_
,
r_grid_desc_m_
,
block_2_etile_map_
))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds
[
i
]);
// D batch stride
compute_ptr_offset_of_batch_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
0
];
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DELayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
(
i
)
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
(
i
));
});
// populate pointer for Rs
static_for
<
0
,
NumRTensor
,
1
>
{}([
&
](
auto
i
)
{
using
RDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
RsDataType
>>
;
// R pointer
p_rs_grid_
(
i
)
=
static_cast
<
RDataType
*>
(
p_rs
[
i
]);
rs_grid_desc_mblock_mperblock_
(
i
)
=
GridwiseGemm
::
MakeRGridDescriptor_MBlock_MPerBlock
(
r_grid_desc_m_
);
});
}
}
void
Print
()
const
{
std
::
cout
<<
"A[M, K]: "
<<
a_grid_desc_m_k_
<<
std
::
endl
;
std
::
cout
<<
"B[N, K]: "
<<
b_grid_desc_n_k_
<<
std
::
endl
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
std
::
cout
<<
"Ds[M, N]: "
<<
ds_grid_desc_m_n_
[
i
]
<<
std
::
endl
;
});
std
::
cout
<<
"E[M, N]: "
<<
e_grid_desc_m_n_
<<
std
::
endl
;
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
typename
GridwiseGemm
::
RsGridPointer
p_rs_grid_
;
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
EGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
RGridDesc_M
r_grid_desc_m_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
StaticallyIndexedArray
<
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
NumDTensor
>
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
// FIXME: Ds desc may be of different
// type from E
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
StaticallyIndexedArray
<
typename
GridwiseGemm
::
RGridDescriptor_MBlock_MPerBlock
,
NumRTensor
>
rs_grid_desc_mblock_mperblock_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
ComputePtrOffsetOfStridedBatch
<
NumDTensor
,
NumRTensor
>
compute_ptr_offset_of_batch_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
QsElementwiseOperation
qs_element_op_
;
RsElementwiseOperation
rs_element_op_
;
// for checking IsSupportedArgument()
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_dilations_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_left_pads_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_right_pads_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
e_grid_desc_m_n_
,
arg
.
r_grid_desc_m_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemmMultipleD_xdl_cshuffle has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
)
*
arg
.
a_g_n_c_wis_lengths_
[
0
];
// Group count
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_batch_gemm_multiple_d_xdl_cshuffle
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
typename
GridwiseGemm
::
RsGridPointer
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
QsElementwiseOperation
,
RsElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
ck
::
StaticallyIndexedArray
<
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
NumDTensor
>
,
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
ck
::
StaticallyIndexedArray
<
typename
GridwiseGemm
::
RGridDescriptor_MBlock_MPerBlock
,
NumRTensor
>
,
Block2ETileMap
,
ComputePtrOffsetOfStridedBatch
<
NumDTensor
,
NumRTensor
>
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
p_rs_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
qs_element_op_
,
arg
.
rs_element_op_
,
arg
.
a_g_n_c_wis_lengths_
[
0
],
// Group count
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
rs_grid_desc_mblock_mperblock_
,
arg
.
block_2_etile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
};
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
namespace
ctc
=
tensor_layout
::
convolution
;
// check device
if
(
get_device_name
()
==
"gfx908"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
else
if
(
get_device_name
()
==
"gfx90a"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
||
is_same_v
<
AccDataType
,
double
>
))
{
return
false
;
}
}
else
{
return
false
;
}
// check ConvolutionForwardSpecialization
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
ConvStride
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
// check vector access of A
// FIXME: layout
if
constexpr
(
is_same_v
<
ALayout
,
ctc
::
G_NW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NDHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
GNWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNHWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNDHWC
>
||
is_same_v
<
ALayout
,
ctc
::
NWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NHWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NDHWGC
>
)
{
const
index_t
C
=
arg
.
a_g_n_c_wis_lengths_
[
2
];
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
C
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of B
// FIXME: layout
if
constexpr
(
is_same_v
<
BLayout
,
ctc
::
G_K_X_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_YX_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_ZYX_C
>
||
is_same_v
<
BLayout
,
ctc
::
GKXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKYXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKZYXC
>
||
is_same_v
<
BLayout
,
ctc
::
KXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KYXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KZYXGC
>
)
{
const
index_t
C
=
arg
.
b_g_k_c_xs_lengths_
[
2
];
if
(
!
(
BBlockTransferSrcVectorDim
==
2
&&
C
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of Ds
bool
valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
// FIXME: layout
if
constexpr
(
is_same_v
<
DELayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
DELayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
DELayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DELayout
,
ctc
::
GNWK
>
||
is_same_v
<
DELayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DELayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DELayout
,
ctc
::
NWGK
>
||
is_same_v
<
DELayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DELayout
,
ctc
::
NDHWGK
>
)
{
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
if
(
!
(
K
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
valid
=
false
;
}
}
else
{
valid
=
false
;
}
});
if
(
!
valid
)
{
return
false
;
}
// check vector access of E
if
constexpr
(
is_same_v
<
DELayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
DELayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
DELayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DELayout
,
ctc
::
GNWK
>
||
is_same_v
<
DELayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DELayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DELayout
,
ctc
::
NWGK
>
||
is_same_v
<
DELayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DELayout
,
ctc
::
NDHWGK
>
)
{
const
index_t
K
=
arg
.
e_g_n_k_wos_lengths_
[
2
];
if
(
!
(
K
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of R
if
constexpr
(
!
(
is_same_v
<
RLayout
,
ctc
::
G_NW
>
||
is_same_v
<
RLayout
,
ctc
::
G_NHW
>
||
is_same_v
<
RLayout
,
ctc
::
G_NDHW
>
||
is_same_v
<
RLayout
,
ctc
::
GNW
>
||
is_same_v
<
RLayout
,
ctc
::
GNHW
>
||
is_same_v
<
RLayout
,
ctc
::
GNDHW
>
||
is_same_v
<
RLayout
,
ctc
::
NWG
>
||
is_same_v
<
RLayout
,
ctc
::
NHWG
>
||
is_same_v
<
RLayout
,
ctc
::
NDHWG
>
))
{
return
false
;
}
// check Gridwise GEMM
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
e_grid_desc_m_n_
,
arg
.
r_grid_desc_m_
,
arg
.
block_2_etile_map_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
std
::
array
<
void
*
,
NumRTensor
>
p_rs
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
QsElementwiseOperation
&
qs_element_op
,
const
RsElementwiseOperation
&
rs_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
p_rs
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
r_g_n_wos_lengths
,
r_g_n_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
std
::
array
<
void
*
,
NumRTensor
>
p_rs
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
2
>&
r_g_n_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
QsElementwiseOperation
&
qs_element_op
,
const
RsElementwiseOperation
&
rs_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
p_rs
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
r_g_n_wos_lengths
,
r_g_n_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedConvFwdMultipleD_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
getConvForwardSpecializationString
(
ConvForwardSpecialization
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
{
template
<
index_t
NumDTensor
>
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
()
=
default
;
ComputePtrOffsetOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs
,
index_t
BatchStrideE
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideDs_
(
BatchStrideDs
),
BatchStrideE_
(
BatchStrideE
)
{
}
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
auto
GetDsPtrOffset
(
index_t
g_idx
)
const
{
Array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideDs_
[
i
]);
});
return
ds_offset
;
}
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
);
}
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs_
;
index_t
BatchStrideE_
;
};
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for \link
* DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the computing of
* pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template
<
typename
GridwiseGemm
,
typename
ABDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2ETileMap
,
typename
ComputePtrOffsetOfBatch
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_conv_fwd_multiple_d_xdl_cshuffle
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
index_t
batch_count
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_k0_m_k1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_k0_n_k1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
const
Block2ETileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
DsPointer
p_ds_grid_grp
;
static
constexpr
index_t
NumDTensor
=
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
::
Size
();
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_ds_grid_grp
(
i
)
=
p_ds_grid
[
i
]
+
ds_batch_offset
[
i
];
});
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_ds_grid_grp
,
p_e_grid
+
e_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
block_2_ctile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
batch_count
;
ignore
=
a_grid_desc_k0_m_k1
;
ignore
=
b_grid_desc_k0_n_k1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
compute_ptr_offset_of_batch
;
ignore
=
block_2_ctile_map
;
#endif
}
}
// namespace
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ConvolutionForwardSpecialization
ConvForwardSpecialization
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
:
public
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvFwdToGemm
<
NDimSpatial
,
ConvForwardSpecialization
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
template
<
typename
ALay
>
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
auto
in_gemmmraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeADescriptor_M_K
<
ALay
>(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
return
in_gemmm_gemmk_desc
;
}
template
<
typename
BLay
>
static
auto
MakeBGridDescriptor_N_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
)
{
const
auto
wei_gemmnraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeBDescriptor_N_K
<
BLay
>(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
);
const
auto
wei_gemmn_gemmk_desc
=
matrix_padder
.
PadBDescriptor_N_K
(
wei_gemmnraw_gemmkraw_desc
);
return
wei_gemmn_gemmk_desc
;
}
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
return
out_gemmm_gemmn_desc
;
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// desc for problem definition
using
AGridDesc_M_K
=
remove_cvref_t
<
decltype
(
MakeAGridDescriptor_M_K
<
ALayout
>
({},
{},
{},
{},
{},
{},
{},
{},
{},
{}))
>
;
using
BGridDesc_N_K
=
remove_cvref_t
<
decltype
(
MakeBGridDescriptor_N_K
<
BLayout
>
({},
{}))
>
;
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
({},
{}))
>
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
// desc for blockwise copy
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
// block-to-e-tile map
using
Block2ETileMap
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{}))
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
num_group_
{
a_g_n_c_wis_lengths
[
0
]},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
<
ALayout
>
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
<
BLayout
>
(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
)},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
a_grid_desc_ak0_m_ak1_
{
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k_
)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
compute_ptr_offset_of_batch_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
a_g_n_c_wis_lengths_
{
a_g_n_c_wis_lengths
},
a_g_n_c_wis_strides_
{
a_g_n_c_wis_strides
},
b_g_k_c_xs_lengths_
{
b_g_k_c_xs_lengths
},
b_g_k_c_xs_strides_
{
b_g_k_c_xs_strides
},
ds_g_n_k_wos_lengths_
{
ds_g_n_k_wos_lengths
},
ds_g_n_k_wos_strides_
{
ds_g_n_k_wos_strides
},
e_g_n_k_wos_lengths_
{
e_g_n_k_wos_lengths
},
e_g_n_k_wos_strides_
{
e_g_n_k_wos_strides
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
// A/B/E Batch Stride
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds
[
i
]);
// D batch stride
compute_ptr_offset_of_batch_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
0
];
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
});
// populate desc for Ds/E
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k_
,
b_grid_desc_n_k_
,
ds_grid_desc_m_n_
,
e_grid_desc_m_n_
,
block_2_etile_map_
))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
}
}
void
Print
()
const
{
std
::
cout
<<
"A[M, K]: "
<<
a_grid_desc_m_k_
<<
std
::
endl
;
std
::
cout
<<
"B[N, K]: "
<<
b_grid_desc_n_k_
<<
std
::
endl
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
std
::
cout
<<
"Ds[M, N]: "
<<
ds_grid_desc_m_n_
[
i
]
<<
std
::
endl
;
});
std
::
cout
<<
"E[M, N]: "
<<
e_grid_desc_m_n_
<<
std
::
endl
;
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for problem definiton
index_t
num_group_
;
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
// for computing batch offset
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
compute_ptr_offset_of_batch_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// for checking IsSupportedArgument()
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_dilations_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_left_pads_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_right_pads_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemmMultipleD_xdl_cshuffle has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
)
*
arg
.
num_group_
;
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_grouped_conv_fwd_multiple_d_xdl_cshuffle
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
Block2ETileMap
,
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_g_n_c_wis_lengths_
[
0
],
// Group count
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
};
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
namespace
ctc
=
tensor_layout
::
convolution
;
// check device
if
(
get_device_name
()
==
"gfx908"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
else
if
(
get_device_name
()
==
"gfx90a"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
||
is_same_v
<
AccDataType
,
double
>
))
{
return
false
;
}
}
else
{
return
false
;
}
// check ConvolutionForwardSpecialization
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
ConvStride
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
// check vector access of A
// FIXME: layout
if
constexpr
(
is_same_v
<
ALayout
,
ctc
::
G_NW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NDHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
GNWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNHWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNDHWC
>
||
is_same_v
<
ALayout
,
ctc
::
NWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NHWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NDHWGC
>
)
{
const
index_t
C
=
arg
.
a_g_n_c_wis_lengths_
[
2
];
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
C
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of B
// FIXME: layout
if
constexpr
(
is_same_v
<
BLayout
,
ctc
::
G_K_X_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_YX_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_ZYX_C
>
||
is_same_v
<
BLayout
,
ctc
::
GKXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKYXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKZYXC
>
||
is_same_v
<
BLayout
,
ctc
::
KXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KYXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KZYXGC
>
)
{
const
index_t
C
=
arg
.
b_g_k_c_xs_lengths_
[
2
];
if
(
!
(
BBlockTransferSrcVectorDim
==
2
&&
C
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of Ds
bool
valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
// FIXME: layout
if
constexpr
(
is_same_v
<
DLayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
DLayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
GNWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DLayout
,
ctc
::
NWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NDHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
GK
>
||
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
{
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
if
(
!
(
K
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
valid
=
false
;
}
}
else
{
valid
=
false
;
}
});
if
(
!
valid
)
{
return
false
;
}
// check vector access of E
if
constexpr
(
is_same_v
<
ELayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
GNWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNHWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
ELayout
,
ctc
::
NWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NHWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NDHWGK
>
)
{
const
index_t
K
=
arg
.
e_g_n_k_wos_lengths_
[
2
];
if
(
!
(
K
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check Gridwise GEMM
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedConvFwdMultipleD_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
getConvForwardSpecializationString
(
ConvForwardSpecialization
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_gemm.hpp
0 → 100644
View file @
78a300ff
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
struct
GemmDesc
{
ck
::
index_t
M_
,
N_
,
K_
;
ck
::
index_t
stride_A_
,
stride_B_
,
stride_C_
;
std
::
vector
<
ck
::
index_t
>
stride_Ds_
;
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGroupedGemm
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
DsLayout
::
Size
()
==
DsDataType
::
Size
(),
"wrong! inconsisiten NumDTensor"
);
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>&
p_a
,
std
::
vector
<
const
void
*>&
p_b
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_ds
,
std
::
vector
<
void
*>&
p_e
,
std
::
vector
<
GemmDesc
>&
gemm_desc
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CPermuteNumDims_G_M_Gemm1N
,
// Sequence<>
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
Acc0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGroupedGemmSoftmaxGemmPermute
:
public
BaseOperator
{
struct
ProblemDesc
{
// Overall problem shape
index_t
M
;
index_t
N
;
index_t
K
;
index_t
O
;
index_t
Batch
;
// Stride for A/B0/B1; layout determined by template args
index_t
StrideA
;
index_t
StrideB0
;
index_t
StrideB1
;
index_t
BatchStrideA
;
index_t
BatchStrideB0
;
index_t
BatchStrideB1
;
// Lengths and strides for output C
std
::
vector
<
index_t
>
c_gs_ms_os_lengths
;
std
::
vector
<
index_t
>
c_gs_ms_os_strides
;
};
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b0_vec
,
std
::
vector
<
const
void
*>
p_b1_vec
,
std
::
vector
<
void
*>
p_c_vec
,
std
::
vector
<
ProblemDesc
>
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
B0ElementwiseOperation
b0_element_op
,
Acc0ElementwiseOperation
acc0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GroupKernelArg
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_gemm_softmax_gemm_xdl_cshuffle_v1
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
group_kernel_args
,
const
index_t
group_count
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
AccElementwiseOperation
acc_element_op
,
const
B1ElementwiseOperation
b1_element_op
,
const
CElementwiseOperation
c_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
arg_ptr
=
reinterpret_cast
<
const
GroupKernelArg
*>
(
cast_pointer_to_generic_address_space
(
group_kernel_args
));
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
((
!
(
block_id
>=
arg_ptr
[
group_id
].
block_start_
&&
block_id
<
arg_ptr
[
group_id
].
block_end_
))
&&
left
<=
right
)
{
if
(
block_id
<
arg_ptr
[
group_id
].
block_start_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
// per-group batch offset
const
index_t
num_blocks_per_batch
=
arg_ptr
[
group_id
].
num_blocks_per_batch_
;
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
(
block_id
-
arg_ptr
[
group_id
].
block_start_
)
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetABasePtr
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetBBasePtr
(
g_idx
)));
const
long_index_t
b1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetB1BasePtr
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetCBasePtr
(
g_idx
)));
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
arg_ptr
[
group_id
].
p_a_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_b_grid_
+
b_batch_offset
,
arg_ptr
[
group_id
].
p_b1_grid_
+
b1_batch_offset
,
arg_ptr
[
group_id
].
p_c_grid_
+
c_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
arg_ptr
[
group_id
].
a_grid_desc_ak0_m_ak1_
,
arg_ptr
[
group_id
].
b_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
b1_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg_ptr
[
group_id
].
block_2_ctile_map_
,
arg_ptr
[
group_id
].
c0_matrix_mask_
);
#else
ignore
=
group_kernel_args
;
ignore
=
group_count
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
acc_element_op
;
ignore
=
b1_element_op
;
ignore
=
c_element_op
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template
<
typename
ALayout
,
typename
BLayout
,
// B0Layout
typename
B1Layout
,
typename
CPermuteNumDims_G_M_Gemm1N
,
// Sequence<NumDimG, NumDimM, NumDimGemm1N>
typename
ADataType
,
typename
BDataType
,
typename
B1DataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
// Gemm0NPerBlock
index_t
KPerBlock
,
// Gemm0KPerBlock
index_t
Gemm1NPerBlock
,
index_t
Gemm1KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
B1K1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
index_t
Gemm1NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
typename
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
B1BlockTransferThreadClusterArrangeOrder
,
typename
B1BlockTransferSrcAccessOrder
,
index_t
B1BlockTransferSrcVectorDim
,
index_t
B1BlockTransferSrcScalarPerVector
,
index_t
B1BlockTransferDstScalarPerVector_BK1
,
bool
B1BlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
bool
MaskOutUpperTriangle
,
LoopScheduler
LoopSched
=
LoopScheduler
::
Default
>
struct
DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
:
public
DeviceGroupedGemmSoftmaxGemmPermute
<
ALayout
,
BLayout
,
B1Layout
,
CPermuteNumDims_G_M_Gemm1N
,
ADataType
,
BDataType
,
B1DataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
;
using
ProblemDesc
=
typename
DeviceGroupedGemmSoftmaxGemmPermute
<
ALayout
,
BLayout
,
B1Layout
,
CPermuteNumDims_G_M_Gemm1N
,
ADataType
,
BDataType
,
B1DataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
>::
ProblemDesc
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
matrix_padder
=
GemmGemmPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
};
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
a_grid_desc_m_k
=
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
AK0
=
K
/
AK1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
const
auto
b_grid_desc_n_k
=
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
BK0
=
K
/
BK1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
static
auto
MakeB1GridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b1_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
B1Layout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
B1Layout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
const
auto
b1_grid_desc_n_k
=
matrix_padder
.
PadB1Descriptor_N_K
(
b1_grid_desc_nraw_kraw
);
const
auto
N
=
b1_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b1_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
B1K0
=
K
/
B1K1
;
return
transform_tensor_descriptor
(
b1_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
B1K0
,
B1K1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeCGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_strides_vec
)
{
constexpr
index_t
NumDimG
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I0
);
constexpr
index_t
NumDimM
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I1
);
constexpr
index_t
NumDimN
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I2
);
// NumDimGemm1N
assert
(
c_gs_ms_ns_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
&&
c_gs_ms_ns_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
c_ms_ns_lengths
=
to_tuple
(
c_gs_ms_ns_lengths_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
c_ms_ns_strides
=
to_tuple
(
c_gs_ms_ns_strides_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
c_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
c_ms_ns_lengths
,
nDimIds
);
// naive tensor C[M0, M1, M2, ..., N0, N1, N2...]
const
auto
c_grid_desc_ms_ns
=
make_naive_tensor_descriptor
(
c_ms_ns_lengths
,
c_ms_ns_strides
);
// transformed tensor C[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 * N2 * ...]
const
auto
c_grid_desc_mraw_nraw
=
transform_tensor_descriptor
(
c_grid_desc_ms_ns
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadCDescriptor_M_N
(
c_grid_desc_mraw_nraw
);
}
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeCGridDescriptor_G_M_N
(
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_strides_vec
)
{
constexpr
index_t
NumDimG
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I0
);
constexpr
index_t
NumDimM
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I1
);
constexpr
index_t
NumDimN
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I2
);
// NumDimGemm1N
assert
(
c_gs_ms_ns_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
&&
c_gs_ms_ns_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
c_gs_ms_ns_lengths
=
to_tuple
(
c_gs_ms_ns_lengths_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
c_gs_ms_ns_strides
=
to_tuple
(
c_gs_ms_ns_strides_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for G0, G1, ...
constexpr
auto
gDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimG
,
1
>::
type
{};
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
,
NumDimG
+
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
+
NumDimM
,
NumDimG
+
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for G0, G1, ...
const
auto
gLengths
=
get_container_subset
(
c_gs_ms_ns_lengths
,
gDimIds
);
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
c_gs_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
c_gs_ms_ns_lengths
,
nDimIds
);
// naive tensor C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
const
auto
c_grid_desc_gs_ms_ns
=
make_naive_tensor_descriptor
(
c_gs_ms_ns_lengths
,
c_gs_ms_ns_strides
);
// transformed tensor C[G = G0 * G1 * ..., MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 *
// N2 * ...]
const
auto
c_grid_desc_g_mraw_nraw
=
transform_tensor_descriptor
(
c_grid_desc_gs_ms_ns
,
make_tuple
(
make_merge_transform
(
gLengths
),
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
gDimIds
,
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
// this desc is only for calculating batch offset so no padding needed
return
c_grid_desc_g_mraw_nraw
;
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
1
,
1
,
1
));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
B1GridDesc_BK0_N_BK1
=
decltype
(
MakeB1GridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
({},
{}));
using
CGridDesc_G_M_N
=
decltype
(
MakeCGridDescriptor_G_M_N
({},
{}));
// to track the points which need to be set to -inf on C0
// Note: no need to reset M padding value, because they will not be stored out.
struct
C0MatrixMask
{
C0MatrixMask
(
index_t
NRaw
)
:
NRaw_
(
NRaw
)
{}
__host__
__device__
bool
IsUpperTriangle
(
index_t
m
,
index_t
n
)
const
{
return
n
>
m
;
}
__host__
__device__
bool
IsNOutOfBound
(
/*index_t m, */
index_t
n
)
const
{
return
n
>=
NRaw_
;
}
__host__
__device__
bool
IsMaskedElement
(
index_t
m
,
index_t
n
)
const
{
return
IsUpperTriangle
(
m
,
n
)
||
IsNOutOfBound
(
n
);
}
private:
// index_t MRaw_;
index_t
NRaw_
;
};
struct
ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideB1
,
CGridDesc_G_M_N
c_grid_desc_g_m_n
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideB1_
(
BatchStrideB1
),
c_grid_desc_g_m_n_
(
c_grid_desc_g_m_n
)
{
}
__host__
__device__
constexpr
long_index_t
GetABasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
long_index_t
GetB1BasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB1_
);
}
__host__
__device__
constexpr
long_index_t
GetCBasePtr
(
index_t
g_idx
)
const
{
return
c_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
private:
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
index_t
BatchStrideB1_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
B1GridDesc_BK0_N_BK1
,
CGridDesc_M_N
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
,
Gemm1KPerBlock
,
AK1
,
BK1
,
B1K1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
Gemm1NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
true
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
true
,
BBlockLdsExtraN
,
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
B1BlockTransferThreadClusterArrangeOrder
,
B1BlockTransferSrcAccessOrder
,
B1BlockTransferSrcVectorDim
,
B1BlockTransferSrcScalarPerVector
,
B1BlockTransferDstScalarPerVector_BK1
,
false
,
B1BlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
matrix_padder
.
PadN
,
MaskOutUpperTriangle
>
;
using
Block2CTileMap
=
OffsettedBlockToCTileMap
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
;
struct
GroupKernelArg
{
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
const
B1DataType
*
p_b1_grid_
;
CDataType
*
p_c_grid_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1_
;
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_
;
// batch & stride
index_t
num_blocks_per_batch_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
// check C0 masking and padding
C0MatrixMask
c0_matrix_mask_
;
// block-to-c-tile map
Block2CTileMap
block_2_ctile_map_
;
index_t
block_start_
,
block_end_
;
};
struct
GroupDeviceArg
{
// problem definiton
index_t
M
;
index_t
N
;
index_t
K
;
index_t
O
;
// Strides for the last dimensions of C for sanity check of vector load/store
index_t
c_extent_lowest_
;
index_t
c_stride_lowest_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
};
// Argument
// FIXME: constness
struct
Argument
:
public
BaseArgument
{
Argument
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b_vec
,
std
::
vector
<
const
void
*>
p_b1_vec
,
std
::
vector
<
void
*>
p_c_vec
,
std
::
vector
<
ProblemDesc
>
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc_element_op_
{
acc_element_op
},
b1_element_op_
{
b1_element_op
},
c_element_op_
{
c_element_op
}
{
group_count_
=
problem_desc_vec
.
size
();
if
(
!
(
group_count_
==
p_a_vec
.
size
()
&&
group_count_
==
p_b_vec
.
size
()
&&
group_count_
==
p_b1_vec
.
size
()
&&
group_count_
==
p_c_vec
.
size
()))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != a/b/b1/c_vec.size"
);
}
grid_size_
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count_
;
i
++
)
{
const
auto
p_a_grid
=
static_cast
<
const
ADataType
*>
(
p_a_vec
[
i
]);
const
auto
p_b_grid
=
static_cast
<
const
BDataType
*>
(
p_b_vec
[
i
]);
const
auto
p_b1_grid
=
static_cast
<
const
B1DataType
*>
(
p_b1_vec
[
i
]);
const
auto
p_c_grid
=
static_cast
<
CDataType
*>
(
p_c_vec
[
i
]);
const
auto
a_grid_desc_ak0_m_ak1
=
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
problem_desc_vec
[
i
].
M
,
problem_desc_vec
[
i
].
K
,
problem_desc_vec
[
i
].
StrideA
);
const
auto
b_grid_desc_bk0_n_bk1
=
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
problem_desc_vec
[
i
].
K
,
problem_desc_vec
[
i
].
N
,
problem_desc_vec
[
i
].
StrideB0
);
const
auto
b1_grid_desc_bk0_n_bk1
=
DeviceOp
::
MakeB1GridDescriptor_BK0_N_BK1
(
problem_desc_vec
[
i
].
N
,
problem_desc_vec
[
i
].
O
,
problem_desc_vec
[
i
].
StrideB1
);
const
auto
c_grid_desc_m_n
=
DeviceOp
::
MakeCGridDescriptor_M_N
(
problem_desc_vec
[
i
].
c_gs_ms_os_lengths
,
problem_desc_vec
[
i
].
c_gs_ms_os_strides
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
);
const
index_t
BlockStart
=
grid_size_
;
const
auto
block_2_ctile_map
=
Block2CTileMap
(
c_grid_desc_m_n
,
BlockStart
);
const
index_t
grid_size_grp
=
block_2_ctile_map
.
CalculateGridSize
(
c_grid_desc_m_n
)
*
problem_desc_vec
[
i
].
Batch
;
const
index_t
BlockEnd
=
grid_size_
+
grid_size_grp
;
// batch stride
// TODO ANT: only keep batch stride in tensor desc to reduce scalar cache pressure
const
auto
c_grid_desc_g_m_n
=
DeviceOp
::
MakeCGridDescriptor_G_M_N
(
problem_desc_vec
[
i
].
c_gs_ms_os_lengths
,
problem_desc_vec
[
i
].
c_gs_ms_os_strides
);
const
auto
compute_base_ptr_of_batch
=
ComputeBasePtrOfStridedBatch
(
problem_desc_vec
[
i
].
BatchStrideA
,
problem_desc_vec
[
i
].
BatchStrideB0
,
problem_desc_vec
[
i
].
BatchStrideB1
,
c_grid_desc_g_m_n
);
// C0 mask
const
auto
c0_matrix_mask
=
C0MatrixMask
(
problem_desc_vec
[
i
].
N
);
grid_size_
+=
grid_size_grp
;
group_kernel_args_
.
push_back
({
p_a_grid
,
p_b_grid
,
p_b1_grid
,
p_c_grid
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
b1_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_ctile_map
.
CalculateGridSize
(
c_grid_desc_m_n
),
compute_base_ptr_of_batch
,
c0_matrix_mask
,
block_2_ctile_map
,
BlockStart
,
BlockEnd
});
group_device_args_
.
push_back
({
problem_desc_vec
[
i
].
M
,
problem_desc_vec
[
i
].
N
,
problem_desc_vec
[
i
].
K
,
problem_desc_vec
[
i
].
O
,
problem_desc_vec
[
i
].
c_gs_ms_os_lengths
.
back
(),
problem_desc_vec
[
i
].
c_gs_ms_os_strides
.
back
(),
c_grid_desc_m_n
});
}
}
std
::
vector
<
GroupKernelArg
>
group_kernel_args_
;
std
::
vector
<
GroupDeviceArg
>
group_device_args_
;
std
::
size_t
group_count_
;
index_t
grid_size_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
AccElementwiseOperation
acc_element_op_
;
B1ElementwiseOperation
b1_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
DeviceOp
::
IsSupportedArgument
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! unsupported argument"
);
}
bool
all_has_main_k_block_loop
=
true
;
bool
some_has_main_k_block_loop
=
false
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
const
auto
K
=
arg
.
group_kernel_args_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
group_kernel_args_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
const
bool
y
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
);
all_has_main_k_block_loop
&=
y
;
some_has_main_k_block_loop
|=
y
;
}
hipGetErrorString
(
hipMemcpy
(
arg
.
p_workspace_
,
arg
.
group_kernel_args_
.
data
(),
arg
.
group_kernel_args_
.
size
()
*
sizeof
(
GroupKernelArg
),
hipMemcpyHostToDevice
));
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_gemm_softmax_gemm_xdl_cshuffle_v1
<
GridwiseGemm
,
GroupKernelArg
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
group_count_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
acc_element_op_
,
arg
.
b1_element_op_
,
arg
.
c_element_op_
);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
// to concern Gemm0's loop
if
(
all_has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
if
(
!
some_has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
else
{
throw
std
::
runtime_error
(
"wrong! all gemm problems have to simultaneously meet "
"has_main_k_block_loop or no_main_k_block_loop"
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
bool
all_has_main_k_block_loop
=
true
;
bool
some_has_main_k_block_loop
=
false
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
const
auto
&
kernel_arg
=
arg
.
group_kernel_args_
[
i
];
const
auto
&
device_arg
=
arg
.
group_device_args_
[
i
];
// Check if C permute dimension matches GEMM + GEMM shape
const
index_t
c_m
=
device_arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
);
const
index_t
c_gemm1n
=
device_arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
);
const
index_t
a_m
=
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
);
const
index_t
b1_gemm1n
=
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
);
if
(
!
(
c_m
==
a_m
&&
c_gemm1n
==
b1_gemm1n
))
{
return
false
;
}
// Check if having main loop
const
auto
K
=
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
const
bool
y
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
);
all_has_main_k_block_loop
&=
y
;
some_has_main_k_block_loop
|=
y
;
// Note: we need raw lengths since threadwise copy can not handle vector load when
// part of vector is out of bounds
const
auto
MRaw
=
device_arg
.
M
;
const
auto
NRaw
=
device_arg
.
N
;
const
auto
KRaw
=
device_arg
.
K
;
const
auto
Gemm1NRaw
=
device_arg
.
O
;
// Check scalar per vector requirement
const
auto
a_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
?
KRaw
:
MRaw
;
const
auto
b_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
?
NRaw
:
KRaw
;
const
auto
b1_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
B1Layout
>
?
Gemm1NRaw
:
NRaw
;
const
auto
c_extent_lowest
=
device_arg
.
c_extent_lowest_
;
if
(
!
(
a_extent_lowest
%
ABlockTransferSrcScalarPerVector
==
0
&&
b_extent_lowest
%
BBlockTransferSrcScalarPerVector
==
0
&&
b1_extent_lowest
%
B1BlockTransferSrcScalarPerVector
==
0
&&
c_extent_lowest
%
CShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
// Check vector store requirement; assumes last dimension in N to be contiguous
if
(
device_arg
.
c_stride_lowest_
!=
1
)
{
return
false
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
kernel_arg
.
a_grid_desc_ak0_m_ak1_
,
kernel_arg
.
b_grid_desc_bk0_n_bk1_
,
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
,
device_arg
.
c_grid_desc_m_n_
,
kernel_arg
.
block_2_ctile_map_
))
{
return
false
;
}
}
// all gemm problems have to simultaneously meet has_main_k_block_loop or
// no_main_k_block_loop
if
(
!
(
all_has_main_k_block_loop
||
!
some_has_main_k_block_loop
))
{
return
false
;
}
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b_vec
,
std
::
vector
<
const
void
*>
p_b1_vec
,
std
::
vector
<
void
*>
p_c_vec
,
std
::
vector
<
ProblemDesc
>
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a_vec
,
p_b_vec
,
p_b1_vec
,
p_c_vec
,
problem_desc_vec
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b_vec
,
std
::
vector
<
const
void
*>
p_b1_vec
,
std
::
vector
<
void
*>
p_c_vec
,
std
::
vector
<
ProblemDesc
>
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a_vec
,
p_b_vec
,
p_b1_vec
,
p_c_vec
,
problem_desc_vec
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
B1K1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GroupKernelArg
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
0 → 100644
View file @
78a300ff
#pragma once
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GemmDesc
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_gemm_xdl
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
gemm_descs_const
,
const
index_t
group_count
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
c_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
((
!
(
block_id
>=
gemm_desc_ptr
[
group_id
].
BlockStart_
&&
block_id
<
gemm_desc_ptr
[
group_id
].
BlockEnd_
))
&&
left
<=
right
)
{
if
(
block_id
<
gemm_desc_ptr
[
group_id
].
BlockStart_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
gemm_desc_ptr
[
group_id
].
a_ptr_
,
gemm_desc_ptr
[
group_id
].
b_ptr_
,
gemm_desc_ptr
[
group_id
].
ds_ptr_
,
gemm_desc_ptr
[
group_id
].
e_ptr_
,
p_shared
,
a_element_op
,
b_element_op
,
c_element_op
,
gemm_desc_ptr
[
group_id
].
a_grid_desc_ak0_m_ak1_
,
gemm_desc_ptr
[
group_id
].
b_grid_desc_bk0_n_bk1_
,
gemm_desc_ptr
[
group_id
].
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
gemm_desc_ptr
[
group_id
].
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
gemm_desc_ptr
[
group_id
].
block_2_etile_map_
);
#else
ignore
=
gemm_descs_const
;
ignore
=
group_count
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
c_element_op
;
#endif
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
NumPrefetch
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
AK1
,
ck
::
index_t
BK1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedGemm_Xdl
:
public
DeviceGroupedGemm
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedGemm_Xdl
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
static
auto
MakeAGridDescriptor_M_K
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
static
auto
MakeBGridDescriptor_N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
{
const
auto
e_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideE
));
}
}();
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
using
AGridDesc_M_K
=
decltype
(
MakeAGridDescriptor_M_K
(
1
,
1
,
1
));
using
BGridDesc_N_K
=
decltype
(
MakeBGridDescriptor_N_K
(
1
,
1
,
1
));
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
(
1
,
1
,
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
NumPrefetch
,
// NumGemmKPrefetchStage
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
struct
GroupedGemmBlock2ETileMap
{
using
Block2ETileMap
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{}))
>
;
GroupedGemmBlock2ETileMap
()
{
block_2_etile_map_
=
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{});
BlockStart_
=
-
1
;
}
GroupedGemmBlock2ETileMap
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
,
ck
::
index_t
BlockStart
)
{
block_2_etile_map_
=
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n
);
BlockStart_
=
BlockStart
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
return
block_2_etile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
I0
]
-
BlockStart_
));
}
// it's actually E-Tile
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
return
block_2_etile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
__host__
bool
CheckValidity
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
const
{
return
block_2_etile_map_
.
CheckValidity
(
e_grid_desc_m_n
);
}
Block2ETileMap
block_2_etile_map_
;
ck
::
index_t
BlockStart_
;
};
struct
GemmBiasTransKernelArg
{
// pointers
const
ADataType
*
a_ptr_
;
const
BDataType
*
b_ptr_
;
typename
GridwiseGemm
::
DsGridPointer
ds_ptr_
;
EDataType
*
e_ptr_
;
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
GroupedGemmBlock2ETileMap
block_2_etile_map_
;
ck
::
index_t
BlockStart_
,
BlockEnd_
;
};
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
grid_size_
=
0
;
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
gemm_descs
.
size
());
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Es
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_As/b/c.size"
);
}
gemm_desc_kernel_arg_
.
reserve
(
group_count_
);
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
const
index_t
M
=
gemm_descs
[
i
].
M_
;
const
index_t
N
=
gemm_descs
[
i
].
N_
;
const
index_t
K
=
gemm_descs
[
i
].
K_
;
const
index_t
StrideA
=
gemm_descs
[
i
].
stride_A_
;
const
index_t
StrideB
=
gemm_descs
[
i
].
stride_B_
;
const
index_t
StrideC
=
gemm_descs
[
i
].
stride_C_
;
// pointer
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid
{};
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
p_ds_grid
(
j
)
=
static_cast
<
const
DDataType
*>
(
p_Ds
[
i
][
j
]);
});
// tensor descriptors for problem definiton
const
auto
a_grid_desc_m_k
=
DeviceOp
::
MakeAGridDescriptor_M_K
(
M
,
K
,
StrideA
);
const
auto
b_grid_desc_n_k
=
DeviceOp
::
MakeBGridDescriptor_N_K
(
K
,
N
,
StrideB
);
DsGridDesc_M_N
ds_grid_desc_m_n
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsLayout
>>
;
ds_grid_desc_m_n
(
j
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
M
,
N
,
gemm_descs
[
i
].
stride_Ds_
[
j
]);
});
const
auto
e_grid_desc_m_n
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
M
,
N
,
StrideC
);
// tensor descriptors for block/thread-wise copy
const
auto
a_grid_desc_ak0_m_ak1
=
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k
);
const
auto
b_grid_desc_bk0_n_bk1
=
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k
);
const
index_t
grid_size_grp
=
GroupedGemmBlock2ETileMap
(
e_grid_desc_m_n
,
0
)
.
block_2_etile_map_
.
CalculateGridSize
(
e_grid_desc_m_n
);
const
index_t
BlockStart
=
grid_size_
;
const
index_t
BlockEnd
=
grid_size_
+
grid_size_grp
;
grid_size_
+=
grid_size_grp
;
// block-to-e-tile map
const
auto
block_2_etile_map
=
GroupedGemmBlock2ETileMap
(
e_grid_desc_m_n
,
BlockStart
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k
,
b_grid_desc_n_k
,
ds_grid_desc_m_n
,
e_grid_desc_m_n
,
block_2_etile_map
))
{
// tensor descriptors for block/thread-wise copy
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
ds_grid_desc_mblock_mperblock_nblock_nperblock
(
j
)
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
j
]);
});
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n
);
gemm_desc_kernel_arg_
.
push_back
(
GemmBiasTransKernelArg
{
static_cast
<
const
ADataType
*>
(
p_As
[
i
]),
static_cast
<
const
BDataType
*>
(
p_Bs
[
i
]),
p_ds_grid
,
static_cast
<
EDataType
*>
(
p_Es
[
i
]),
a_grid_desc_m_k
,
b_grid_desc_n_k
,
ds_grid_desc_m_n
,
e_grid_desc_m_n
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
,
BlockStart
,
BlockEnd
});
}
}
}
// private:
index_t
group_count_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
c_element_op_
;
std
::
vector
<
GemmBiasTransKernelArg
>
gemm_desc_kernel_arg_
;
index_t
grid_size_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
bool
has_main_k_block_loop
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
std
::
cout
<<
"group: "
<<
i
<<
" arg.a_grid_desc_ak0_m_ak1_{"
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
)
<<
"}"
;
std
::
cout
<<
", arg.b_grid_desc_bk0_n_bk1_{"
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I2
)
<<
"}"
;
std
::
cout
<<
", arg.e_grid_desc_m_n_{ "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_m_k_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_n_k_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
ds_grid_desc_m_n_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting"
);
}
const
auto
K
=
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
)
!=
has_main_k_block_loop
)
{
throw
std
::
runtime_error
(
"wrong! not all gemm has_main_k_block_loop"
);
}
}
hipGetErrorString
(
hipMemcpy
(
arg
.
p_workspace_
,
arg
.
gemm_desc_kernel_arg_
.
data
(),
arg
.
gemm_desc_kernel_arg_
.
size
()
*
sizeof
(
GemmBiasTransKernelArg
),
hipMemcpyHostToDevice
));
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl
<
GridwiseGemm
,
GemmBiasTransKernelArg
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
gemm_desc_kernel_arg_
.
size
(),
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
};
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
!=
arg
.
group_count_
)
{
return
false
;
}
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
{
return
Argument
{
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemm_Xdl"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
">"
;
// clang-format on
return
str
.
str
();
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GemmBiasTransKernelArg
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_layernorm_impl.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_layernorm_welford_variance.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
template
<
typename
GridwiseReduction
,
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
YDataType
,
typename
AccDataType
,
typename
AccElementwiseOperation
,
typename
GridDesc_M_K
>
__global__
void
kernel_layernorm
(
const
GridDesc_M_K
x_grid_desc_m_k
,
const
GridDesc_M_K
gamma_grid_desc_m_k
,
const
GridDesc_M_K
beta_grid_desc_m_k
,
const
GridDesc_M_K
y_grid_desc_m_k
,
index_t
num_k_block_tile_iteration
,
AccDataType
epsilon
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
YDataType
*
const
__restrict__
p_y_global
,
const
AccElementwiseOperation
acc_elementwise_op
)
{
GridwiseReduction
::
Run
(
x_grid_desc_m_k
,
gamma_grid_desc_m_k
,
beta_grid_desc_m_k
,
y_grid_desc_m_k
,
num_k_block_tile_iteration
,
epsilon
,
p_x_global
,
p_gamma_global
,
p_beta_global
,
p_y_global
,
acc_elementwise_op
);
};
}
// namespace ck
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Y = LayerNorm(X, Beta, Gamma)
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
AccDataType
,
typename
YDataType
,
typename
AccElementwiseOperation
,
index_t
Rank
,
index_t
NumReduceDim
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
XYSrcVectorDim
,
index_t
XSrcVectorSize
,
index_t
GammaSrcVectorDim
,
index_t
GammaSrcVectorSize
,
index_t
BetaSrcVectorDim
,
index_t
BetaSrcVectorSize
,
index_t
YDstVectorSize
>
struct
DeviceLayernormImpl
:
public
DeviceLayernorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
YDataType
,
AccElementwiseOperation
,
Rank
,
NumReduceDim
>
{
static_assert
(
((
GammaSrcVectorDim
==
0
&&
MThreadSliceSize
%
GammaSrcVectorSize
==
0
)
||
(
GammaSrcVectorDim
==
1
&&
KThreadSliceSize
%
GammaSrcVectorSize
==
0
)),
"Invalid thread slice sizes and/or gamma vector sizes configuration, please check!"
);
static_assert
(
((
BetaSrcVectorDim
==
0
&&
MThreadSliceSize
%
BetaSrcVectorSize
==
0
)
||
(
BetaSrcVectorDim
==
1
&&
KThreadSliceSize
%
BetaSrcVectorSize
==
0
)),
"Invalid thread slice sizes and/or beta vector sizes configuration, please check!"
);
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
auto
MakeSrc2dDescriptor
(
const
std
::
vector
<
index_t
>&
inLengths
,
const
std
::
vector
<
index_t
>&
inStrides
,
int
blkGroupSize
,
int
numBlockTileIteration
)
{
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
numSrcDim
=
Rank
;
static
constexpr
bool
reduceAllDim
=
(
NumInvariantDim
==
0
);
const
auto
tupleSrcLengths
=
make_tuple_from_array
(
inLengths
,
Number
<
numSrcDim
>
{});
const
auto
tupleSrcStrides
=
make_tuple_from_array
(
inStrides
,
Number
<
numSrcDim
>
{});
const
auto
inDesc
=
make_naive_tensor_descriptor
(
tupleSrcLengths
,
tupleSrcStrides
);
const
auto
in_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
reduceAllDim
)
{
const
auto
one_dim_inDesc
=
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
tupleSrcLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
numSrcDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
transform_tensor_descriptor
(
one_dim_inDesc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
1
,
one_dim_inDesc
.
GetLength
(
Number
<
0
>
{})))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{}));
}
else
{
using
InvariantDims
=
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
const
auto
reduceDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
ReduceDims
{});
const
auto
invariantDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
InvariantDims
{});
return
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
reduceDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}();
const
auto
invariantLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
0
>
{});
const
auto
reduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
int
reduceSizePerBlock
=
K_BlockTileSize
*
numBlockTileIteration
;
const
auto
inPad_M
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
const
auto
inPad_K
=
reduceSizePerBlock
*
blkGroupSize
-
reduceLength
;
auto
in_grid_desc_m_k_padded
=
transform_tensor_descriptor
(
in_grid_desc_m_k
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
inPad_M
),
make_right_pad_transform
(
reduceLength
,
inPad_K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
(
in_grid_desc_m_k_padded
);
};
using
GridDesc_M_K
=
decltype
(
MakeSrc2dDescriptor
({
1
},
{
1
},
1
,
1
));
using
GridwiseReduceLayernormGeneric
=
GridwiseLayernormWelfordVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
XYSrcVectorDim
,
YDstVectorSize
,
false
>
;
using
GridwiseReduceLayernormSweepOnce
=
GridwiseLayernormWelfordVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
XYSrcVectorDim
,
YDstVectorSize
,
true
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
AccElementwiseOperation
acc_elementwise_op
,
AccDataType
epsilon
,
const
XDataType
*
p_x
,
const
GammaDataType
*
p_gamma
,
const
BetaDataType
*
p_beta
,
YDataType
*
p_y
)
:
epsilon_
(
epsilon
),
p_x_
(
p_x
),
p_gamma_
(
p_gamma
),
p_beta_
(
p_beta
),
p_y_
(
p_y
),
acc_elementwise_op_
(
acc_elementwise_op
)
{
Lengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
lengths
,
reduceDims
);
xStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
xStrides
,
reduceDims
);
yStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
yStrides
,
reduceDims
);
gammaStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
gammaStrides
,
reduceDims
);
betaStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
betaStrides
,
reduceDims
);
long_index_t
invariant_total_length
;
long_index_t
reduce_total_length
;
std
::
tie
(
invariant_total_length
,
reduce_total_length
)
=
get_2d_lengths
<
Rank
,
NumReduceDim
>
(
Lengths_
);
blkGroupSize_
=
1
;
numBlockTileIteration_
=
(
reduce_total_length
+
K_BlockTileSize
-
1
)
/
K_BlockTileSize
;
gridSize_
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
*
blkGroupSize_
;
x_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
xStrides_
,
blkGroupSize_
,
numBlockTileIteration_
);
gamma_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
gammaStrides_
,
blkGroupSize_
,
numBlockTileIteration_
);
beta_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
betaStrides_
,
blkGroupSize_
,
numBlockTileIteration_
);
y_grid_desc_m_k_
=
MakeSrc2dDescriptor
(
Lengths_
,
yStrides_
,
blkGroupSize_
,
numBlockTileIteration_
);
isSweeponce_
=
x_grid_desc_m_k_
.
GetLength
(
Number
<
1
>
{})
<=
KThreadClusterSize
*
KThreadSliceSize
;
}
AccDataType
epsilon_
;
const
XDataType
*
p_x_
;
const
GammaDataType
*
p_gamma_
;
const
BetaDataType
*
p_beta_
;
YDataType
*
p_y_
;
std
::
vector
<
index_t
>
Lengths_
;
std
::
vector
<
index_t
>
xStrides_
;
std
::
vector
<
index_t
>
gammaStrides_
;
std
::
vector
<
index_t
>
betaStrides_
;
std
::
vector
<
index_t
>
yStrides_
;
AccElementwiseOperation
acc_elementwise_op_
;
int
blkGroupSize_
;
int
numBlockTileIteration_
;
size_t
gridSize_
;
GridDesc_M_K
x_grid_desc_m_k_
;
GridDesc_M_K
gamma_grid_desc_m_k_
;
GridDesc_M_K
beta_grid_desc_m_k_
;
GridDesc_M_K
y_grid_desc_m_k_
;
bool
isSweeponce_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
kernel_main
=
arg
.
isSweeponce_
?
kernel_layernorm
<
GridwiseReduceLayernormSweepOnce
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
>
:
kernel_layernorm
<
GridwiseReduceLayernormGeneric
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
>
;
float
avg_time
=
0
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel_main
,
dim3
(
arg
.
gridSize_
),
dim3
(
BlockSize
),
0
,
arg
.
x_grid_desc_m_k_
,
arg
.
gamma_grid_desc_m_k_
,
arg
.
beta_grid_desc_m_k_
,
arg
.
y_grid_desc_m_k_
,
arg
.
numBlockTileIteration_
,
arg
.
epsilon_
,
arg
.
p_x_
,
arg
.
p_gamma_
,
arg
.
p_beta_
,
arg
.
p_y_
,
arg
.
acc_elementwise_op_
);
return
(
avg_time
);
};
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
};
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
p_arg_
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
if
constexpr
(
XYSrcVectorDim
==
0
)
{
if
constexpr
(
NumInvariantDim
==
0
)
{
return
false
;
}
else
{
if
(
p_arg_
->
xStrides_
[
NumInvariantDim
-
1
]
!=
1
)
return
false
;
if
(
p_arg_
->
invariant_lowest_length
%
XSrcVectorSize
!=
0
)
return
false
;
};
}
else
{
if
(
p_arg_
->
xStrides_
[
Rank
-
1
]
!=
1
)
return
false
;
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
XSrcVectorSize
!=
0
)
return
false
;
};
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
YDstVectorSize
!=
0
)
{
return
false
;
}
// if fastest dim is not reduced
if
constexpr
(
GammaSrcVectorDim
==
0
)
{
if
(
p_arg_
->
gammaStrides_
[
NumInvariantDim
-
1
]
!=
1
)
return
(
false
);
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
GammaSrcVectorSize
!=
0
)
return
(
false
);
}
else
// if fastest dim is reduced
{
if
(
p_arg_
->
gammaStrides_
[
Rank
-
1
]
!=
1
)
return
(
false
);
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
GammaSrcVectorSize
!=
0
)
return
(
false
);
}
// if fastest dim is not reduced
if
constexpr
(
BetaSrcVectorDim
==
0
)
{
if
(
p_arg_
->
betaStrides_
[
NumInvariantDim
-
1
]
!=
1
)
return
(
false
);
if
(
p_arg_
->
invariant_lowest_length
%
BetaSrcVectorSize
!=
0
)
return
(
false
);
}
else
// if fastest dim is reduced
{
if
(
p_arg_
->
betaStrides_
[
Rank
-
1
]
!=
1
)
return
(
false
);
if
(
p_arg_
->
Lengths_
[
Rank
-
1
]
%
BetaSrcVectorSize
!=
0
)
return
(
false
);
}
return
true
;
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
AccDataType
epsilon
,
const
void
*
p_x
,
const
void
*
p_gamma
,
const
void
*
p_beta
,
void
*
p_y
,
AccElementwiseOperation
acc_elementwise_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
lengths
,
xStrides
,
gammaStrides
,
betaStrides
,
yStrides
,
reduceDims
,
acc_elementwise_op
,
epsilon
,
static_cast
<
const
XDataType
*>
(
p_x
),
static_cast
<
const
GammaDataType
*>
(
p_gamma
),
static_cast
<
const
BetaDataType
*>
(
p_beta
),
static_cast
<
YDataType
*>
(
p_y
));
};
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceLayernormImpl<"
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"XYSrcVectorDim_"
<<
XYSrcVectorDim
<<
","
;
str
<<
"VectorSize_X"
<<
XSrcVectorSize
<<
"_Gamma"
<<
GammaSrcVectorSize
<<
"_Beta"
<<
BetaSrcVectorSize
<<
"_Y"
<<
YDstVectorSize
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_multiple_reduce.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include <array>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/utility/reduction_enums.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
Rank
,
index_t
NumReduceDim
,
index_t
NumReduction
,
typename
InElementwiseOperationTuple
,
typename
AccElementwiseOperationTuple
>
struct
DeviceMultipleReduce
:
public
BaseOperator
{
static
constexpr
index_t
NumInputDim
=
Rank
;
static
constexpr
index_t
NumOutputDim
=
(
Rank
-
NumReduceDim
>
1
)
?
Rank
-
NumReduceDim
:
1
;
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
NumInputDim
>
inLengths
,
const
std
::
array
<
index_t
,
NumInputDim
>
inStrides
,
const
std
::
array
<
index_t
,
NumOutputDim
>
outLengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>
outStrides
,
const
std
::
array
<
int
,
NumReduceDim
>
reduceDims
,
const
std
::
array
<
const
void
*
,
NumReduction
>
alphas
,
const
std
::
array
<
const
void
*
,
NumReduction
>
betas
,
const
void
*
in_dev
,
const
std
::
array
<
void
*
,
NumReduction
>
out_dev_buffers
,
const
InElementwiseOperationTuple
in_elementwise_op_tuple
,
const
AccElementwiseOperationTuple
acc_elementwise_op_tuple
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
index_t
Rank
,
index_t
NumReduceDim
,
index_t
NumReduction
,
typename
InElementwiseOperationTuple
,
typename
AccElementwiseOperationTuple
>
using
DeviceMultipleReducePtr
=
std
::
unique_ptr
<
DeviceMultipleReduce
<
Rank
,
NumReduceDim
,
NumReduction
,
InElementwiseOperationTuple
,
AccElementwiseOperationTuple
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_multiple_reduce_multiblock.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/sequence.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_multiple_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_multiple_reduction_multiblock.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_multiple_buffer_value.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumReduction
,
typename
InDataType
,
typename
AccDataType
,
typename
OutDataTypeTuple
,
index_t
Rank
,
index_t
NumReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperationTuple
,
typename
AccElementwiseOperationTuple
,
InMemoryDataOperationEnum
OutMemoryDataOperation
,
bool
PropagateNan
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
typename
OutDstVectorSizeSeq
>
struct
DeviceMultipleReduceMultiBlock
:
public
DeviceMultipleReduce
<
Rank
,
NumReduceDim
,
NumReduction
,
InElementwiseOperationTuple
,
AccElementwiseOperationTuple
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
"Invalid thread cluster size assignments!"
);
static_assert
((
InSrcVectorDim
==
0
&&
MThreadSliceSize
%
InSrcVectorSize
==
0
)
||
(
InSrcVectorDim
==
1
&&
KThreadSliceSize
%
InSrcVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static_assert
(
NumReduction
==
OutDataTypeTuple
::
Size
()
&&
NumReduction
==
InElementwiseOperationTuple
::
Size
()
&&
NumReduction
==
AccElementwiseOperationTuple
::
Size
()
&&
NumReduction
==
OutDstVectorSizeSeq
::
Size
(),
"All tuple should have the same size as the number of Reductions!"
);
static_assert
(
sequence_all_of
(
OutDstVectorSizeSeq
{},
[](
auto
vectorSize
)
{
return
(
MThreadSliceSize
%
vectorSize
==
0
);
}),
"The OutDstVectorSize should completely divide the MThreadSliceSize!"
);
static
constexpr
bool
CheckDataTypeTuple
()
{
bool
flag
=
true
;
static_for
<
0
,
NumReduction
,
1
>
{}([
&
](
auto
I
)
{
using
OutDataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
flag
=
flag
&&
ck
::
reduce
::
InMemoryDataOperatonSupportedOnDataType
<
OutMemoryDataOperation
,
OutDataType
>::
value
;
});
return
flag
;
};
static_assert
(
CheckDataTypeTuple
(),
"The OutDataType must support the specified OutMemoryDataOperation!"
);
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
NumInputDim
=
Rank
;
static
constexpr
index_t
NumOutputDim
=
(
NumInvariantDim
==
0
)
?
1
:
NumInvariantDim
;
static
constexpr
bool
reduceAllDim
=
(
NumInvariantDim
==
0
);
// So far, only AtomicAdd is considered, other Atomic Operation like AtomicMax can be added
// later
static
constexpr
bool
use_multiblock
=
(
OutMemoryDataOperation
==
InMemoryDataOperationEnum
::
AtomicAdd
);
static_assert
(
ReduceOperation
::
IsCompatibleInMemoryDataOperation
(
OutMemoryDataOperation
),
"The reduction accumulation operation must be compatible with the OutMemoryDataOperation!"
);
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
auto
GenerateOutDataTypePointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
DataType
*>
(
nullptr
);
},
Number
<
NumReduction
>
{});
};
using
OutDataTypePointerTuple
=
decltype
(
GenerateOutDataTypePointerTuple
());
static
auto
MakeSrc2dDescriptor
(
const
std
::
array
<
index_t
,
NumInputDim
>&
inLengths
,
const
std
::
array
<
index_t
,
NumInputDim
>&
inStrides
,
int
blkGroupSize
,
int
numBlockTileIteration
)
{
const
auto
tupleSrcLengths
=
generate_tuple
([
&
](
auto
I
)
{
return
inLengths
[
I
];
},
Number
<
NumInputDim
>
{});
const
auto
tupleSrcStrides
=
generate_tuple
([
&
](
auto
I
)
{
return
inStrides
[
I
];
},
Number
<
NumInputDim
>
{});
const
auto
inDesc
=
make_naive_tensor_descriptor
(
tupleSrcLengths
,
tupleSrcStrides
);
const
auto
in_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
reduceAllDim
)
{
const
auto
one_dim_inDesc
=
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
tupleSrcLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
NumInputDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
transform_tensor_descriptor
(
one_dim_inDesc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
1
,
one_dim_inDesc
.
GetLength
(
Number
<
0
>
{})))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{}));
}
else
{
using
InvariantDims
=
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
const
auto
reduceDimLengths
=
generate_tuple
(
[
&
](
auto
I
)
{
return
inLengths
[
NumInvariantDim
+
I
];
},
Number
<
NumReduceDim
>
{});
const
auto
invariantDimLengths
=
generate_tuple
([
&
](
auto
I
)
{
return
inLengths
[
I
];
},
Number
<
NumInvariantDim
>
{});
return
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
reduceDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}();
const
auto
invariantLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
0
>
{});
const
auto
reduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
int
reduceSizePerBlock
=
K_BlockTileSize
*
numBlockTileIteration
;
const
auto
inPad_M
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
const
auto
inPad_K
=
reduceSizePerBlock
*
blkGroupSize
-
reduceLength
;
auto
in_grid_desc_m_k_padded
=
transform_tensor_descriptor
(
in_grid_desc_m_k
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
inPad_M
),
make_right_pad_transform
(
reduceLength
,
inPad_K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
(
in_grid_desc_m_k_padded
);
};
static
auto
MakeDst1dDescriptor
(
const
std
::
array
<
index_t
,
NumOutputDim
>&
outLengths
,
const
std
::
array
<
index_t
,
NumOutputDim
>&
outStrides
)
{
const
auto
tupleDstLengths
=
generate_tuple
([
&
](
auto
I
)
{
return
outLengths
[
I
];
},
Number
<
NumOutputDim
>
{});
const
auto
tupleDstStrides
=
generate_tuple
([
&
](
auto
I
)
{
return
outStrides
[
I
];
},
Number
<
NumOutputDim
>
{});
auto
outDesc
=
make_naive_tensor_descriptor
(
tupleDstLengths
,
tupleDstStrides
);
auto
out_grid_desc_m
=
transform_tensor_descriptor
(
outDesc
,
make_tuple
(
make_merge_transform
(
tupleDstLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
NumOutputDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
invariantLength
=
out_grid_desc_m
.
GetLength
(
Number
<
0
>
{});
const
auto
outPad
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
auto
out_grid_desc_m_padded
=
transform_tensor_descriptor
(
out_grid_desc_m
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
outPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
(
out_grid_desc_m_padded
);
};
static
auto
GenerateOutGrid1dDescTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
(
void
)
I
;
return
MakeDst1dDescriptor
(
std
::
array
<
index_t
,
NumOutputDim
>
{},
std
::
array
<
index_t
,
NumOutputDim
>
{});
},
Number
<
NumReduction
>
{});
};
using
InGridDesc_M_K
=
decltype
(
MakeSrc2dDescriptor
(
std
::
array
<
index_t
,
NumInputDim
>
{},
std
::
array
<
index_t
,
NumInputDim
>
{},
1
,
1
));
using
OutGridDesc_M_Tuple
=
decltype
(
GenerateOutGrid1dDescTuple
());
static
auto
MakeDst1dDescriptorForBufferSet
(
const
std
::
array
<
index_t
,
NumOutputDim
>&
outLengths
,
const
std
::
array
<
index_t
,
NumOutputDim
>&
outStrides
)
{
const
auto
tupleDstLengths
=
generate_tuple
([
&
](
auto
I
)
{
return
outLengths
[
I
];
},
Number
<
NumOutputDim
>
{});
const
auto
tupleDstStrides
=
generate_tuple
([
&
](
auto
I
)
{
return
outStrides
[
I
];
},
Number
<
NumOutputDim
>
{});
auto
outDesc
=
make_naive_tensor_descriptor
(
tupleDstLengths
,
tupleDstStrides
);
auto
out_grid_desc_m
=
transform_tensor_descriptor
(
outDesc
,
make_tuple
(
make_merge_transform
(
tupleDstLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
NumOutputDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
length
=
out_grid_desc_m
.
GetLength
(
Number
<
0
>
{});
const
auto
pad
=
math
::
integer_least_multiple
(
length
,
BlockSize
)
-
length
;
auto
out_grid_desc_m_padded
=
transform_tensor_descriptor
(
out_grid_desc_m
,
make_tuple
(
make_right_pad_transform
(
length
,
pad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
(
out_grid_desc_m_padded
);
};
static
auto
GenerateOutGrid1dDescTuple_2
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
(
void
)
I
;
return
MakeDst1dDescriptorForBufferSet
(
std
::
array
<
index_t
,
NumOutputDim
>
{},
std
::
array
<
index_t
,
NumOutputDim
>
{});
},
Number
<
NumReduction
>
{});
};
using
OutGridDesc_M_Tuple_2
=
decltype
(
GenerateOutGrid1dDescTuple_2
());
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
array
<
index_t
,
NumInputDim
>&
inLengths
,
const
std
::
array
<
index_t
,
NumInputDim
>&
inStrides
,
const
std
::
array
<
index_t
,
NumOutputDim
>&
outLengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>&
outStridesArray
,
const
std
::
array
<
int
,
NumReduceDim
>&
reduceDims
,
const
std
::
array
<
const
void
*
,
NumReduction
>&
alphas
,
const
std
::
array
<
const
void
*
,
NumReduction
>&
betas
,
const
void
*
in_dev
,
const
std
::
array
<
void
*
,
NumReduction
>&
out_dev_buffers
,
const
InElementwiseOperationTuple
in_elementwise_op_tuple
,
const
AccElementwiseOperationTuple
acc_elementwise_op_tuple
)
:
outLengths_
{
outLengths
},
outStridesArray_
{
outStridesArray
},
in_elementwise_op_tuple_
{
in_elementwise_op_tuple
},
acc_elementwise_op_tuple_
{
acc_elementwise_op_tuple
}
{
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
inStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inStrides
,
reduceDims
);
for
(
size_t
i
=
0
;
i
<
NumReduction
;
i
++
)
{
alpha_values_
(
i
)
=
*
static_cast
<
const
AccDataType
*>
(
alphas
[
i
]);
beta_values_
(
i
)
=
*
static_cast
<
const
AccDataType
*>
(
betas
[
i
]);
};
in_dev_
=
static_cast
<
const
InDataType
*>
(
in_dev
);
out_dev_buffers_
=
generate_tuple
(
[
&
](
auto
iR
)
{
using
OutDataTypePointer
=
remove_cvref_t
<
decltype
(
OutDataTypePointerTuple
{}[
iR
])
>
;
using
OutDataType
=
remove_cvref_t
<
remove_pointer_t
<
OutDataTypePointer
>>
;
return
static_cast
<
OutDataType
*>
(
out_dev_buffers
[
iR
]);
},
Number
<
NumReduction
>
{});
std
::
tie
(
invariant_total_length
,
reduce_total_length
)
=
get_2d_lengths
<
Rank
,
NumReduceDim
>
(
inLengths_
);
if
constexpr
(
use_multiblock
)
{
int
iterations
=
1
;
while
(
true
)
{
int
testBlkGroupSize
=
(
reduce_total_length
+
(
K_BlockTileSize
*
iterations
)
-
1
)
/
(
K_BlockTileSize
*
iterations
);
// we want the blkGroupSize be not more than 128
if
(
testBlkGroupSize
<=
128
)
break
;
iterations
++
;
};
blkGroupSize
=
(
reduce_total_length
+
(
K_BlockTileSize
*
iterations
)
-
1
)
/
(
K_BlockTileSize
*
iterations
);
numBlockTileIteration
=
iterations
;
}
else
{
blkGroupSize
=
1
;
numBlockTileIteration
=
(
reduce_total_length
+
K_BlockTileSize
-
1
)
/
K_BlockTileSize
;
};
in_grid_desc_m_k
=
MakeSrc2dDescriptor
(
inLengths_
,
inStrides_
,
blkGroupSize
,
numBlockTileIteration
);
out_grid_desc_m_tuple
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDst1dDescriptor
(
outLengths
,
outStridesArray
[
I
]);
},
Number
<
NumReduction
>
{});
out_grid_desc_m_tuple_2
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDst1dDescriptorForBufferSet
(
outLengths
,
outStridesArray
[
I
]);
},
Number
<
NumReduction
>
{});
gridSize
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
*
blkGroupSize
;
gridSize_pre
=
math
::
integer_least_multiple
(
invariant_total_length
,
BlockSize
)
/
BlockSize
;
}
std
::
array
<
index_t
,
NumInputDim
>
inLengths_
;
std
::
array
<
index_t
,
NumInputDim
>
inStrides_
;
std
::
array
<
index_t
,
NumOutputDim
>
outLengths_
;
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>
outStridesArray_
;
Array
<
AccDataType
,
NumReduction
>
alpha_values_
;
Array
<
AccDataType
,
NumReduction
>
beta_values_
;
const
InDataType
*
in_dev_
;
OutDataTypePointerTuple
out_dev_buffers_
;
InGridDesc_M_K
in_grid_desc_m_k
;
OutGridDesc_M_Tuple
out_grid_desc_m_tuple
;
OutGridDesc_M_Tuple_2
out_grid_desc_m_tuple_2
;
InElementwiseOperationTuple
in_elementwise_op_tuple_
;
AccElementwiseOperationTuple
acc_elementwise_op_tuple_
;
long_index_t
invariant_total_length
;
long_index_t
reduce_total_length
;
int
blkGroupSize
;
int
numBlockTileIteration
;
size_t
gridSize
;
size_t
gridSize_pre
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
using
GridwiseMultipleReduce
=
GridwiseMultipleReduction_mk_to_m_multiblock
<
NumReduction
,
InDataType
,
OutDataTypePointerTuple
,
AccDataType
,
InGridDesc_M_K
,
OutGridDesc_M_Tuple
,
ReduceOperation
,
InElementwiseOperationTuple
,
AccElementwiseOperationTuple
,
OutMemoryDataOperation
,
PropagateNan
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSizeSeq
>
;
const
auto
kernel_main
=
kernel_multiple_reduce_multiblock
<
GridwiseMultipleReduce
,
NumReduction
,
InDataType
,
OutDataTypePointerTuple
,
AccDataType
,
InGridDesc_M_K
,
OutGridDesc_M_Tuple
,
InElementwiseOperationTuple
,
AccElementwiseOperationTuple
>
;
float
avg_time
=
0
;
if
constexpr
(
use_multiblock
)
{
auto
identity_values
=
generate_tuple
(
[
&
](
auto
iR
)
{
using
OutDataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
iR
])
>
;
return
ck
::
reduce
::
GetIdentityValueForInMemoryDataOperation
<
OutDataType
>
(
OutMemoryDataOperation
);
},
Number
<
NumReduction
>
{});
const
auto
kernel_pre
=
kernel_multiple_buffer_set_value
<
OutGridDesc_M_Tuple_2
,
NumReduction
,
BlockSize
,
OutDataTypePointerTuple
,
OutDataTypeTuple
>
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel_pre
,
dim3
(
arg
.
gridSize_pre
),
dim3
(
BlockSize
),
0
,
arg
.
out_grid_desc_m_tuple_2
,
arg
.
out_dev_buffers_
,
identity_values
);
};
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel_main
,
dim3
(
arg
.
gridSize
),
dim3
(
BlockSize
),
0
,
arg
.
in_grid_desc_m_k
,
arg
.
out_grid_desc_m_tuple
,
arg
.
in_elementwise_op_tuple_
,
arg
.
acc_elementwise_op_tuple_
,
arg
.
blkGroupSize
,
arg
.
numBlockTileIteration
,
arg
.
alpha_values_
,
arg
.
in_dev_
,
arg
.
beta_values_
,
arg
.
out_dev_buffers_
);
return
(
avg_time
);
};
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
};
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
constexpr
(
use_multiblock
)
{
for
(
size_t
i
=
0
;
i
<
pArg
->
beta_values_
.
Size
();
i
++
)
if
(
pArg
->
beta_values_
[
i
]
!=
0.0
f
)
return
(
false
);
};
if
constexpr
(
InSrcVectorDim
==
0
)
{
if
constexpr
(
NumInvariantDim
==
0
)
{
return
(
false
);
}
else
{
if
(
pArg
->
inStrides_
[
NumInvariantDim
-
1
]
!=
1
&&
InSrcVectorSize
!=
1
)
return
(
false
);
if
(
pArg
->
inLengths_
[
NumInvariantDim
-
1
]
%
InSrcVectorSize
!=
0
)
return
(
false
);
};
}
else
{
if
(
pArg
->
inStrides_
[
Rank
-
1
]
!=
1
&&
InSrcVectorSize
!=
1
)
return
(
false
);
if
(
pArg
->
inLengths_
[
Rank
-
1
]
%
InSrcVectorSize
!=
0
)
return
(
false
);
};
// To improve
bool
valid
=
true
;
static_for
<
0
,
NumReduction
,
1
>
{}([
&
](
auto
I
)
{
if
(
pArg
->
outStridesArray_
[
I
.
value
][
NumOutputDim
-
1
]
!=
1
&&
OutDstVectorSizeSeq
::
At
(
I
)
!=
1
)
valid
=
false
;
if
(
pArg
->
outLengths_
[
NumOutputDim
-
1
]
%
OutDstVectorSizeSeq
::
At
(
I
)
!=
0
)
valid
=
false
;
});
if
(
!
valid
)
return
(
false
);
if
constexpr
(
use_multiblock
)
{
// blkGroupSize of 1 should be handled by Blockwise path using
// InMemoryDataOperationEnum::Set
if
(
pArg
->
blkGroupSize
==
1
)
return
(
false
);
// This is very strong restriction, but needed to avoid some failure
if
(
pArg
->
outLengths_
[
NumOutputDim
-
1
]
%
M_BlockTileSize
!=
0
)
return
(
false
);
}
else
{
// cases with very small reduce_total_length should be handled by ThreadWise kernel
if
(
pArg
->
reduce_total_length
/
KThreadSliceSize
<
2
)
return
(
false
);
};
return
(
true
);
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
NumInputDim
>
inLengths
,
const
std
::
array
<
index_t
,
NumInputDim
>
inStrides
,
const
std
::
array
<
index_t
,
NumOutputDim
>
outLengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>
outStridesArray
,
const
std
::
array
<
int
,
NumReduceDim
>
reduceDims
,
const
std
::
array
<
const
void
*
,
NumReduction
>
alphas
,
const
std
::
array
<
const
void
*
,
NumReduction
>
betas
,
const
void
*
in_dev
,
const
std
::
array
<
void
*
,
NumReduction
>
out_dev_buffers
,
const
InElementwiseOperationTuple
in_elementwise_op_tuple
,
const
AccElementwiseOperationTuple
acc_elementwise_op_tuple
)
override
{
return
std
::
make_unique
<
Argument
>
(
inLengths
,
inStrides
,
outLengths
,
outStridesArray
,
reduceDims
,
alphas
,
betas
,
in_dev
,
out_dev_buffers
,
in_elementwise_op_tuple
,
acc_elementwise_op_tuple
);
};
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
(
OutMemoryDataOperation
==
InMemoryDataOperationEnum
::
Set
?
"DeviceMultipleReduceBlockWise<"
:
"DeviceMultipleReduceMultiBlock<"
)
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"InSrcVectorDim_"
<<
InSrcVectorDim
<<
"_InSrcVectorSize_"
<<
InSrcVectorSize
<<
","
;
str
<<
"OutDstVectorSize"
;
static_for
<
0
,
OutDstVectorSizeSeq
::
Size
(),
1
>
{}([
&
](
auto
I
)
{
str
<<
"_"
<<
OutDstVectorSizeSeq
::
At
(
I
);
});
str
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_multiple_reduce_threadwise.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/sequence.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_multiple_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_multiple_reduction_threadwise.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumReduction
,
typename
InDataType
,
typename
AccDataType
,
typename
OutDataTypeTuple
,
index_t
Rank
,
index_t
NumReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperationTuple
,
typename
AccElementwiseOperationTuple
,
bool
PropagateNan
,
index_t
BlockSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
typename
OutDstVectorSizeSeq
>
struct
DeviceMultipleReduceThreadWise
:
public
DeviceMultipleReduce
<
Rank
,
NumReduceDim
,
NumReduction
,
InElementwiseOperationTuple
,
AccElementwiseOperationTuple
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
((
InSrcVectorDim
==
0
&&
MThreadSliceSize
%
InSrcVectorSize
==
0
)
||
(
InSrcVectorDim
==
1
&&
KThreadSliceSize
%
InSrcVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static_assert
(
NumReduction
==
OutDataTypeTuple
::
Size
()
&&
NumReduction
==
InElementwiseOperationTuple
::
Size
()
&&
NumReduction
==
AccElementwiseOperationTuple
::
Size
()
&&
NumReduction
==
OutDstVectorSizeSeq
::
Size
(),
"All tuple should have the same size as the number of Reductions!"
);
static_assert
(
sequence_all_of
(
OutDstVectorSizeSeq
{},
[](
auto
vectorSize
)
{
return
(
MThreadSliceSize
%
vectorSize
==
0
);
}),
"The OutDstVectorSize should completely divide the MThreadSliceSize!"
);
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
NumInputDim
=
Rank
;
static
constexpr
index_t
NumOutputDim
=
(
NumInvariantDim
==
0
)
?
1
:
NumInvariantDim
;
static
constexpr
bool
reduceAllDim
=
(
NumInvariantDim
==
0
);
static
constexpr
index_t
M_BlockTileSize
=
BlockSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
1
*
KThreadSliceSize
;
static
auto
GenerateOutDataTypePointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
DataType
*>
(
nullptr
);
},
Number
<
NumReduction
>
{});
};
using
OutDataTypePointerTuple
=
decltype
(
GenerateOutDataTypePointerTuple
());
static
auto
MakeSrc2dDescriptor
(
const
std
::
array
<
index_t
,
NumInputDim
>&
inLengths
,
const
std
::
array
<
index_t
,
NumInputDim
>&
inStrides
)
{
const
auto
tupleSrcLengths
=
generate_tuple
([
&
](
auto
I
)
{
return
inLengths
[
I
];
},
Number
<
NumInputDim
>
{});
const
auto
tupleSrcStrides
=
generate_tuple
([
&
](
auto
I
)
{
return
inStrides
[
I
];
},
Number
<
NumInputDim
>
{});
const
auto
inDesc
=
make_naive_tensor_descriptor
(
tupleSrcLengths
,
tupleSrcStrides
);
const
auto
in_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
reduceAllDim
)
{
const
auto
one_dim_inDesc
=
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
tupleSrcLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
NumInputDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
transform_tensor_descriptor
(
one_dim_inDesc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
1
,
one_dim_inDesc
.
GetLength
(
Number
<
0
>
{})))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{}));
}
else
{
using
InvariantDims
=
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
const
auto
reduceDimLengths
=
generate_tuple
(
[
&
](
auto
I
)
{
return
inLengths
[
NumInvariantDim
+
I
];
},
Number
<
NumReduceDim
>
{});
const
auto
invariantDimLengths
=
generate_tuple
([
&
](
auto
I
)
{
return
inLengths
[
I
];
},
Number
<
NumInvariantDim
>
{});
return
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
reduceDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}();
const
auto
invariantLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
0
>
{});
const
auto
reduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
auto
inPad_M
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
const
auto
inPad_K
=
math
::
integer_least_multiple
(
reduceLength
,
K_BlockTileSize
)
-
reduceLength
;
auto
in_grid_desc_m_k_padded
=
transform_tensor_descriptor
(
in_grid_desc_m_k
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
inPad_M
),
make_right_pad_transform
(
reduceLength
,
inPad_K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
(
in_grid_desc_m_k_padded
);
};
static
auto
MakeDst1dDescriptor
(
const
std
::
array
<
index_t
,
NumOutputDim
>&
outLengths
,
const
std
::
array
<
index_t
,
NumOutputDim
>&
outStrides
)
{
const
auto
tupleDstLengths
=
generate_tuple
([
&
](
auto
I
)
{
return
outLengths
[
I
];
},
Number
<
NumOutputDim
>
{});
const
auto
tupleDstStrides
=
generate_tuple
([
&
](
auto
I
)
{
return
outStrides
[
I
];
},
Number
<
NumOutputDim
>
{});
auto
outDesc
=
make_naive_tensor_descriptor
(
tupleDstLengths
,
tupleDstStrides
);
auto
out_grid_desc_m
=
transform_tensor_descriptor
(
outDesc
,
make_tuple
(
make_merge_transform
(
tupleDstLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
NumOutputDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
invariantLength
=
out_grid_desc_m
.
GetLength
(
Number
<
0
>
{});
const
auto
outPad
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
auto
out_grid_desc_m_padded
=
transform_tensor_descriptor
(
out_grid_desc_m
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
outPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
(
out_grid_desc_m_padded
);
};
static
auto
GenerateOutGrid1dDescTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
(
void
)
I
;
return
MakeDst1dDescriptor
(
std
::
array
<
index_t
,
NumOutputDim
>
{},
std
::
array
<
index_t
,
NumOutputDim
>
{});
},
Number
<
NumReduction
>
{});
};
using
InGridDesc_M_K
=
decltype
(
MakeSrc2dDescriptor
(
std
::
array
<
index_t
,
NumInputDim
>
{},
std
::
array
<
index_t
,
NumInputDim
>
{}));
using
OutGridDesc_M_Tuple
=
decltype
(
GenerateOutGrid1dDescTuple
());
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
array
<
index_t
,
NumInputDim
>&
inLengths
,
const
std
::
array
<
index_t
,
NumInputDim
>&
inStrides
,
const
std
::
array
<
index_t
,
NumOutputDim
>&
outLengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>&
outStridesArray
,
const
std
::
array
<
int
,
NumReduceDim
>&
reduceDims
,
const
std
::
array
<
const
void
*
,
NumReduction
>&
alphas
,
const
std
::
array
<
const
void
*
,
NumReduction
>&
betas
,
const
void
*
in_dev
,
const
std
::
array
<
void
*
,
NumReduction
>&
out_dev_buffers
,
const
InElementwiseOperationTuple
in_elementwise_op_tuple
,
const
AccElementwiseOperationTuple
acc_elementwise_op_tuple
)
:
outLengths_
{
outLengths
},
outStridesArray_
{
outStridesArray
},
in_elementwise_op_tuple_
{
in_elementwise_op_tuple
},
acc_elementwise_op_tuple_
{
acc_elementwise_op_tuple
}
{
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
inStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inStrides
,
reduceDims
);
for
(
size_t
i
=
0
;
i
<
NumReduction
;
i
++
)
{
alpha_values_
(
i
)
=
*
static_cast
<
const
AccDataType
*>
(
alphas
[
i
]);
beta_values_
(
i
)
=
*
static_cast
<
const
AccDataType
*>
(
betas
[
i
]);
};
in_dev_
=
static_cast
<
const
InDataType
*>
(
in_dev
);
out_dev_buffers_
=
generate_tuple
(
[
&
](
auto
iR
)
{
using
OutDataTypePointer
=
remove_cvref_t
<
decltype
(
OutDataTypePointerTuple
{}[
iR
])
>
;
using
OutDataType
=
remove_cvref_t
<
remove_pointer_t
<
OutDataTypePointer
>>
;
return
static_cast
<
OutDataType
*>
(
out_dev_buffers
[
iR
]);
},
Number
<
NumReduction
>
{});
std
::
tie
(
invariant_total_length
,
reduce_total_length
)
=
get_2d_lengths
<
Rank
,
NumReduceDim
>
(
inLengths_
);
in_grid_desc_m_k
=
MakeSrc2dDescriptor
(
inLengths_
,
inStrides_
);
out_grid_desc_m_tuple
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDst1dDescriptor
(
outLengths
,
outStridesArray
[
I
]);
},
Number
<
NumReduction
>
{});
gridSize
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
;
}
std
::
array
<
index_t
,
NumInputDim
>
inLengths_
;
std
::
array
<
index_t
,
NumInputDim
>
inStrides_
;
std
::
array
<
index_t
,
NumOutputDim
>
outLengths_
;
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>
outStridesArray_
;
Array
<
AccDataType
,
NumReduction
>
alpha_values_
;
Array
<
AccDataType
,
NumReduction
>
beta_values_
;
const
InDataType
*
in_dev_
;
OutDataTypePointerTuple
out_dev_buffers_
;
InGridDesc_M_K
in_grid_desc_m_k
;
OutGridDesc_M_Tuple
out_grid_desc_m_tuple
;
InElementwiseOperationTuple
in_elementwise_op_tuple_
;
AccElementwiseOperationTuple
acc_elementwise_op_tuple_
;
long_index_t
invariant_total_length
;
long_index_t
reduce_total_length
;
size_t
gridSize
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
using
GridwiseMultipleReduce
=
GridwiseMultipleReduction_mk_to_m_threadwise
<
NumReduction
,
InDataType
,
OutDataTypePointerTuple
,
AccDataType
,
InGridDesc_M_K
,
OutGridDesc_M_Tuple
,
ReduceOperation
,
InElementwiseOperationTuple
,
AccElementwiseOperationTuple
,
InMemoryDataOperationEnum
::
Set
,
PropagateNan
,
BlockSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSizeSeq
>
;
const
auto
kernel_main
=
kernel_multiple_reduce_threadwise
<
GridwiseMultipleReduce
,
NumReduction
,
InDataType
,
OutDataTypePointerTuple
,
AccDataType
,
InGridDesc_M_K
,
OutGridDesc_M_Tuple
,
InElementwiseOperationTuple
,
AccElementwiseOperationTuple
>
;
float
avg_time
=
0
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel_main
,
dim3
(
arg
.
gridSize
),
dim3
(
BlockSize
),
0
,
arg
.
in_grid_desc_m_k
,
arg
.
out_grid_desc_m_tuple
,
arg
.
in_elementwise_op_tuple_
,
arg
.
acc_elementwise_op_tuple_
,
arg
.
alpha_values_
,
arg
.
in_dev_
,
arg
.
beta_values_
,
arg
.
out_dev_buffers_
);
return
(
avg_time
);
};
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
};
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
constexpr
(
InSrcVectorDim
==
0
)
{
if
constexpr
(
NumInvariantDim
==
0
)
{
return
(
false
);
}
else
{
if
(
pArg
->
inStrides_
[
NumInvariantDim
-
1
]
!=
1
&&
InSrcVectorSize
!=
1
)
return
(
false
);
if
(
pArg
->
inLengths_
[
NumInvariantDim
-
1
]
%
InSrcVectorSize
!=
0
)
return
(
false
);
};
}
else
{
if
(
pArg
->
inStrides_
[
Rank
-
1
]
!=
1
&&
InSrcVectorSize
!=
1
)
return
(
false
);
if
(
pArg
->
inLengths_
[
Rank
-
1
]
%
InSrcVectorSize
!=
0
)
return
(
false
);
};
// To improve
bool
valid
=
true
;
static_for
<
0
,
NumReduction
,
1
>
{}([
&
](
auto
I
)
{
if
(
pArg
->
outStridesArray_
[
I
.
value
][
NumOutputDim
-
1
]
!=
1
&&
OutDstVectorSizeSeq
::
At
(
I
)
!=
1
)
valid
=
false
;
if
(
pArg
->
outLengths_
[
NumOutputDim
-
1
]
%
OutDstVectorSizeSeq
::
At
(
I
)
!=
0
)
valid
=
false
;
});
if
(
!
valid
)
return
(
false
);
return
(
true
);
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
NumInputDim
>
inLengths
,
const
std
::
array
<
index_t
,
NumInputDim
>
inStrides
,
const
std
::
array
<
index_t
,
NumOutputDim
>
outLengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumOutputDim
>
,
NumReduction
>
outStridesArray
,
const
std
::
array
<
int
,
NumReduceDim
>
reduceDims
,
const
std
::
array
<
const
void
*
,
NumReduction
>
alphas
,
const
std
::
array
<
const
void
*
,
NumReduction
>
betas
,
const
void
*
in_dev
,
const
std
::
array
<
void
*
,
NumReduction
>
out_dev_buffers
,
const
InElementwiseOperationTuple
in_elementwise_op_tuple
,
const
AccElementwiseOperationTuple
acc_elementwise_op_tuple
)
override
{
return
std
::
make_unique
<
Argument
>
(
inLengths
,
inStrides
,
outLengths
,
outStridesArray
,
reduceDims
,
alphas
,
betas
,
in_dev
,
out_dev_buffers
,
in_elementwise_op_tuple
,
acc_elementwise_op_tuple
);
};
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceMultipleReduceThreadwise<"
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
BlockSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
1
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"InSrcVectorDim_"
<<
InSrcVectorDim
<<
"_InSrcVectorSize_"
<<
InSrcVectorSize
<<
","
;
str
<<
"OutDstVectorSize"
;
static_for
<
0
,
OutDstVectorSizeSeq
::
Size
(),
1
>
{}([
&
](
auto
I
)
{
str
<<
"_"
<<
OutDstVectorSizeSeq
::
At
(
I
);
});
str
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_normalization.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
struct
DeviceNormalization
:
public
BaseOperator
{
// inLengths: input tensor extent(s) from high to low dimension
// inStrides: input tensor stride(s) from high to low dimension
// reduceDims: the dimension(s) the normalization operation is applied
// alpha: typeless pointer in host memory storing the alpha scaling value of type AccDataType
// beta: typeless pointer in host memory storing the beta scaling value of type AccDataType
// in_dev: typeless const pointer in device memory storing the input tensor
// out_dev: typeless pointer in device memory storing the output tensor
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
inLengths
,
const
std
::
vector
<
index_t
>
inStrides
,
const
std
::
vector
<
int
>
reduceDims
,
const
void
*
alpha
,
const
void
*
beta
,
const
void
*
in_dev
,
void
*
out_dev
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
index_t
GetRank
()
const
=
0
;
virtual
index_t
GetNumReduceDim
()
const
=
0
;
};
using
DeviceNormalizationPtr
=
std
::
unique_ptr
<
DeviceNormalization
>
;
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
AccDataType
,
typename
YDataType
,
typename
AccElementwiseOperation
,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceLayernorm
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
AccDataType
epsilon
,
const
void
*
p_x
,
const
void
*
p_gamma
,
const
void
*
p_beta
,
void
*
p_y
,
AccElementwiseOperation
acc_elementwise_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
AccDataType
,
typename
YDataType
,
typename
AccElementwiseOperation
,
index_t
Rank
,
index_t
NumReduceDim
>
using
DeviceLayernormPtr
=
std
::
unique_ptr
<
DeviceLayernorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
YDataType
,
AccElementwiseOperation
,
Rank
,
NumReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_permute.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <cmath>
#include <memory>
#include <type_traits>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumDim
,
typename
InDataType
,
typename
OutDataType
,
typename
ElementwiseOperation
>
struct
DevicePermute
:
BaseOperator
{
using
Lengths
=
std
::
array
<
index_t
,
NumDim
>
;
using
Strides
=
Lengths
;
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
Lengths
&
in_lengths
,
const
Strides
&
in_strides
,
const
Lengths
&
out_lengths
,
const
Strides
&
out_strides
,
const
void
*
in_dev_buffer
,
void
*
out_dev_buffer
,
ElementwiseOperation
elementwise_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_pool2d_fwd.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/utility/reduction_enums.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
ck
::
ReduceTensorOp
ReduceOpId
>
struct
DevicePool2dFwd
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
in_dev
,
void
*
out_dev
,
void
*
out_indices_dev
,
ck
::
index_t
N
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
2
>
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
window_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
window_strides
,
std
::
array
<
ck
::
index_t
,
2
>
input_left_pads
,
std
::
array
<
ck
::
index_t
,
2
>
input_right_pads
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
ck
::
ReduceTensorOp
ReduceOpId
>
using
DevicePool2dFwdPtr
=
std
::
unique_ptr
<
DevicePool2dFwd
<
ReduceOpId
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_pool2d_fwd_nhwc_nhwc.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_pool2d_fwd.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
OuputIndex
,
ck
::
index_t
BlockSize
,
ck
::
index_t
ReduceMThreadClusterSize
,
ck
::
index_t
ReduceKThreadClusterSize
,
ck
::
index_t
ReduceMThreadSliceSize
,
ck
::
index_t
ReduceKThreadSliceSize
,
ck
::
index_t
InSrcOutDstVectorSize
>
struct
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
:
public
DevicePool2dFwd
<
ReduceOpId
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
using
IndexDataType
=
int32_t
;
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
static
constexpr
index_t
InSrcOutDstVectorDim
=
0
;
// for NHWC, the dim C is the vector Dim for both input and output in memory, which is
// not reduced.
static
constexpr
ck
::
index_t
ReduceM_BlockTileSize
=
ReduceMThreadClusterSize
*
ReduceMThreadSliceSize
;
static
constexpr
ck
::
index_t
ReduceK_BlockTileSize
=
ReduceKThreadClusterSize
*
ReduceKThreadSliceSize
;
static
auto
MakeABGridDescriptor_A_M_K_B_M
(
ck
::
index_t
N
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
2
>
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
window_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
window_strides
,
std
::
array
<
ck
::
index_t
,
2
>
input_left_pads
,
std
::
array
<
ck
::
index_t
,
2
>
input_right_pads
)
{
const
index_t
Hi
=
input_spatial_lengths
[
0
];
const
index_t
Wi
=
input_spatial_lengths
[
1
];
const
index_t
Ho
=
output_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
1
];
const
index_t
Y
=
window_spatial_lengths
[
0
];
const
index_t
X
=
window_spatial_lengths
[
1
];
const
index_t
ConvStrideH
=
window_strides
[
0
];
const
index_t
ConvStrideW
=
window_strides
[
1
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InRightPadH
=
input_right_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
1
];
const
index_t
ReduceMRaw
=
N
*
Ho
*
Wo
*
C
;
const
index_t
ReduceMPad
=
math
::
integer_least_multiple
(
ReduceMRaw
,
ReduceM_BlockTileSize
)
-
ReduceMRaw
;
const
index_t
ReduceKRaw
=
Y
*
X
;
const
index_t
ReduceKPad
=
math
::
integer_least_multiple
(
ReduceKRaw
,
ReduceK_BlockTileSize
)
-
ReduceKRaw
;
// A[ReduceM, ReduceK]
const
auto
in_grid_desc_n_hi_wi_c
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Hi
,
Wi
,
C
));
const
auto
in_grid_desc_n_hip_wip_c
=
transform_tensor_descriptor
(
in_grid_desc_n_hi_wi_c
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_grid_desc_n_y_ho_x_wo_c
=
transform_tensor_descriptor
(
in_grid_desc_n_hip_wip_c
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
I1
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
I1
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_grid_desc_reducemraw_reducekraw
=
transform_tensor_descriptor
(
in_grid_desc_n_y_ho_x_wo_c
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
,
C
)),
make_merge_transform
(
make_tuple
(
Y
,
X
))),
make_tuple
(
Sequence
<
0
,
2
,
4
,
5
>
{},
Sequence
<
1
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_grid_desc_reducem_reducek
=
transform_tensor_descriptor
(
in_grid_desc_reducemraw_reducekraw
,
make_tuple
(
make_right_pad_transform
(
ReduceMRaw
,
ReduceMPad
),
make_right_pad_transform
(
ReduceKRaw
,
ReduceKPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// B[ReduceM]
const
auto
out_grid_desc_reducemraw
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
*
C
));
const
auto
out_grid_desc_reducem
=
transform_tensor_descriptor
(
out_grid_desc_reducemraw
,
make_tuple
(
make_right_pad_transform
(
ReduceMRaw
,
ReduceMPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
make_tuple
(
in_grid_desc_reducem_reducek
,
out_grid_desc_reducem
);
}
using
ABGridDescs
=
decltype
(
MakeABGridDescriptor_A_M_K_B_M
(
1
,
1
,
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}));
using
AGridDesc_M_K
=
remove_cvref_t
<
decltype
(
ABGridDescs
{}[
I0
])
>
;
using
BGridDesc_M
=
remove_cvref_t
<
decltype
(
ABGridDescs
{}[
I1
])
>
;
// TODO
struct
Argument
:
public
BaseArgument
{
Argument
(
const
InDataType
*
p_in_dev
,
OutDataType
*
p_out_dev
,
int
*
p_out_indices_dev
,
ck
::
index_t
N
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
2
>&
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>&
window_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>&
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>&
window_strides
,
std
::
array
<
ck
::
index_t
,
2
>&
input_left_pads
,
std
::
array
<
ck
::
index_t
,
2
>&
input_right_pads
)
:
p_in_dev_
{
p_in_dev
},
p_out_dev_
{
p_out_dev
},
p_out_indices_dev_
{
p_out_indices_dev
},
a_grid_desc_m_k_
{},
b_grid_desc_m_
{}
{
const
auto
descs
=
MakeABGridDescriptor_A_M_K_B_M
(
N
,
C
,
input_spatial_lengths
,
window_spatial_lengths
,
output_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
a_grid_desc_m_k_
=
descs
[
I0
];
b_grid_desc_m_
=
descs
[
I1
];
invariant_lowest_length_
=
C
;
reduce_lowest_length_
=
window_spatial_lengths
[
1
];
int32_t
reduceLength
=
window_spatial_lengths
[
0
]
*
window_spatial_lengths
[
1
];
std
::
tie
(
in_element_op_
,
acc_element_op_
)
=
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
reduceLength
);
}
const
InDataType
*
p_in_dev_
;
OutDataType
*
p_out_dev_
;
int
*
p_out_indices_dev_
;
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_M
b_grid_desc_m_
;
InElementwiseOperation
in_element_op_
;
AccElementwiseOperation
acc_element_op_
;
// for checking vector load/store
ck
::
index_t
invariant_lowest_length_
;
ck
::
index_t
reduce_lowest_length_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
using
gridwise_reduce
=
GridwiseReduction_mk_to_m_threadwise
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
AGridDesc_M_K
,
BGridDesc_M
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
false
,
// propagate_nan
BlockSize
,
ReduceMThreadSliceSize
,
ReduceKThreadSliceSize
,
InSrcOutDstVectorDim
,
InSrcOutDstVectorSize
,
InSrcOutDstVectorSize
>
;
const
auto
kernel
=
kernel_reduce_threadwise
<
gridwise_reduce
,
OuputIndex
,
false
,
// don't have index input
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
AGridDesc_M_K
,
BGridDesc_M
,
InElementwiseOperation
,
AccElementwiseOperation
>
;
ck
::
index_t
ReduceM
=
arg
.
a_grid_desc_m_k_
.
GetLength
(
I0
);
const
index_t
grid_size
=
(
ReduceM
/
ReduceM_BlockTileSize
);
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_m_
,
arg
.
in_element_op_
,
arg
.
acc_element_op_
,
float
(
1
),
arg
.
p_in_dev_
,
nullptr
,
float
(
0
),
arg
.
p_out_dev_
,
arg
.
p_out_indices_dev_
);
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
->
invariant_lowest_length_
%
InSrcOutDstVectorSize
!=
0
)
{
return
(
false
);
}
return
(
true
);
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_in_dev
,
void
*
p_out_dev
,
void
*
p_out_indices_dev
,
ck
::
index_t
N
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
2
>
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
window_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
window_strides
,
std
::
array
<
ck
::
index_t
,
2
>
input_left_pads
,
std
::
array
<
ck
::
index_t
,
2
>
input_right_pads
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
InDataType
*>
(
p_in_dev
),
static_cast
<
OutDataType
*>
(
p_out_dev
),
static_cast
<
int
*>
(
p_out_indices_dev
),
N
,
C
,
input_spatial_lengths
,
window_spatial_lengths
,
output_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<"
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
ReduceMThreadClusterSize
<<
"_S"
<<
ReduceMThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
ReduceKThreadClusterSize
<<
"_S"
<<
ReduceKThreadSliceSize
<<
","
;
str
<<
"InSrcOutDstVectorSize_"
<<
InSrcOutDstVectorSize
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
deps/cget/pkg/ROCmSoftwarePlatform__composable_kernel/install/include/ck/tensor_operation/gpu/device/device_reduce.hpp
0 → 100644
View file @
78a300ff
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include <iostream>
#include "ck/utility/common_header.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
>
struct
DeviceReduce
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
inLengths
,
const
std
::
vector
<
index_t
>
inStrides
,
const
std
::
vector
<
index_t
>
outLengths
,
const
std
::
vector
<
index_t
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
const
void
*
in_index_dev
,
void
*
out_dev
,
void
*
out_index_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
>
using
DeviceReducePtr
=
std
::
unique_ptr
<
DeviceReduce
<
InElementwiseOperation
,
AccElementwiseOperation
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
…
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment