Unverified Commit 70d9faf7 authored by Chris Austen's avatar Chris Austen Committed by GitHub
Browse files

Merge branch 'develop' into mi200

parents a56c531c a60bdb67
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -37,20 +37,22 @@ namespace op { ...@@ -37,20 +37,22 @@ namespace op {
* Static allocate: * Static allocate:
* No inputs: `allocate()` * No inputs: `allocate()`
* `this.s` attribute set to the static output shape of the buffer. * `this.s` attribute set to the static output shape of the buffer.
* `this.s` attribute can be set to a dynamic output shape; however this will allocate the maximum
* buffer size for that case
* *
* Dynamic allocate: * Dynamic allocate:
* One input: `allocate(output_dims)` * One input: `allocate(output_dims)`
* `output_dims` are the output buffer dimensions and has a static shape. * `output_dims` are the output buffer dimensions and has a static shape.
* Either `this.s` or `this.buf_type` must be set to calculate the dynamic output shape at compute * Either `this.s` or `this.buf_type` (but not both) must be set to calculate the dynamic output
* time. If `this.buf_type` is set, the compute_shape() of allocate at compile time will have * shape at compute time. If `this.buf_type` is set, the compute_shape() of allocate at compile time
* dynamic_dimensions from {0, max_int} with rank = output_dims.ndim(). If `this.s` is set then the * will have dynamic_dimensions from {0, max_int} with rank = output_dims.ndim(). If `this.s` is set
* compute_shape() will output `this.s`; `this.s` should be a dynamic shape. * then the compute_shape() will output `this.s`; `this.s` should be a dynamic shape.
*/ */
struct allocate struct allocate
{ {
shape s{}; optional<shape> s;
// for dynamic allocate to set the buffer type // for dynamic allocate to set the buffer type
shape::type_t buf_type = shape::half_type; optional<shape::type_t> buf_type;
template <class Self, class F> template <class Self, class F>
static auto reflect(Self& self, F f) static auto reflect(Self& self, F f)
...@@ -62,8 +64,12 @@ struct allocate ...@@ -62,8 +64,12 @@ struct allocate
shape compute_shape(const std::vector<shape>& inputs) const shape compute_shape(const std::vector<shape>& inputs) const
{ {
if(s != shape()) if(s.has_value())
{ {
if(buf_type.has_value())
{
MIGRAPHX_THROW("ALLOCATE: shape and buf_type attributes both set");
}
if(inputs.size() == 1) if(inputs.size() == 1)
{ {
migraphx::check_shapes{inputs, *this, false}.only_dims(1); migraphx::check_shapes{inputs, *this, false}.only_dims(1);
...@@ -72,16 +78,20 @@ struct allocate ...@@ -72,16 +78,20 @@ struct allocate
{ {
migraphx::check_shapes{inputs, *this, false}.has(0); migraphx::check_shapes{inputs, *this, false}.has(0);
} }
return s; return s.value();
} }
else else
{ {
if(not buf_type.has_value())
{
MIGRAPHX_THROW("ALLOCATE: shape and buf_type attributes both not set");
}
migraphx::check_shapes{inputs, *this, false}.has(1).only_dims(1); migraphx::check_shapes{inputs, *this, false}.has(1).only_dims(1);
const auto& out_dims = inputs.at(0); const auto& out_dims = inputs.at(0);
std::size_t max_val = std::numeric_limits<std::size_t>::max(); std::size_t max_val = std::numeric_limits<std::size_t>::max();
std::vector<shape::dynamic_dimension> dyn_dims(out_dims.lens().at(0), std::vector<shape::dynamic_dimension> dyn_dims(out_dims.lens().at(0),
shape::dynamic_dimension{0, max_val}); shape::dynamic_dimension{0, max_val});
return {buf_type, dyn_dims}; return {buf_type.value(), dyn_dims};
} }
} }
argument compute(const shape& output_shape, const std::vector<argument>& args) const argument compute(const shape& output_shape, const std::vector<argument>& args) const
...@@ -94,7 +104,11 @@ struct allocate ...@@ -94,7 +104,11 @@ struct allocate
{ {
std::vector<std::size_t> output_dims(output_shape.ndim()); std::vector<std::size_t> output_dims(output_shape.ndim());
args.at(0).visit([&](auto a) { output_dims.assign(a.begin(), a.end()); }); args.at(0).visit([&](auto a) { output_dims.assign(a.begin(), a.end()); });
return argument{shape{buf_type, output_dims}}; if(s)
{
return argument{shape{s->type(), output_dims}};
}
return argument{shape{buf_type.value(), output_dims}};
} }
} }
}; };
......
...@@ -29,6 +29,7 @@ ...@@ -29,6 +29,7 @@
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/value.hpp> #include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp> #include <migraphx/dyn_output.hpp>
#include <migraphx/par.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -95,7 +96,7 @@ struct binary : op_name<Derived> ...@@ -95,7 +96,7 @@ struct binary : op_name<Derived>
{ {
argument result{dyn_out.computed_shape}; argument result{dyn_out.computed_shape};
visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) { visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
std::transform(input1.begin(), par_transform(input1.begin(),
input1.end(), input1.end(),
input2.begin(), input2.begin(),
output.begin(), output.begin(),
......
...@@ -72,8 +72,8 @@ struct dequantizelinear ...@@ -72,8 +72,8 @@ struct dequantizelinear
visit_all(x, x_zero_point)([&](auto input, auto zero_pts) { visit_all(x, x_zero_point)([&](auto input, auto zero_pts) {
visit_all(result, x_scale)([&](auto output, auto scales) { visit_all(result, x_scale)([&](auto output, auto scales) {
par_for(output_shape.elements(), [&](auto i) { par_for(output_shape.elements(), [&](auto i) {
output[i] = static_cast<double>(static_cast<int64_t>(input[i]) - output[i] = static_cast<double>(static_cast<double>(input[i]) -
static_cast<int64_t>(zero_pts[i])) * static_cast<double>(zero_pts[i])) *
scales[i]; scales[i];
}); });
}); });
......
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -21,31 +21,32 @@ ...@@ -21,31 +21,32 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#ifndef MIGRAPHX_GUARD_RTGLIB_INT8_CONV_PACK_HPP #ifndef MIGRAPHX_GUARD_OPERATORS_ISINF_HPP
#define MIGRAPHX_GUARD_RTGLIB_INT8_CONV_PACK_HPP #define MIGRAPHX_GUARD_OPERATORS_ISINF_HPP
#include <migraphx/argument.hpp> #include <migraphx/op/unary.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <utility>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace gpu { namespace op {
struct context; struct isinf : unary<isinf>
struct miopen_int8_conv_pack
{ {
std::string name() const { return "gpu::int8_conv_pack"; } auto apply() const
shape compute_shape(const std::vector<shape>& inputs) const; {
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const; return [&](auto x) { return std::isinf(static_cast<double>(x)); };
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const }
std::string name() const { return "isinf"; }
shape compute_shape(std::vector<shape> inputs) const
{ {
return shapes.size() - 1; return unary<isinf>::compute_shape(std::move(inputs)).with_type(shape::bool_type);
} }
}; };
} // namespace gpu } // namespace op
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
......
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -21,11 +21,52 @@ ...@@ -21,11 +21,52 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
/**
* * Multinomial or categorical distribution. Performs a sampling of random input
* and returns a count of
* each category, or bucket. This does not require the standard multinomial
* distribution but instead takes a probability distribution, i.e. cumulative
* distribution function (CDF) as its first input.
*
* Inputs: args[0] - a tensor of probabilities for each category. Values are
* cumulative density function
* totals as provided by operation prefix_scan_sum. Values are
* cumulative probabilities (i.e. start with any set of numbers > 0
* and then apply prefix_scan_sum). Values do not need to be
* normalized to sum to 1; this is done in runtime computation.
*
* This input has Rank 2. Dimension 0 is batch #, so that there can be
* a different CDF for each iteration in the batch. The size of dimension
* 1 is the number of categories.
*
* args[1] - a tensor of random numbers. The last dimension is the sample
* size, i.e. the number of
* random samples in each iteration of the batch. Nominally
* has two dimensions where the first dimension is batch size, but
* any reshaping such that the total
* number of elements is (batch_size * sample_size) is legal.
*
* Values as created by a std::mt19937 like this:
*
* size_t sample_size = 100000;
* float seed = 0.0f;
* std::mt19937 gen(seed);
* std::uniform_real_distribution<> dis(0.0, 1.0);
* std::vector<float> rand_samples(sample_size);
* std::generate(rand_samples.begin(), rand_samples.end(), [&]() { return
* dis(gen); });
*
* Output: A 2D vector of category each input. Dimensions are (Input 1[first], Input
2[last]).
*
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_MULTINOMIAL_HPP #ifndef MIGRAPHX_GUARD_OPERATORS_MULTINOMIAL_HPP
#define MIGRAPHX_GUARD_OPERATORS_MULTINOMIAL_HPP #define MIGRAPHX_GUARD_OPERATORS_MULTINOMIAL_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/par_for.hpp> #include <migraphx/par_for.hpp>
#include <migraphx/reflect.hpp> #include <migraphx/reflect.hpp>
#include <random> #include <random>
...@@ -47,22 +88,35 @@ struct multinomial ...@@ -47,22 +88,35 @@ struct multinomial
std::string name() const { return "multinomial"; } std::string name() const { return "multinomial"; }
shape compute_shape(std::vector<shape> inputs) const shape compute_shape(std::vector<shape> inputs) const
{ {
check_shapes{inputs, *this}.has(2).only_dims(2); check_shapes{inputs, *this, true}.has(2).only_dims(2);
size_t sample_size = inputs.back().lens().back();
if(not contains({shape::int32_type, shape::int64_type}, dtype)) if(inputs.back().ndim() < 1)
MIGRAPHX_THROW( MIGRAPHX_THROW("Multinomial: Second input shape (sample) has no dimensions");
"Multinomial: Invalid output type. Valid types are int32_type and int64_type."); if(dtype == shape::bool_type)
MIGRAPHX_THROW("Multinomial: boolean output type invalid.");
return {dtype, {inputs.front().lens().front(), sample_size}}; // Output takes one dimension from each of the two input shapes. If they are both fixed,
// return a static shape
if((not inputs.front().dynamic()) or (inputs.front().dyn_dims().front().is_fixed()))
{
if((not inputs.back().dynamic()) or (inputs.back().dyn_dims().back().is_fixed()))
{
size_t batch = {inputs.front().max_lens().front()};
size_t sample_size{inputs.back().max_lens().back()};
return {dtype, {batch, sample_size}};
}
}
return {dtype,
{inputs.front().to_dynamic().dyn_dims().front(),
inputs.back().to_dynamic().dyn_dims().back()}};
} }
argument compute(const shape& output_shape, std::vector<argument> args) const argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{ {
argument result{output_shape}; argument result{dyn_out.computed_shape};
size_t batch_size = output_shape.lens().front(); size_t batch_size = dyn_out.computed_shape.lens().front();
size_t class_size = args[0].get_shape().lens().back(); size_t class_size = args[0].get_shape().lens().back();
size_t sample_size = output_shape.lens().back(); size_t sample_size = dyn_out.computed_shape.lens().back();
visit_all(args[0], args[1])([&](auto cdf, auto dist) { visit_all(args[0], args[1])([&](auto cdf, auto dist) {
result.visit([&](auto output) { result.visit([&](auto output) {
...@@ -70,13 +124,16 @@ struct multinomial ...@@ -70,13 +124,16 @@ struct multinomial
auto idx = args[1].get_shape().multi(i); auto idx = args[1].get_shape().multi(i);
auto cdf_begin = cdf.begin() + (idx[0] * class_size); auto cdf_begin = cdf.begin() + (idx[0] * class_size);
auto cdf_end = cdf_begin + class_size; auto cdf_end = cdf_begin + class_size;
// std::upper_bound returns an iterator to the bucket the value belongs in,
// when normalized by the probability distribution dist
auto sample_iter = auto sample_iter =
std::upper_bound(cdf_begin, cdf_end, dist[i] * *(std::prev(cdf_end))); std::upper_bound(cdf_begin, cdf_end, dist[i] * *(std::prev(cdf_end)));
// convert iterator to an integer index
output[i] = std::distance(cdf_begin, sample_iter); output[i] = std::distance(cdf_begin, sample_iter);
}); });
}); });
}); });
return result; return result;
} }
}; };
......
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -21,25 +21,29 @@ ...@@ -21,25 +21,29 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#ifndef MIGRAPHX_GUARD_RTGLIB_CPU_GEMM_HPP #ifndef MIGRAPHX_GUARD_OPERATORS_NEARBYINT_HPP
#define MIGRAPHX_GUARD_RTGLIB_CPU_GEMM_HPP #define MIGRAPHX_GUARD_OPERATORS_NEARBYINT_HPP
#include <migraphx/argument.hpp> #include <migraphx/op/unary.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <fenv.h>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace ref { namespace op {
struct nearbyint : unary<nearbyint>
void migemm( {
const argument& c_arg, const argument& a_arg, const argument& b_arg, float alpha, float beta); auto apply() const
void migemm(const argument& c_arg, {
const argument& a_arg, return [](auto x) {
const argument& b_arg, auto rounding_mode = fegetround();
int32_t alpha, fesetround(FE_TONEAREST);
int32_t beta); return std::nearbyint(x);
fesetround(rounding_mode);
} // namespace ref };
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
......
...@@ -40,6 +40,8 @@ namespace op { ...@@ -40,6 +40,8 @@ namespace op {
* 2. use_rank (default) vs use_len: * 2. use_rank (default) vs use_len:
* `use_rank` sets the max value/index of the attribute as the rank of lens. * `use_rank` sets the max value/index of the attribute as the rank of lens.
* `use_lens` sets the max value/index as the corresponding value in lens at the axes index. * `use_lens` sets the max value/index as the corresponding value in lens at the axes index.
* Uses the dynamic_dimension.max value for dynamic shapes. Returns the original vector
* (no normalization) if any of dynamic_dimension[axes] are not fixed.
* 3. `clip_min` vs. `not_clip_min` (default): * 3. `clip_min` vs. `not_clip_min` (default):
* Clip values less than the minimum to the minimum or not. * Clip values less than the minimum to the minimum or not.
* 4. `include_min` vs. `exclude_min` (default): * 4. `include_min` vs. `exclude_min` (default):
......
...@@ -70,7 +70,8 @@ struct pooling ...@@ -70,7 +70,8 @@ struct pooling
// 2 smaller than the input tensor rank (NCHW layout) // 2 smaller than the input tensor rank (NCHW layout)
std::vector<std::size_t> lengths = {1, 1}; std::vector<std::size_t> lengths = {1, 1};
// Dilations are not supported at this time. // Spacing between the elements of the pooling kernel. Must be the same ndim as lengths.
std::vector<std::size_t> dilations = {1, 1};
// ceiling mode is a flag affecting output size // ceiling mode is a flag affecting output size
// or equivalently, placements of the pooling kernel. // or equivalently, placements of the pooling kernel.
...@@ -99,6 +100,7 @@ struct pooling ...@@ -99,6 +100,7 @@ struct pooling
f(self.padding_mode, "padding_mode"), f(self.padding_mode, "padding_mode"),
f(self.stride, "stride"), f(self.stride, "stride"),
f(self.lengths, "lengths"), f(self.lengths, "lengths"),
f(self.dilations, "dilations"),
f(self.ceil_mode, "ceil_mode"), f(self.ceil_mode, "ceil_mode"),
f(self.lp_order, "lp_order"), f(self.lp_order, "lp_order"),
f(self.dyn_global, "dyn_global")); f(self.dyn_global, "dyn_global"));
...@@ -112,14 +114,17 @@ struct pooling ...@@ -112,14 +114,17 @@ struct pooling
return; return;
if((padding_mode != default_ and padding.size() != stride.size() and if((padding_mode != default_ and padding.size() != stride.size() and
(padding.size()) != stride.size() * 2) or (padding.size()) != stride.size() * 2) or
stride.size() != lengths.size()) stride.size() != lengths.size() or dilations.size() != lengths.size())
{ {
MIGRAPHX_THROW("POOLING: inconsistent attribute sizes"); MIGRAPHX_THROW("POOLING: inconsistent attribute sizes");
} }
if(std::any_of(lengths.begin(), lengths.end(), [&](auto i) { return (i == 0); }) or
std::any_of(stride.begin(), stride.end(), [&](auto i) { return (i == 0); })) const auto is_zero = [](auto el) { return el == 0; };
if(std::any_of(lengths.begin(), lengths.end(), is_zero) or
std::any_of(stride.begin(), stride.end(), is_zero) or
std::any_of(dilations.begin(), dilations.end(), is_zero))
{ {
MIGRAPHX_THROW("POOLING: size 0 pooling kernel or stride"); MIGRAPHX_THROW("POOLING: size 0 pooling kernel or stride or dilations");
} }
// TODO: update lowering to run the reference // TODO: update lowering to run the reference
...@@ -142,6 +147,11 @@ struct pooling ...@@ -142,6 +147,11 @@ struct pooling
value attributes() const { return {{"normalize_padding", "padding"}}; } value attributes() const { return {{"normalize_padding", "padding"}}; }
inline std::size_t dilate_dim(std::size_t dim, std::size_t dilation) const
{
return 1 + dilation * (dim - 1);
}
std::vector<std::size_t> calc_spatial_dim_out(const std::vector<std::size_t>& input_lens, std::vector<std::size_t> calc_spatial_dim_out(const std::vector<std::size_t>& input_lens,
std::size_t kdims) const std::size_t kdims) const
{ {
...@@ -151,8 +161,9 @@ struct pooling ...@@ -151,8 +161,9 @@ struct pooling
std::size_t padding_factor = 2 * padding[i]; std::size_t padding_factor = 2 * padding[i];
if(padding.size() == 2 * kdims) if(padding.size() == 2 * kdims)
padding_factor = padding[i] + padding[i + kdims]; padding_factor = padding[i] + padding[i + kdims];
std::size_t dilated_length = dilate_dim(lengths[i], dilations[i]);
std::size_t dim_size; std::size_t dim_size;
if(input_lens[i + 2] + padding_factor < lengths[i]) if(input_lens[i + 2] + padding_factor < dilated_length)
{ {
if(padding_mode == default_) if(padding_mode == default_)
MIGRAPHX_THROW("POOLING: not enough padding for the given kernel size"); MIGRAPHX_THROW("POOLING: not enough padding for the given kernel size");
...@@ -162,7 +173,7 @@ struct pooling ...@@ -162,7 +173,7 @@ struct pooling
} }
else else
{ {
dim_size = input_lens[i + 2] + padding_factor - lengths[i]; dim_size = input_lens[i + 2] + padding_factor - dilated_length;
} }
std::size_t len = std::size_t len =
(ceil_mode) (ceil_mode)
...@@ -331,6 +342,7 @@ struct pooling ...@@ -331,6 +342,7 @@ struct pooling
int start = static_cast<int>(idx_o[dim] * stride[d_2]) - int start = static_cast<int>(idx_o[dim] * stride[d_2]) -
static_cast<int>(padding_vals[d_2]); static_cast<int>(padding_vals[d_2]);
int end; int end;
std::size_t dilated_kernel_dim = dilate_dim(kernel_dims[d_2], dilations[d_2]);
// NOLINT // NOLINT
if(count_include_pad and ceil_mode and (mode != pooling_mode::max)) if(count_include_pad and ceil_mode and (mode != pooling_mode::max))
{ {
...@@ -340,15 +352,14 @@ struct pooling ...@@ -340,15 +352,14 @@ struct pooling
// padding. Clip out-of-bounds indexes but not padding. // padding. Clip out-of-bounds indexes but not padding.
// Check if this kernel extends beyond the padding at end of dimension // Check if this kernel extends beyond the padding at end of dimension
end = std::min(start + kernel_dims[d_2], end = std::min(start + dilated_kernel_dim,
in_lens[dim] + static_cast<int>(padding_vals[d_2])); in_lens[dim] + static_cast<int>(padding_vals[d_2]));
} }
else else
{ {
// In non-ceiling mode, when // In non-ceiling mode, when
// count_include_pad is false, or for max pooling, clip off padding. // count_include_pad is false, or for max pooling, clip off padding.
end = std::min(start + kernel_dims[d_2], in_lens[dim]); end = std::min(start + dilated_kernel_dim, in_lens[dim]);
start = std::max(start, 0);
} }
win_start.push_back(start); win_start.push_back(start);
if(end < start) if(end < start)
...@@ -366,6 +377,16 @@ struct pooling ...@@ -366,6 +377,16 @@ struct pooling
// for each element in the window... // for each element in the window...
shape_for_each(win_shape, [&](const auto& idx_w) { shape_for_each(win_shape, [&](const auto& idx_w) {
// Skip elements that belong to the dilated area
for(size_t axis = 0; axis < idx_w.size(); ++axis)
{
if(idx_w[axis] % dilations[axis])
{
pool_size -= 1;
return;
}
}
// the coordinates of this element // the coordinates of this element
auto idx = idx_o; auto idx = idx_o;
...@@ -390,7 +411,15 @@ struct pooling ...@@ -390,7 +411,15 @@ struct pooling
// this is a padding element. Padding locations // this is a padding element. Padding locations
// don't contribute to average or max pooling total but can play in // don't contribute to average or max pooling total but can play in
// lpnorm pooling. // lpnorm pooling.
output_val = op(output_val, 0); if(mode == pooling_mode::lpnorm)
{
output_val = op(output_val, op.template init<Type>());
}
if(mode == pooling_mode::average)
{
// Ignore padding
pool_size -= 1;
}
} }
}); });
output[i] = Type(op.final(output_val, pool_size)); output[i] = Type(op.final(output_val, pool_size));
......
...@@ -22,6 +22,12 @@ ...@@ -22,6 +22,12 @@
* THE SOFTWARE. * THE SOFTWARE.
*/ */
/**
* Parent struct for prefix scan ops. A prefix scan is a mathematical entity useful
* in parallelizing various computations. Given a list of numbers, a prefix scan
* op returns an equal size list of running totals of the values. Other operations
* besides addition can be supported by child ops.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP #ifndef MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP
#define MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP #define MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP
......
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
#include <migraphx/op/common.hpp> #include <migraphx/op/common.hpp>
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/check_shapes.hpp> #include <migraphx/check_shapes.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/convolution.hpp> #include <migraphx/convolution.hpp>
#include <migraphx/value.hpp> #include <migraphx/value.hpp>
...@@ -87,11 +88,13 @@ struct quant_convolution ...@@ -87,11 +88,13 @@ struct quant_convolution
} }
// all input type must be int8_type and output is float_type // all input type must be int8_type and output is float_type
if(t != shape::int8_type) std::set<migraphx::shape::type_t> supported_types = {shape::int8_type,
shape::fp8e4m3fnuz_type};
if(not contains(supported_types, t))
{ {
MIGRAPHX_THROW("QUANT_CONVOLUTION: only accept input and weights of type int8_t"); MIGRAPHX_THROW("QUANT_CONVOLUTION: only accept input and weights of type int8_t or "
"fp8e4m3fnuz_type");
} }
t = shape::int32_type;
std::vector<size_t> output_lens{input.lens()[0], weights.lens()[0]}; std::vector<size_t> output_lens{input.lens()[0], weights.lens()[0]};
auto padding_size = padding.size(); auto padding_size = padding.size();
...@@ -107,8 +110,11 @@ struct quant_convolution ...@@ -107,8 +110,11 @@ struct quant_convolution
stride[i] + stride[i] +
1))); 1)));
} }
if(t == shape::int8_type)
return inputs[0].with_lens(t, output_lens); {
return inputs[0].with_lens(shape::int32_type, output_lens);
} // else fp8 conv
return inputs[0].with_lens(shape::float_type, output_lens);
} }
size_t kdims() const size_t kdims() const
......
...@@ -44,9 +44,11 @@ struct quant_dot ...@@ -44,9 +44,11 @@ struct quant_dot
const shape& a = inputs.at(0); const shape& a = inputs.at(0);
const shape& b = inputs.at(1); const shape& b = inputs.at(1);
auto t = a.type(); auto t = a.type();
if(t != shape::int8_type) std::set<migraphx::shape::type_t> suppported_types = {shape::int8_type,
shape::fp8e4m3fnuz_type};
if(not contains(suppported_types, t))
{ {
MIGRAPHX_THROW("QUANT_DOT: only support data type int8_t"); MIGRAPHX_THROW("QUANT_DOT: only support data type int8_t and fp8e4m3fnuz_type");
} }
if(not std::all_of( if(not std::all_of(
...@@ -73,6 +75,10 @@ struct quant_dot ...@@ -73,6 +75,10 @@ struct quant_dot
auto out_lens = a.lens(); auto out_lens = a.lens();
out_lens[dim_1] = b.lens()[dim_1]; out_lens[dim_1] = b.lens()[dim_1];
if(t == shape::fp8e4m3fnuz_type)
{
return {shape::float_type, out_lens};
} // else int8 gemm
return {shape::int32_type, out_lens}; return {shape::int32_type, out_lens};
} }
}; };
......
This diff is collapsed.
...@@ -65,11 +65,10 @@ struct random_uniform ...@@ -65,11 +65,10 @@ struct random_uniform
return inputs.at(1); return inputs.at(1);
} }
argument compute(const shape&, std::vector<argument> args) const argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{ {
// Output goes into the passed buffer, not the shape output. // Output goes into the passed buffer, not the shape output.
auto result = args[1]; argument result{dyn_out.computed_shape};
uint64_t local_seed = args[0].at<uint64_t>(0); uint64_t local_seed = args[0].at<uint64_t>(0);
std::mt19937 gen(local_seed); std::mt19937 gen(local_seed);
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment