Commit 7702c20d authored by Paul's avatar Paul
Browse files

Merge

parents c362e7fa 9afce86d
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "test.hpp"
#include <migraphx/make_op.hpp>
#include <migraphx/program.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/ref/target.hpp>
#include <migraphx/target_assignments.hpp>
migraphx::program create_program()
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3}};
auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
auto z = mm->add_parameter("z", s);
auto diff = mm->add_instruction(migraphx::make_op("div"), x, y);
mm->add_instruction(migraphx::make_op("div"), diff, z);
return p;
}
TEST_CASE(is_supported)
{
auto p = create_program();
auto targets = migraphx::get_targets();
EXPECT(!targets.empty());
auto first_target = targets[0];
auto t = migraphx::make_target(first_target);
const auto assignments = p.get_target_assignments({t});
for(const auto& [ins, target] : assignments)
{
(void)ins;
EXPECT(target == first_target);
}
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <iostream>
#include <vector>
#include <hip/hip_runtime_api.h>
#include <migraphx/gpu/target.hpp>
#include <migraphx/verify.hpp>
#include <test.hpp>
#include <basic_ops.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/make_op.hpp>
#define MIGRAPHX_HIP_ASSERT(x) (EXPECT(x == hipSuccess))
TEST_CASE(host_same_buffer_copy)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ss{migraphx::shape::float_type, {4, 2}};
auto a = mm->add_parameter("a", ss);
auto b = mm->add_parameter("b", ss);
auto aa = mm->add_instruction(migraphx::make_op("add"), a, a);
auto gpu_out = mm->add_instruction(migraphx::make_op("hip::copy_from_gpu"), aa);
auto stream_sync = mm->add_instruction(migraphx::make_op("hip::sync_stream"), gpu_out);
auto pass = mm->add_instruction(unary_pass_op{}, stream_sync);
auto alloc = mm->add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(ss)}}));
auto gpu_in = mm->add_instruction(migraphx::make_op("hip::copy_to_gpu"), pass, alloc);
auto aab = mm->add_instruction(migraphx::make_op("add"), gpu_in, b);
mm->add_return({aab});
migraphx::parameter_map pp;
std::vector<float> a_vec(ss.elements(), -1);
std::vector<float> b_vec(ss.elements(), 2);
std::vector<float> c_vec(ss.elements(), 0);
pp["a"] = migraphx::argument(ss, a_vec.data());
pp["b"] = migraphx::argument(ss, b_vec.data());
std::vector<float> gpu_result;
migraphx::target gpu_t = migraphx::gpu::target{};
migraphx::compile_options options;
options.offload_copy = true;
p.compile(gpu_t, options);
auto result = p.eval(pp).back();
std::vector<float> results_vector(ss.elements(), -1);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(c_vec, results_vector));
}
TEST_CASE(arguments_lifetime)
{
auto use_on_gpu = [](const migraphx::argument& arg, int c) {
auto* arg_ptr = arg.data();
MIGRAPHX_HIP_ASSERT(hipSetDevice(0));
MIGRAPHX_HIP_ASSERT(hipMemset(arg_ptr, c, arg.get_shape().bytes()));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
return;
};
auto f = [use_on_gpu](const migraphx::argument& input) {
auto a = migraphx::gpu::register_on_gpu(input);
auto s = a.get_shape();
{
auto b = migraphx::gpu::register_on_gpu(input);
use_on_gpu(b, 0);
std::vector<float> expected_b(s.elements(), 0);
auto gold = migraphx::argument(s, expected_b.data());
}
use_on_gpu(a, 1);
return true;
};
migraphx::shape ss{migraphx::shape::float_type, {4, 2}};
std::vector<float> x_data(ss.elements(), -1);
migraphx::argument x{ss, x_data.data()};
EXPECT(f(x));
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/write_literals.hpp>
#include <migraphx/ref/target.hpp>
#include <migraphx/module.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/verify_args.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/functional.hpp>
#include <test.hpp>
using migraphx::trim;
// m test_gpu_mlir && ./bin/test_gpu_mlir
struct mlir_gpu_target : migraphx::gpu::target
{
std::string name() const { return "mlir"; }
std::vector<migraphx::pass> get_passes(migraphx::context& gctx,
const migraphx::compile_options&) const
{
auto& ctx = migraphx::any_cast<migraphx::gpu::context>(gctx);
return {migraphx::gpu::write_literals{&ctx}};
}
};
std::string encode(const std::string& s)
{
std::stringstream ss;
bool prespace = false;
for(auto c : s)
{
if(std::isspace(c) != 0)
{
if(not prespace)
ss << " ";
prespace = true;
}
else if(std::isprint(c) != 0)
{
ss << c;
prespace = false;
}
}
return migraphx::trim(ss.str());
}
migraphx::program create_program_from_mlir(const migraphx::module& mmlir)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto names = mmlir.get_parameter_names();
std::vector<migraphx::instruction_ref> inputs;
std::transform(names.begin(), names.end(), std::back_inserter(inputs), [&](const auto& name) {
return mm->add_parameter(name, mmlir.get_parameter_shape(name));
});
std::sort(inputs.begin(), inputs.end(), migraphx::by(std::less<>{}, [](auto ins) {
return to_string(ins->get_operator());
}));
inputs.push_back(mm->add_parameter("output", mmlir.get_output_shapes().front()));
migraphx::gpu::context ctx;
migraphx::gpu::insert_mlir(*mm, mm->end(), compile_mlir(ctx, mmlir), inputs);
return p;
}
migraphx::parameter_map generate_params(const migraphx::program& p)
{
migraphx::parameter_map m;
std::size_t i = 0;
for(auto&& x : p.get_parameter_shapes())
{
// m[x.first] = migraphx::fill_argument(x.second, 1);
m[x.first] = migraphx::generate_argument(x.second, i++);
}
return m;
}
migraphx::argument run_gpu(migraphx::program p, const migraphx::parameter_map& inputs)
{
mlir_gpu_target t;
p.compile(t);
migraphx::parameter_map m;
for(auto&& input : inputs)
{
m[input.first] = t.copy_to(input.second);
}
for(auto&& x : p.get_parameter_shapes())
{
if(m.count(x.first) == 0)
{
m[x.first] = t.allocate(x.second);
}
}
return t.copy_from(p.eval(m).front());
}
migraphx::argument run_ref(migraphx::program p, const migraphx::parameter_map& inputs)
{
p.compile(migraphx::ref::target{});
return p.eval(inputs).front();
}
bool verify_mlir(const migraphx::module& mmlir)
{
migraphx::program ref;
ref.get_main_module()->insert_instructions(ref.get_main_module()->end(), &mmlir);
auto inputs = generate_params(ref);
auto mlir = create_program_from_mlir(mmlir);
return migraphx::verify_args("mlir", run_ref(ref, inputs), run_gpu(mlir, inputs));
}
TEST_CASE(conv)
{
const std::string mlir_output = R"__migraphx__(
module {
func @main(%arg0: tensor<2x8x3x3xf32>, %arg1: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} {
%0 = migraphx.convolution(%arg1, %arg0) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1], use_dynamic_same_auto_pad = 0 : i64} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
return %0 : tensor<1x2x2x2xf32>
}
}
)__migraphx__";
migraphx::module m;
auto x = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}});
auto w = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}});
auto conv = m.add_instruction(migraphx::make_op("convolution"), x, w);
m.add_return({conv});
auto s = migraphx::gpu::dump_mlir(m);
// Skip test if MLIR is not enabled
if(s.empty())
return;
CHECK(encode(s) == encode(mlir_output));
EXPECT(verify_mlir(m));
}
TEST_CASE(conv_add_relu)
{
const std::string mlir_output = R"__migraphx__(
module {
func @main(%arg0: tensor<1x2x2x2xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} {
%0 = migraphx.convolution(%arg2, %arg1) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1], use_dynamic_same_auto_pad = 0 : i64} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
%1 = migraphx.add(%0, %arg0) : (tensor<1x2x2x2xf32>, tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
%2 = migraphx.relu(%1) : (tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
return %2 : tensor<1x2x2x2xf32>
}
}
)__migraphx__";
migraphx::module m;
auto x = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}});
auto w = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}});
auto b = m.add_parameter("b", {migraphx::shape::float_type, {1, 2, 2, 2}});
auto conv = m.add_instruction(migraphx::make_op("convolution"), x, w);
auto add = m.add_instruction(migraphx::make_op("add"), conv, b);
auto relu = m.add_instruction(migraphx::make_op("relu"), add);
m.add_return({relu});
auto s = migraphx::gpu::dump_mlir(m);
// Skip test if MLIR is not enabled
if(s.empty())
return;
CHECK(encode(s) == encode(mlir_output));
EXPECT(verify_mlir(m));
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
...@@ -108,15 +108,7 @@ struct function ...@@ -108,15 +108,7 @@ struct function
}; };
template <class Stream, class Iterator> template <class Stream, class Iterator>
inline Stream& stream_range(Stream& s, Iterator start, Iterator last) Stream& stream_range(Stream& s, Iterator start, Iterator last);
{
if(start != last)
{
s << *start;
std::for_each(std::next(start), last, [&](auto&& x) { s << ", " << x; });
}
return s;
}
template <class Stream> template <class Stream>
inline Stream& operator<<(Stream& s, std::nullptr_t) inline Stream& operator<<(Stream& s, std::nullptr_t)
...@@ -136,6 +128,17 @@ inline auto operator<<(Stream& s, const Range& v) -> decltype(stream_range(s, v. ...@@ -136,6 +128,17 @@ inline auto operator<<(Stream& s, const Range& v) -> decltype(stream_range(s, v.
return s; return s;
} }
template <class Stream, class Iterator>
inline Stream& stream_range(Stream& s, Iterator start, Iterator last)
{
if(start != last)
{
s << *start;
std::for_each(std::next(start), last, [&](auto&& x) { s << ", " << x; });
}
return s;
}
template <class T> template <class T>
const T& get_value(const T& x) const T& get_value(const T& x)
{ {
......
...@@ -626,6 +626,46 @@ def constant_scalar_test(): ...@@ -626,6 +626,46 @@ def constant_scalar_test():
return ([node], [], [y]) return ([node], [], [y])
@onnx_test
def constant_empty_scalar_int64_test():
x = np.array([]).astype(np.int64)
y = helper.make_tensor_value_info('0', TensorProto.INT64, [0])
node = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=['0'],
value=onnx.helper.make_tensor(
name='one_element_tensor',
data_type=TensorProto.INT64,
dims=x.shape,
vals=x.flatten().astype(np.int64),
),
)
return ([node], [], [y])
@onnx_test
def constant_one_val_int64_test():
x = np.array([1]).astype(np.int64)
y = helper.make_tensor_value_info('0', TensorProto.INT64, [0])
node = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=['0'],
value=onnx.helper.make_tensor(
name='empty_tensor',
data_type=TensorProto.INT64,
dims=x.shape,
vals=x.flatten().astype(np.int64),
),
)
return ([node], [], [y])
@onnx_test @onnx_test
def const_of_shape_empty_input_test(): def const_of_shape_empty_input_test():
tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1], tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
...@@ -851,6 +891,96 @@ def conv_bn_relu_maxpool_test(): ...@@ -851,6 +891,96 @@ def conv_bn_relu_maxpool_test():
return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out]) return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
@onnx_test
def conv_dynamic_batch_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 5, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
[None, 1, 3, 3])
node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
return ([node], [x, y], [out])
@onnx_test
def conv_dynamic_img_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[1, 3, None, None])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
[1, 1, None, None])
node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
return ([node], [x, y], [out])
@onnx_test
def conv_dynamic_weights_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
[1, 3, None, None])
out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
[1, 1, None, None])
node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
return ([node], [x, y], [out])
@onnx_test
def conv_dynamic_img_and_weights_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[1, 3, None, None])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
[1, 3, None, None])
out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
[1, 1, None, None])
node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
return ([node], [x, y], [out])
@onnx_test
def conv_dynamic_batch_same_upper_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 5, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 5])
node = onnx.helper.make_node('Conv',
inputs=['0', '1'],
outputs=['2'],
auto_pad='SAME_UPPER')
return ([node], [x, y], [out])
@onnx_test
def conv_dynamic_img_same_upper_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[1, 3, None, None])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
[1, 1, None, None])
node = onnx.helper.make_node('Conv',
inputs=['0', '1'],
outputs=['2'],
auto_pad='SAME_UPPER')
return ([node], [x, y], [out])
@onnx_test
def conv_dynamic_kernel_same_lower_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
[1, 3, None, None])
out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 5])
node = onnx.helper.make_node('Conv',
inputs=['0', '1'],
outputs=['2'],
auto_pad='SAME_LOWER')
return ([node], [x, y], [out])
@onnx_test @onnx_test
def conv_relu_maxpool_test(): def conv_relu_maxpool_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32]) x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
...@@ -2496,6 +2626,62 @@ def instance_norm_test(): ...@@ -2496,6 +2626,62 @@ def instance_norm_test():
return ([node], [x, scale, bias], [y]) return ([node], [x, scale, bias], [y])
@onnx_test
def instance_norm_half_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3, 3])
scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
y = helper.make_tensor_value_info('3', TensorProto.FLOAT16, [1, 2, 3, 3])
node = onnx.helper.make_node('InstanceNormalization',
inputs=['0', '1', '2'],
outputs=['3'])
return ([node], [x, scale, bias], [y])
@onnx_test
def instance_norm_type_mismatch_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
node = onnx.helper.make_node('InstanceNormalization',
inputs=['0', '1', '2'],
outputs=['3'])
return ([node], [x, scale, bias], [y])
@onnx_test
def instance_norm_invalid_type_test():
x = helper.make_tensor_value_info('0', TensorProto.INT32, [1, 2, 3, 3])
scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
node = onnx.helper.make_node('InstanceNormalization',
inputs=['0', '1', '2'],
outputs=['3'])
return ([node], [x, scale, bias], [y])
@onnx_test
def instance_norm_nonbroadcastable_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4])
bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
node = onnx.helper.make_node('InstanceNormalization',
inputs=['0', '1', '2'],
outputs=['3'])
return ([node], [x, scale, bias], [y])
@onnx_test @onnx_test
def instance_norm_val_test(): def instance_norm_val_test():
x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]], x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
...@@ -3086,7 +3272,7 @@ def max_test(): ...@@ -3086,7 +3272,7 @@ def max_test():
a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3]) a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3]) b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3]) c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3]) y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
node = onnx.helper.make_node( node = onnx.helper.make_node(
'Max', 'Max',
...@@ -3220,7 +3406,7 @@ def min_test(): ...@@ -3220,7 +3406,7 @@ def min_test():
a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3]) a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3]) b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3]) c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3]) y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
node = onnx.helper.make_node( node = onnx.helper.make_node(
'Min', 'Min',
...@@ -3231,6 +3417,89 @@ def min_test(): ...@@ -3231,6 +3417,89 @@ def min_test():
return ([node], [a, b, c], [y]) return ([node], [a, b, c], [y])
@onnx_test
def mod_test():
a = helper.make_tensor_value_info('0', TensorProto.INT32, [3, 3, 3])
b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
y = helper.make_tensor_value_info('2', TensorProto.INT32, [3, 3, 3])
node = onnx.helper.make_node('Mod', inputs=['0', '1'], outputs=['2'])
return ([node], [a, b], [y])
@onnx_test
def mod_test_half():
a = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [3, 3, 3])
b = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [3, 3, 3])
y = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [3, 3, 3])
node = onnx.helper.make_node('Mod', inputs=['0', '1'], outputs=['2'])
return ([node], [a, b], [y])
@onnx_test
def mod_test_different_dtypes():
a = helper.make_tensor_value_info('0', TensorProto.INT16, [3, 3, 3])
b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
y = helper.make_tensor_value_info('2', TensorProto.INT32, [3, 3, 3])
node = onnx.helper.make_node(
'Mod',
inputs=['0', '1'],
outputs=['2'],
)
return ([node], [a, b], [y])
@onnx_test
def mod_test_fmod():
a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3, 3])
b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3, 3])
y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 3, 3])
node = onnx.helper.make_node(
'Mod',
inputs=['0', '1'],
outputs=['2'],
fmod=1 #fmod flag = 1
)
return ([node], [a, b], [y])
@onnx_test
def mod_test_fmod_half():
a = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [3, 3, 3])
b = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [3, 3, 3])
y = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [3, 3, 3])
node = onnx.helper.make_node('Mod',
inputs=['0', '1'],
outputs=['2'],
fmod=1)
return ([node], [a, b], [y])
@onnx_test
def mod_test_fmod_different_dtypes():
a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3, 3])
b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 3, 3])
node = onnx.helper.make_node(
'Mod',
inputs=['0', '1'],
outputs=['2'],
fmod=1 #fmod flag = 1
)
return ([node], [a, b], [y])
@onnx_test @onnx_test
def multinomial_test(): def multinomial_test():
sample_size = 10 sample_size = 10
......
instance_norm_half_test:
#
0
1
23"InstanceNormalizationinstance_norm_half_testZ
0





Z
1


Z
2


b
3





B
\ No newline at end of file
instance_norm_invalid_type_test:
#
0
1
23"InstanceNormalizationinstance_norm_invalid_type_testZ
0




Z
1

Z
2

b
3




B
\ No newline at end of file
#instance_norm_nonbroadcastable_test:
#
0
1
23"InstanceNormalization#instance_norm_nonbroadcastable_testZ
0




Z
1

Z
2

b
3




B
\ No newline at end of file
 instance_norm_type_mismatch_test:
#
0
1
23"InstanceNormalization instance_norm_type_mismatch_testZ
0




Z
1


Z
2


b
3




B
\ No newline at end of file
 max-example:e max_test:a
 
0 0
1 1
23"Max test-dropoutZ 23"Maxmax_testZ
0 0
 
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
 
b b
2 3
 
B B
\ No newline at end of file \ No newline at end of file
 min-example:e min_test:a
 
0 0
1 1
23"Min test-dropoutZ 23"Minmin_testZ
0 0
 
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
 
b b
2 3
 
B B
\ No newline at end of file \ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment