Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
70d9faf7
Unverified
Commit
70d9faf7
authored
Dec 13, 2023
by
Chris Austen
Committed by
GitHub
Dec 13, 2023
Browse files
Merge branch 'develop' into mi200
parents
a56c531c
a60bdb67
Changes
442
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1321 additions
and
348 deletions
+1321
-348
src/onnx/parse_clip.cpp
src/onnx/parse_clip.cpp
+1
-1
src/onnx/parse_dynamicquantizelinear.cpp
src/onnx/parse_dynamicquantizelinear.cpp
+151
-0
src/onnx/parse_generic_op.cpp
src/onnx/parse_generic_op.cpp
+1
-1
src/onnx/parse_isinf.cpp
src/onnx/parse_isinf.cpp
+87
-0
src/onnx/parse_loop.cpp
src/onnx/parse_loop.cpp
+10
-0
src/onnx/parse_lstm.cpp
src/onnx/parse_lstm.cpp
+47
-0
src/onnx/parse_multinomial.cpp
src/onnx/parse_multinomial.cpp
+74
-16
src/onnx/parse_pooling.cpp
src/onnx/parse_pooling.cpp
+11
-207
src/onnx/parse_qlinearbinary.cpp
src/onnx/parse_qlinearbinary.cpp
+27
-13
src/onnx/parse_qlinearconcat.cpp
src/onnx/parse_qlinearconcat.cpp
+105
-0
src/onnx/parse_qlinearpooling.cpp
src/onnx/parse_qlinearpooling.cpp
+115
-0
src/onnx/parse_qlinearunary.cpp
src/onnx/parse_qlinearunary.cpp
+151
-0
src/onnx/parse_resize.cpp
src/onnx/parse_resize.cpp
+90
-63
src/onnx/parse_scatternd.cpp
src/onnx/parse_scatternd.cpp
+7
-5
src/onnx/parse_slice.cpp
src/onnx/parse_slice.cpp
+6
-4
src/onnx/parse_split.cpp
src/onnx/parse_split.cpp
+26
-5
src/onnx/parse_unique.cpp
src/onnx/parse_unique.cpp
+92
-0
src/onnx/pooling.cpp
src/onnx/pooling.cpp
+247
-0
src/py/migraphx_py.cpp
src/py/migraphx_py.cpp
+19
-4
src/quantization.cpp
src/quantization.cpp
+54
-29
No files found.
src/onnx/parse_clip.cpp
View file @
70d9faf7
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
src/onnx/parse_dynamicquantizelinear.cpp
0 → 100644
View file @
70d9faf7
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp>
#include <migraphx/common.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see DynamicQuantizeLinear in *
* https://github.com/onnx/onnx/blob/main/docs/Operators.md *
*********************************************************************************
DynamicQuantizeLinear
A Function to fuse calculation for Scale, Zero Point and FP32->8Bit conversion of FP32 Input data.
Outputs Scale, ZeroPoint and Quantized Input for a given FP32 Input. Scale is calculated as:
y_scale = (maximum(0, max(x)) - minimum(0, min(x))) / (qmax - qmin)
* where qmax and qmin are max and min values for quantization range i.e. [0, 255] in case of uint8
* data range is adjusted to include 0.
Zero point is calculated as:
intermediate_zero_point = qmin - min(x)/y_scale
y_zero_point = cast(round(saturate(itermediate_zero_point)))
* where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8
* for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now
only uint8 is supported.
* rounding to nearest ties to even. Data quantization formula is:
y = saturate (round (x / y_scale) + y_zero_point)
* for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8.Right now only
uint8 is supported.
* rounding to nearest ties to even.
Version
This version of the operator has been available since version 11 of the default ONNX operator set.
Inputs
x : T1
Input tensor
Outputs
y : T2
Quantized output tensor
y_scale : tensor(float)
Output scale. It's a scalar, which means a per-tensor/layer quantization.
y_zero_point : T2
Output zero point. It's a scalar, which means a per-tensor/layer quantization.
Type Constraints
T1 : tensor(float)
Constrain 'x' to float tensor.
T2 : tensor(uint8)
Constrain 'y_zero_point' and 'y' to 8-bit unsigned integer tensor.
*/
struct
parse_dynamicquantizelinear
:
op_parser
<
parse_dynamicquantizelinear
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"DynamicQuantizeLinear"
}};
}
std
::
vector
<
instruction_ref
>
parse
(
const
op_desc
&
/*opd*/
,
const
onnx_parser
&
/*parser*/
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
auto
x
=
args
[
0
];
auto
x_shape
=
x
->
get_shape
();
auto
x_type
=
x_shape
.
type
();
if
(
x_shape
.
dynamic
())
MIGRAPHX_THROW
(
"DYNAMICQUANTIZELINEAR: dynamic shapes are not supported"
);
auto
x_reshaped
=
(
x_shape
.
lens
().
size
()
==
1
)
?
x
:
info
.
add_instruction
(
migraphx
::
make_op
(
"reshape"
,
{{
"dims"
,
{
x_shape
.
elements
()}}}),
x
);
auto
lit_0
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
0
}});
x_reshaped
=
info
.
add_instruction
(
migraphx
::
make_op
(
"concat"
,
{{
"axis"
,
0
}}),
x_reshaped
,
lit_0
);
// 1. Computing y_scale
// Note: currently, DynamicQuantizeLinear only has uint8 quantization:
const
auto
Q_MAX
=
std
::
numeric_limits
<
uint8_t
>::
max
();
const
auto
Q_MIN
=
std
::
numeric_limits
<
uint8_t
>::
min
();
auto
q_range
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
Q_MAX
-
Q_MIN
}});
// maximum(0, max(x))
auto
max_x
=
info
.
add_instruction
(
migraphx
::
make_op
(
"reduce_max"
,
{{
"axes"
,
{
0
}}}),
x_reshaped
);
// minimum(0, min(x))
auto
min_x
=
info
.
add_instruction
(
migraphx
::
make_op
(
"reduce_min"
,
{{
"axes"
,
{
0
}}}),
x_reshaped
);
// y_scale = (maximum(0, max(x)) - minimum(0, min(x))) / (qmax - qmin)
auto
sub0
=
info
.
add_common_op
(
"sub"
,
max_x
,
min_x
);
auto
y_scale
=
info
.
add_common_op
(
"div"
,
sub0
,
q_range
);
// 2. Computing y_zero_point
// intermediate_zero_point = qmin - min(x) / y_scale
auto
q_min
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
Q_MIN
}});
auto
q_max
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
Q_MAX
}});
auto
sub1
=
info
.
add_common_op
(
"sub"
,
q_min
,
min_x
);
auto
interm_zp
=
info
.
add_common_op
(
"div"
,
sub1
,
y_scale
);
// y_zero_point = cast(round(saturate(itermediate_zero_point)))
auto
saturate
=
info
.
add_instruction
(
migraphx
::
make_op
(
"clip"
),
interm_zp
,
q_min
,
q_max
);
auto
round
=
info
.
add_instruction
(
migraphx
::
make_op
(
"nearbyint"
),
saturate
);
auto
y_zero_point
=
info
.
add_instruction
(
migraphx
::
make_op
(
"convert"
,
{{
"target_type"
,
migraphx
::
shape
::
uint8_type
}}),
round
);
// 3. quantize x with y_scale and y_zero_point
auto
quant
=
bcast_qdq_instr
(
"quantizelinear"
,
x
,
y_scale
,
y_zero_point
,
info
);
return
{
quant
,
y_scale
,
y_zero_point
};
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_generic_op.cpp
View file @
70d9faf7
...
...
@@ -60,7 +60,7 @@ struct parse_generic_op : op_parser<parse_generic_op>
{
"Neg"
,
"neg"
},
{
"Reciprocal"
,
"recip"
},
{
"Relu"
,
"relu"
},
{
"Round"
,
"
round
"
},
{
"Round"
,
"
nearbyint
"
},
{
"Sigmoid"
,
"sigmoid"
},
{
"Sign"
,
"sign"
},
{
"Sin"
,
"sin"
},
...
...
src/onnx/parse_isinf.cpp
0 → 100644
View file @
70d9faf7
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
struct
parse_isinf
:
op_parser
<
parse_isinf
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"IsInf"
,
"isinf"
}};
}
instruction_ref
parse
(
const
op_desc
&
/*opd*/
,
const
onnx_parser
&
parser
,
onnx_parser
::
node_info
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
bool
detect_negative
=
true
;
bool
detect_positive
=
true
;
if
(
contains
(
info
.
attributes
,
"detect_negative"
))
{
detect_negative
=
static_cast
<
bool
>
(
parser
.
parse_value
(
info
.
attributes
.
at
(
"detect_negative"
)).
at
<
int
>
());
}
if
(
contains
(
info
.
attributes
,
"detect_positive"
))
{
detect_positive
=
static_cast
<
bool
>
(
parser
.
parse_value
(
info
.
attributes
.
at
(
"detect_positive"
)).
at
<
int
>
());
}
auto
x_shape
=
args
[
0
]
->
get_shape
();
if
(
not
detect_negative
and
not
detect_positive
)
{
return
info
.
add_instruction
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
x_shape
.
lens
()}}),
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
shape
::
bool_type
},
{
false
}}));
}
auto
is_inf
=
info
.
add_instruction
(
make_op
(
"isinf"
),
args
[
0
]);
if
(
detect_negative
and
detect_positive
)
{
return
is_inf
;
}
auto
zero_l
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_shape
.
type
()},
{
0
}});
auto
mb_zero
=
info
.
add_instruction
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
x_shape
.
lens
()}}),
zero_l
);
auto
cond
=
info
.
add_broadcastable_binary_op
(
detect_negative
?
"less"
:
"greater"
,
args
[
0
],
mb_zero
);
if
(
cond
->
get_shape
().
type
()
!=
shape
::
bool_type
)
{
cond
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
shape
::
bool_type
}}),
cond
);
}
return
info
.
add_instruction
(
make_op
(
"logical_and"
),
is_inf
,
cond
);
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_loop.cpp
View file @
70d9faf7
...
...
@@ -58,6 +58,16 @@ struct parse_loop : op_parser<parse_loop>
}
}
// cap max_iter because loop uses static shapes with max_iter size and huge numbers
// here can cause overflow
if
(
max_iterations
>
parser
.
limit_max_iterations
)
{
std
::
cerr
<<
"WARNING: PARSE_LOOP max_iterations exceeds the maximum loop "
"iterations limit, it will be changed from "
<<
max_iterations
<<
" to "
<<
parser
.
limit_max_iterations
<<
".
\n
"
;
max_iterations
=
parser
.
limit_max_iterations
;
}
// condition input is empty
if
(
args
.
at
(
1
)
->
name
()
==
"undefined"
)
{
...
...
src/onnx/parse_lstm.cpp
View file @
70d9faf7
...
...
@@ -116,6 +116,37 @@ void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv
}
}
void
lstm_transpose_inputs
(
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>&
args
)
{
std
::
vector
<
int64_t
>
perm
{
1
,
0
,
2
};
args
[
0
]
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
args
[
0
]);
if
(
args
.
size
()
>=
6
and
not
args
[
5
]
->
is_undefined
())
{
args
[
5
]
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
args
[
5
]);
}
if
(
args
.
size
()
>=
7
and
not
args
[
6
]
->
is_undefined
())
{
args
[
6
]
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
args
[
6
]);
}
}
void
lstm_transpose_outputs
(
onnx_parser
::
node_info
&
info
,
instruction_ref
&
hidden_states
,
instruction_ref
&
last_output
,
instruction_ref
&
last_cell_output
)
{
std
::
vector
<
int64_t
>
perm_hs
{
2
,
0
,
1
,
3
};
hidden_states
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm_hs
}}),
hidden_states
);
std
::
vector
<
int64_t
>
perm_last
{
1
,
0
,
2
};
last_output
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm_last
}}),
last_output
);
last_cell_output
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm_last
}}),
last_cell_output
);
}
struct
parse_lstm
:
op_parser
<
parse_lstm
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"LSTM"
}};
}
...
...
@@ -202,6 +233,12 @@ struct parse_lstm : op_parser<parse_lstm>
input_forget
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"input_forget"
)).
at
<
int
>
();
}
int
layout
=
0
;
if
(
contains
(
info
.
attributes
,
"layout"
))
{
layout
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"layout"
)).
at
<
int
>
();
}
// append undefined opeator to make 6 arguments
if
(
args
.
size
()
<
8
)
{
...
...
@@ -209,6 +246,11 @@ struct parse_lstm : op_parser<parse_lstm>
args
.
insert
(
args
.
end
(),
8
-
args
.
size
(),
ins
);
}
if
(
layout
!=
0
)
{
lstm_transpose_inputs
(
info
,
args
);
}
// first output for concatenation of hidden states
auto
hidden_states
=
info
.
add_instruction
(
make_op
(
"lstm"
,
{{
"hidden_size"
,
hidden_size
},
...
...
@@ -224,6 +266,11 @@ struct parse_lstm : op_parser<parse_lstm>
auto
last_cell_output
=
info
.
add_instruction
(
make_op
(
"rnn_last_cell_output"
),
hidden_states
);
if
(
layout
!=
0
)
{
lstm_transpose_outputs
(
info
,
hidden_states
,
last_output
,
last_cell_output
);
}
return
{
hidden_states
,
last_output
,
last_cell_output
};
}
};
...
...
src/onnx/parse_multinomial.cpp
View file @
70d9faf7
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -41,6 +41,9 @@ struct parse_multinomial : op_parser<parse_multinomial>
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
if
(
args
.
empty
())
MIGRAPHX_THROW
(
"PARSE_MULTINOMIAL: no arguments given"
);
int
dtype
=
6
;
if
(
contains
(
info
.
attributes
,
"dtype"
))
dtype
=
info
.
attributes
.
at
(
"dtype"
).
i
();
...
...
@@ -49,35 +52,90 @@ struct parse_multinomial : op_parser<parse_multinomial>
size_t
sample_size
=
1
;
if
(
contains
(
info
.
attributes
,
"sample_size"
))
sample_size
=
info
.
attributes
.
at
(
"sample_size"
).
i
();
else
MIGRAPHX_THROW
(
"PARSE_MULTINOMIAL: sample_size not given"
);
// Use logarithmic math to scale probabilities while avoiding division by very
// small numbers. Scaling by the maximum makes very tiny ranges more
// tractable; any constant factor gives equivalent distr. since the Multinomial op.
// normalizes at runtime.
// Subtract the per-batch maximum log-probability, making the per-batch max 0
auto
maxes
=
info
.
add_instruction
(
migraphx
::
make_op
(
"reduce_max"
,
{{
"axes"
,
{
1
}}}),
args
[
0
]);
auto
mb_maxes
=
info
.
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
args
[
0
]
->
get_shape
().
lens
()}}),
maxes
);
auto
cdf
=
info
.
add_instruction
(
migraphx
::
make_op
(
"sub"
),
args
[
0
],
mb_maxes
);
auto
cdf
=
info
.
add_common_op
(
"sub"
,
args
[
0
],
maxes
);
// Take the element-wise exponent to get probabilities in the range (0, 1]
cdf
=
info
.
add_instruction
(
migraphx
::
make_op
(
"exp"
),
cdf
);
// Compute the cumulative d
ensity
function
// Compute the cumulative d
istribution
function
cdf
=
info
.
add_instruction
(
migraphx
::
make_op
(
"prefix_scan_sum"
,
{{
"axis"
,
1
},
{
"exclusive"
,
false
}}),
cdf
);
// Pre-compute random distribution
std
::
mt19937
gen
(
std
::
chrono
::
high_resolution_clock
::
now
().
time_since_epoch
().
count
());
instruction_ref
seed_input
;
if
(
contains
(
info
.
attributes
,
"seed"
))
gen
.
seed
(
info
.
attributes
.
at
(
"seed"
).
f
());
{
float
seed
=
info
.
attributes
.
at
(
"seed"
).
f
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
1
}};
std
::
vector
<
float
>
data
=
{
seed
};
seed_input
=
info
.
add_literal
(
migraphx
::
literal
(
s
,
data
));
}
else
{
seed_input
=
info
.
add_instruction
(
migraphx
::
make_op
(
"random_seed"
));
}
instruction_ref
randoms
;
shape
s0
=
args
[
0
]
->
get_shape
();
if
(
s0
.
dynamic
())
{
// Dynamic batch_size will be taken from args[0]. The input argument to this should
// have a second dimension of sample_size.
std
::
vector
<
shape
::
dynamic_dimension
>
dyn_dim_set
;
dyn_dim_set
.
emplace_back
(
s0
.
dyn_dims
().
front
());
dyn_dim_set
.
emplace_back
(
shape
::
dynamic_dimension
{
sample_size
,
sample_size
});
// read the input dimensions
auto
dim_of
=
info
.
add_instruction
(
migraphx
::
make_op
(
"dimensions_of"
,
{{
"end"
,
2
}}),
args
[
0
]);
// The next two operations insert the value sample_size into the second array position
// make an argument of (1, 0)
shape
s
(
shape
::
int64_type
,
{
2
});
std
::
vector
<
int64_t
>
data1
{
1
,
0
};
auto
l1
=
info
.
add_literal
(
s
,
data1
);
auto
batch_arg
=
info
.
add_instruction
(
migraphx
::
make_op
(
"mul"
),
dim_of
,
l1
);
std
::
vector
<
int64_t
>
data2
(
2
,
0
);
// make an argument of (0, sample_size)
data2
[
1
]
=
sample_size
;
auto
l2
=
info
.
add_literal
(
s
,
data2
);
auto
alloc_shape
=
info
.
add_instruction
(
migraphx
::
make_op
(
"add"
),
batch_arg
,
l2
);
// alloc_shape should contain the input-based shape dimensions as its values at runtime,
// and its own shape is {2}
std
::
uniform_real_distribution
<>
dis
(
0.0
,
1.0
);
size_t
batch_size
=
args
[
0
]
->
get_shape
().
lens
().
front
();
migraphx
::
shape
dist_shape
{
migraphx
::
shape
::
float_type
,
{
batch
_size
,
sample_size
}};
// compile_shape is the shape used when compiling the Allocate op, and may be dynamic
migraphx
::
shape
compile_shape
=
migraphx
::
shape
(
s0
.
type
(),
{
s0
.
dyn_dims
().
front
(),
{
sample
_size
,
sample_size
}}
)
;
std
::
vector
<
float
>
random_dist
(
batch_size
*
sample_size
);
std
::
generate
(
random_dist
.
begin
(),
random_dist
.
end
(),
[
&
]()
{
return
dis
(
gen
);
});
auto
dist_lit
=
info
.
add_literal
(
migraphx
::
literal
{
dist_shape
,
random_dist
});
// Allocate on-device storage for the random values
auto
alloc
=
info
.
add_instruction
(
migraphx
::
make_op
(
"allocate"
,
{{
"shape"
,
to_value
(
compile_shape
)}}),
alloc_shape
);
randoms
=
info
.
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
alloc
);
}
else
{
// use literal. The array populated by random_uniform may have any shape, as long its
// number of elements is batch_size * sample_size .
size_t
batch_size
=
s0
.
lens
().
front
();
auto
rand_dummy
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
batch_size
,
sample_size
}},
std
::
vector
<
float
>
(
batch_size
*
sample_size
)});
randoms
=
info
.
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
rand_dummy
);
}
return
info
.
add_instruction
(
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
output_type
}}),
cdf
,
dist_lit
);
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
output_type
}}),
cdf
,
randoms
);
}
};
...
...
src/onnx/parse_pooling.cpp
View file @
70d9faf7
...
...
@@ -22,14 +22,8 @@
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -39,68 +33,14 @@ struct parse_pooling : op_parser<parse_pooling>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"AveragePool"
,
"average"
},
{
"GlobalAveragePool"
,
"average"
},
{
"GlobalMaxPool"
,
"max"
},
{
"MaxPool"
,
"max"
},
{
"LpPool"
,
"lpnorm"
},
{
"GlobalLpPool"
,
"lpnorm"
}};
}
value
handle_values
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
const
shape
&
in_shape
,
value
values
)
const
{
auto
kdims
=
in_shape
.
ndim
()
-
2
;
if
(
starts_with
(
opd
.
onnx_name
,
"Global"
))
{
// if spatial dimensions are dynamic use dyn_global flag
if
(
in_shape
.
dynamic
()
and
std
::
any_of
(
in_shape
.
dyn_dims
().
cbegin
()
+
2
,
in_shape
.
dyn_dims
().
cend
(),
[](
auto
dd
)
{
return
not
dd
.
is_fixed
();
}))
{
values
[
"dyn_global"
]
=
true
;
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
();
}
else
{
// works with static and fixed dynamic shape
auto
m_lens
=
in_shape
.
max_lens
();
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
(
m_lens
.
begin
()
+
2
,
m_lens
.
end
());
}
}
if
(
contains
(
info
.
attributes
,
"ceil_mode"
))
{
values
[
"ceil_mode"
]
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"ceil_mode"
).
i
());
}
if
(
contains
(
info
.
attributes
,
"strides"
))
{
values
[
"stride"
].
clear
();
copy
(
info
.
attributes
[
"strides"
].
ints
(),
std
::
back_inserter
(
values
[
"stride"
]));
check_attr_sizes
(
kdims
,
values
[
"stride"
].
size
(),
"PARSE_POOLING: inconsistent strides"
);
}
if
(
contains
(
info
.
attributes
,
"kernel_shape"
))
{
values
[
"lengths"
].
clear
();
copy
(
info
.
attributes
[
"kernel_shape"
].
ints
(),
std
::
back_inserter
(
values
[
"lengths"
]));
check_attr_sizes
(
kdims
,
values
[
"lengths"
].
size
(),
"PARSE_POOLING: inconsistent lengths"
);
}
// lp_order attribute
if
(
contains
(
info
.
attributes
,
"p"
))
{
values
[
"lp_order"
]
=
info
.
attributes
.
at
(
"p"
).
i
();
}
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode
(
info
,
"POOLING"
);
return
values
;
return
{
{
"AveragePool"
,
"average"
},
{
"GlobalAveragePool"
,
"average"
},
{
"GlobalMaxPool"
,
"max"
},
{
"MaxPool"
,
"max"
},
{
"LpPool"
,
"lpnorm"
},
{
"GlobalLpPool"
,
"lpnorm"
},
};
}
instruction_ref
parse
(
const
op_desc
&
opd
,
...
...
@@ -108,144 +48,8 @@ struct parse_pooling : op_parser<parse_pooling>
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
std
::
string
mode
=
opd
.
op_name
;
const
std
::
unordered_map
<
std
::
string
,
op
::
pooling_mode
>
mode_map
=
{
{
"max"
,
op
::
pooling_mode
::
max
},
{
"average"
,
op
::
pooling_mode
::
average
},
{
"lpnorm"
,
op
::
pooling_mode
::
lpnorm
}};
if
(
not
contains
(
mode_map
,
mode
))
{
MIGRAPHX_THROW
(
"PARSE_POOLING: onnx pooling mode must be [
\"
max
\"
,
\"
average
\"
,
\"
lpnorm
\"
]"
);
}
operation
op
=
make_op
(
"pooling"
,
{{
"mode"
,
mode_map
.
at
(
mode
)}});
value
values
=
op
.
to_value
();
auto
l0
=
args
[
0
];
auto
in_shape
=
l0
->
get_shape
();
assert
(
in_shape
.
ndim
()
>
2
);
auto
kdims
=
in_shape
.
ndim
()
-
2
;
values
=
handle_values
(
opd
,
info
,
in_shape
,
values
);
// count include padding, if count include pad is 1, we always use
// explicit pad
int
count_include_pad
=
0
;
if
(
contains
(
info
.
attributes
,
"count_include_pad"
))
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape"
);
}
count_include_pad
=
info
.
attributes
.
at
(
"count_include_pad"
).
i
();
}
std
::
vector
<
int64_t
>
paddings
;
float
pad_val
=
((
mode
==
"max"
)
?
std
::
numeric_limits
<
float
>::
lowest
()
:
0.0
f
);
if
(
contains
(
info
.
attributes
,
"pads"
))
{
values
[
"padding"
].
clear
();
copy
(
info
.
attributes
[
"pads"
].
ints
(),
std
::
back_inserter
(
paddings
));
check_attr_sizes
(
kdims
,
paddings
.
size
()
/
2
,
"PARSE_POOLING: inconsistent explicit paddings"
);
}
if
(
paddings
.
size
()
!=
2
*
kdims
)
{
paddings
.
resize
(
kdims
*
2
);
std
::
fill_n
(
paddings
.
begin
(),
2
*
kdims
,
0
);
}
if
(
values
[
"padding"
].
size
()
!=
kdims
)
{
values
[
"padding"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"padding"
].
begin
(),
kdims
,
0
);
}
if
(
values
[
"stride"
].
size
()
!=
kdims
)
{
values
[
"stride"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"stride"
].
begin
(),
kdims
,
1
);
}
// used to calculate the supposed output shape
std
::
vector
<
int64_t
>
orig_padding
=
paddings
;
// TODO: add parsing for dilations
if
(
contains
(
info
.
attributes
,
"auto_pad"
)
and
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
())
!=
"NOTSET"
)
{
auto
auto_pad
=
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
());
// don't use the given padding sizes, if any
// values["padding"].clear();
if
(
in_shape
.
dynamic
())
{
// set padding_mode to trigger auto padding at runtime
bool
is_same_upper
=
(
auto_pad
.
find
(
"SAME_UPPER"
)
!=
std
::
string
::
npos
);
values
[
"padding_mode"
]
=
is_same_upper
?
to_value
(
op
::
padding_mode_t
::
same_upper
)
:
to_value
(
op
::
padding_mode_t
::
same_lower
);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size
(
info
,
values
,
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
std
::
vector
<
size_t
>
(
in_shape
.
ndim
()
-
2
,
1
),
in_shape
.
lens
(),
paddings
);
values
[
"padding"
]
=
paddings
;
// default padding_mode indicates that padding sizes are not calculated dynamically
values
[
"padding_mode"
]
=
migraphx
::
op
::
padding_mode_t
::
default_
;
}
}
std
::
vector
<
int64_t
>
slice_start
;
std
::
vector
<
int64_t
>
slice_end
;
tune_padding_size
(
values
,
paddings
,
count_include_pad
,
slice_start
);
if
(
not
slice_start
.
empty
())
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape"
);
}
// calculate expected output shape
orig_padding
.
insert
(
orig_padding
.
begin
()
+
kdims
,
2
,
0
);
orig_padding
.
insert
(
orig_padding
.
begin
(),
2
,
0
);
op
::
pad
pad
{
orig_padding
,
0.0
f
};
shape
padded_shape
=
pad
.
compute_shape
({
l0
->
get_shape
()});
// make an op just to get its output shape
auto
out_lens
=
make_op
(
"pooling"
,
values
).
compute_shape
({
padded_shape
}).
lens
();
// compute slice_end information
slice_end
.
resize
(
slice_start
.
size
());
std
::
transform
(
out_lens
.
begin
()
+
2
,
out_lens
.
end
(),
slice_start
.
begin
(),
slice_end
.
begin
(),
[](
auto
i
,
auto
j
)
{
return
i
+
j
;
});
}
values
[
"padding"
]
=
std
::
vector
<
size_t
>
(
paddings
.
begin
(),
paddings
.
end
());
check_asym_padding
(
info
,
l0
,
paddings
,
values
,
count_include_pad
,
pad_val
);
op
.
from_value
(
values
);
auto
l1
=
info
.
add_instruction
(
op
,
l0
);
if
(
not
slice_start
.
empty
())
{
std
::
vector
<
int64_t
>
axes
(
kdims
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
2
);
l1
=
info
.
add_instruction
(
make_op
(
"slice"
,
{{
"axes"
,
axes
},
{
"starts"
,
slice_start
},
{
"ends"
,
slice_end
}}),
l1
);
}
return
l1
;
}
return
add_pooling_op
(
opd
,
std
::
move
(
info
),
args
[
0
]);
};
};
}
// namespace onnx
...
...
src/onnx/parse_qlinear
add
.cpp
→
src/onnx/parse_qlinear
binary
.cpp
View file @
70d9faf7
...
...
@@ -36,7 +36,7 @@ namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearAdd
in
*
* Reference: see QLinearAdd
, QLinearMul in
*
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
...
...
@@ -49,6 +49,17 @@ namespace onnx {
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
com.microsoft.QLinearMul
Performs element-wise binary multiplication on 8 bit data types (with Numpy-style broadcasting
support).
C = ((A - A_zero_point) * (B - B_zero_point)) * (A_scale * B_scale)/C_scale + C_zero_point
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
General definition of binary QLinear* ops:
Inputs (7 - 8)
A : T
First operand.
...
...
@@ -88,15 +99,18 @@ namespace onnx {
*/
struct
parse_qlinear
add
:
op_parser
<
parse_qlinear
add
>
struct
parse_qlinear
binary
:
op_parser
<
parse_qlinear
binary
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearAdd"
}};
}
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearAdd"
,
"add"
},
{
"QLinearMul"
,
"mul"
}};
}
// basic type checking for QLinear
Add
Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
// basic type checking for
binary
QLinear Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
,
const
std
::
string
&
op_name
)
const
{
if
(
args
.
size
()
<
7
)
MIGRAPHX_THROW
(
"QLINEARADD
: missing inputs"
);
MIGRAPHX_THROW
(
op_name
+
"
: missing inputs"
);
const
auto
&
in_a
=
args
[
0
];
const
auto
&
in_b
=
args
[
3
];
...
...
@@ -107,19 +121,19 @@ struct parse_qlinearadd : op_parser<parse_qlinearadd>
auto
type_a
=
sh_a
.
type
();
auto
type_b
=
sh_b
.
type
();
if
(
type_a
!=
migraphx
::
shape
::
int8_type
and
type_a
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARADD
: unsupported input type"
);
MIGRAPHX_THROW
(
op_name
+
"
: unsupported input type"
);
if
(
type_b
!=
migraphx
::
shape
::
int8_type
and
type_b
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARADD
: unsupported input type"
);
MIGRAPHX_THROW
(
op_name
+
"
: unsupported input type"
);
if
(
type_a
!=
type_b
)
MIGRAPHX_THROW
(
"QLINEARADD
: mismatched input types"
);
MIGRAPHX_THROW
(
op_name
+
"
: mismatched input types"
);
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
/*parser*/
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
args
);
check_inputs
(
args
,
opd
.
op_name
);
// A
const
auto
&
in_a
=
args
[
0
];
...
...
@@ -134,8 +148,8 @@ struct parse_qlinearadd : op_parser<parse_qlinearadd>
const
auto
&
in_zero_pt_b
=
args
[
5
];
auto
dquant_b
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_b
,
in_scale_b
,
in_zero_pt_b
,
info
);
// C =
A +
B
auto
out_c
=
info
.
add_common_op
(
"add"
,
dquant_a
,
dquant_b
);
// C =
op(A,
B
)
auto
out_c
=
info
.
add_common_op
(
opd
.
op_name
,
dquant_a
,
dquant_b
);
const
auto
&
in_scale_c
=
args
[
6
];
...
...
src/onnx/parse_qlinearconcat.cpp
0 → 100644
View file @
70d9faf7
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/onnx/conv.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/stringutils.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
struct
parse_qlinearconcat
:
op_parser
<
parse_qlinearconcat
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearConcat"
}};
}
// basic type checking for QLinearConcat Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
auto
args_size
=
args
.
size
();
// at least 5 input tensors:
// 1. is Y_scale: tensor(float)
// 2. is Y_zero_pont: tensor(uint8)/tensor(int8)
// remaining is a sequence of :
// 3. Tensor: tensor(uint8)/tensor(int8)
// 4. Scale: tensor(float),
// 5. ZeroPoint: tensor(uint8)/tensor(int8) tensors
// Size can be 5, 8, 11 ...
if
((
args_size
<
5
)
or
((
args_size
-
2
)
%
3
!=
0
))
MIGRAPHX_THROW
(
"QLINEARCONCAT: missing inputs"
);
auto
y_zp
=
args
[
1
];
auto
y_zp_type
=
y_zp
->
get_shape
().
type
();
if
(
y_zp_type
!=
migraphx
::
shape
::
int8_type
and
y_zp_type
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARCONCAT: unsupported output type"
);
auto
t0_type
=
args
[
2
]
->
get_shape
().
type
();
if
(
t0_type
!=
migraphx
::
shape
::
int8_type
and
t0_type
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARCONCAT: unsupported input type"
);
for
(
auto
idx
=
2
;
idx
<
args
.
size
();
idx
+=
3
)
{
if
((
args
[
idx
]
->
get_shape
().
type
()
!=
t0_type
)
or
(
args
[
idx
+
2
]
->
get_shape
().
type
()
!=
t0_type
))
{
MIGRAPHX_THROW
(
"QLINEARCONCAT: mismatching input types"
);
}
}
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
args
);
if
(
not
contains
(
info
.
attributes
,
"axis"
))
MIGRAPHX_THROW
(
"QLINEARCONCAT: missing axis attribute"
);
auto
axis
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"axis"
)).
template
at
<
int64_t
>();
std
::
vector
<
instruction_ref
>
tmp
;
for
(
auto
idx
=
2
;
idx
<
args
.
size
();
idx
+=
3
)
{
auto
data_tensor
=
args
[
idx
];
auto
scale
=
args
[
idx
+
1
];
auto
zero_pt
=
args
[
idx
+
2
];
tmp
.
push_back
(
bcast_qdq_instr
(
"dequantizelinear"
,
data_tensor
,
scale
,
zero_pt
,
info
));
}
auto
y
=
info
.
add_instruction
(
migraphx
::
make_op
(
"concat"
,
{{
"axis"
,
axis
}}),
tmp
);
auto
y_scale
=
args
[
0
];
auto
y_zero_pt
=
args
[
1
];
return
bcast_qdq_instr
(
"quantizelinear"
,
y
,
y_scale
,
y_zero_pt
,
info
);
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_qlinear
glavg
pool.cpp
→
src/onnx/parse_qlinearpool
ing
.cpp
View file @
70d9faf7
...
...
@@ -23,6 +23,7 @@
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
...
...
@@ -36,90 +37,56 @@ namespace onnx {
/*
*********************************************************************************
* Reference: see QLinear
GlobalAveragePool in
*
* Reference: see QLinear
AveragePool and QLinearGlobalAveragePool in
*
* github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
*/
QLinearGlobalAveragePool consumes an input tensor X and applies
Average pooling across the values in the same channel. This is
equivalent to AveragePool with kernel size equal to the spatial
dimension of input tensor. Input is of type uint8_t or int8_t.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
channels_last : int
Inputs
X : T
Input data tensor from the previous operator; According to channels_last, dimensions for image case
are (N x C x H x W), or (N x H x W x C) where N is the batch size, C is the number of channels, and
H and W are the height and the width of the data. For non image case, the dimensions are in the form
of (N x C x D1 x D2 ... Dn), or (N x D1 X D2 ... Dn x C) where N is the batch size.
x_scale : tensor(float)
Scale of quantized input 'X'. It must be a scalar.
x_zero_point : T
Zero point tensor for input 'X'. It must be a scalar.
y_scale : tensor(float)
Scale of quantized output 'Y'. It must be a scalar.
y_zero_point : T
Zero point tensor for output 'Y'. It must be a scalar.
Outputs
Y : T
Output data tensor from pooling across the input tensor. The output tensor has the same rank as the
input. with the N and C value keep it value, while the other dimensions are all 1. Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to signed/unsigned int8 tensors.
*/
struct
parse_qlinearglobalaveragepool
:
op_parser
<
parse_qlinearglobalaveragepool
>
struct
parse_qlinearpooling
:
op_parser
<
parse_qlinearpooling
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearGlobalAveragePool"
}};
}
// basic type checking for QLinearGlobalAveragePool Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
std
::
vector
<
op_desc
>
operators
()
const
{
if
(
args
.
size
()
<
5
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: missing inputs"
);
return
{{
"QLinearGlobalAveragePool"
,
"average"
},
{
"QLinearAveragePool"
,
"average"
}};
}
const
auto
&
in_x
=
args
[
0
];
const
auto
&
zero_pt_x
=
args
[
2
];
const
auto
&
zero_pt_y
=
args
[
4
];
void
check_inputs
(
const
op_desc
&
opd
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
const
auto
&
in_x
=
args
[
0
];
const
auto
onnx_name
=
opd
.
onnx_name
;
if
(
in_x
->
get_shape
().
ndim
()
<=
2
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL
: input dimensions too small"
);
MIGRAPHX_THROW
(
onnx_name
+
"
: input dimensions too small"
);
auto
type_x
=
in_x
->
get_shape
().
type
();
if
(
type_x
!=
migraphx
::
shape
::
int8_type
and
type_x
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL
: unsupported input type"
);
MIGRAPHX_THROW
(
onnx_name
+
"
: unsupported input type"
);
const
auto
&
zero_pt_x
=
args
[
2
];
if
(
type_x
!=
zero_pt_x
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: input zero point"
);
if
(
type_x
!=
zero_pt_y
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: output zero point"
);
MIGRAPHX_THROW
(
onnx_name
+
": mismatched type: input zero point"
);
if
(
args
.
size
()
==
5
)
{
const
auto
&
zero_pt_y
=
args
[
4
];
if
(
type_x
!=
zero_pt_y
->
get_shape
().
type
())
MIGRAPHX_THROW
(
onnx_name
+
": mismatched type: output zero point"
);
}
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
int
channels_last
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"channels_last"
)).
template
at
<
int
>();
if
(
channels_last
!=
0
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: channels_last (N x D1..Dn x C) is not supported"
);
if
(
contains
(
info
.
attributes
,
"channel_last"
))
{
int
channels_last
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"channels_last"
)).
template
at
<
int
>();
if
(
channels_last
!=
0
)
MIGRAPHX_THROW
(
opd
.
onnx_name
+
": channels_last (N x D1..Dn x C) is not supported"
);
}
check_inputs
(
args
);
check_inputs
(
opd
,
args
);
// Input: X
...
...
@@ -128,21 +95,18 @@ struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool
const
auto
&
zero_pt_x
=
args
[
2
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
scale_x
,
zero_pt_x
,
info
);
// Output Y = globalaveragepool(X)
auto
op
=
migraphx
::
op
::
pooling
{
migraphx
::
op
::
pooling_mode
::
average
};
auto
lens
=
in_x
->
get_shape
().
lens
();
std
::
vector
<
size_t
>
lengths
(
lens
.
begin
()
+
2
,
lens
.
end
());
op
.
lengths
=
lengths
;
op
.
padding
=
std
::
vector
<
size_t
>
(
lens
.
size
());
auto
out_y
=
info
.
add_instruction
(
op
,
dquant_x
);
// Output Y = pooling_op(X)
const
auto
&
scale_y
=
args
[
3
];
const
auto
&
zero_pt_y
=
args
[
4
];
auto
out_y
=
add_pooling_op
(
opd
,
info
,
dquant_x
);
auto
out_quant_y
=
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
scale_y
,
zero_pt_y
,
info
);
const
auto
&
in_scale_y
=
args
[
3
];
// zero_pt for Y is supplied as the last optional argument..
if
(
args
.
size
()
==
5
)
return
(
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
in_scale_y
,
args
[
4
],
info
));
return
out_quant_y
;
// if no zero_pt: just broadcast the scale..
auto
bcast_scale_y
=
bcast_scalar_instr
(
out_y
->
get_shape
(),
in_scale_y
,
info
);
return
(
info
.
add_instruction
(
migraphx
::
make_op
(
"quantizelinear"
),
out_y
,
bcast_scale_y
));
}
};
...
...
src/onnx/parse_qlinearunary.cpp
0 → 100644
View file @
70d9faf7
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/common.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearSigmoid, QLinearLeakyRelu in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearSigmoid
QLinearSigmoid takes quantized input data (Tensor), and quantize parameter for output, and produces
one output data (Tensor) where the function f(x) = quantize(Sigmoid(dequantize(x))), is applied to
the data tensor elementwise. Where the function Sigmoid(x) = 1 / (1 + exp(-x))
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
*****************************************************************************************************
com.microsoft.QLinearLeakyRelu
QLinearLeakyRelu takes quantized input data (Tensor), an argument alpha, and quantize parameter for
output, and produces one output data (Tensor) where the function f(x) = quantize(alpha *
dequantize(x)) for dequantize(x) < 0, f(x) = quantize(dequantize(x)) for dequantize(x) >= 0, is
applied to the data tensor elementwise.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
alpha : float
Coefficient of leakage.
******************************************************************************************************
Generic input layout of QLinear unary operators:
Inputs (4 - 5)
X : T
Input tensor
X_scale : tensor(float)
Input X's scale. It's a scalar, which means a per-tensor/layer quantization.
X_zero_point (optional) : T
Input X's zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
Y_scale : tensor(float) Output Y's scale. It's a scalar, which means
a per-tensor/layer quantization.
Y_zero_point (optional) : T Output Y's zero point. Default value is
0 if it's not specified. It's a scalar, which means a per-tensor/layer quantization.
Outputs
Y : T
Output tensor
Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to 8 bit tensors.
*/
struct
parse_qlinearunary
:
op_parser
<
parse_qlinearunary
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearSigmoid"
,
"sigmoid"
},
{
"QLinearLeakyRelu"
,
"leaky_relu"
}};
}
void
check_inputs
(
const
op_desc
&
opd
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
if
(
args
.
size
()
<
4
)
MIGRAPHX_THROW
(
opd
.
op_name
+
": missing inputs"
);
const
auto
&
in_x
=
args
[
0
];
auto
sh_x
=
in_x
->
get_shape
();
auto
type_x
=
sh_x
.
type
();
if
(
type_x
!=
migraphx
::
shape
::
int8_type
and
type_x
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
opd
.
op_name
+
": unsupported input type"
);
}
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
opd
,
args
);
// X
const
auto
&
in_x
=
args
[
0
];
const
auto
&
in_scale_x
=
args
[
1
];
const
auto
&
in_zero_pt_x
=
args
[
2
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
in_scale_x
,
in_zero_pt_x
,
info
);
// Y = (op(dequantizelinear(x))
auto
op
=
parser
.
load
(
opd
.
op_name
,
info
);
auto
y
=
info
.
add_instruction
(
op
,
dquant_x
);
const
auto
&
in_scale_y
=
args
[
3
];
// zero_pt for Y is supplied as the last optional argument..
if
(
args
.
size
()
==
5
)
return
(
bcast_qdq_instr
(
"quantizelinear"
,
y
,
in_scale_y
,
args
[
4
],
info
));
// if no zero_pt: just broadcast the scale..
auto
bcast_scale_sigm
=
bcast_scalar_instr
(
y
->
get_shape
(),
in_scale_y
,
info
);
return
(
info
.
add_instruction
(
migraphx
::
make_op
(
"quantizelinear"
),
y
,
bcast_scale_sigm
));
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_resize.cpp
View file @
70d9faf7
...
...
@@ -181,6 +181,76 @@ static std::string get_nearest_mode(const onnx_parser::attribute_map& attr)
return
nearest_mode
;
}
static
std
::
vector
<
double
>
get_scales
(
const
onnx_parser
::
attribute_map
&
attr
)
{
std
::
vector
<
double
>
scales
;
if
(
contains
(
attr
,
"scales"
))
{
copy
(
attr
.
at
(
"scales"
).
floats
(),
std
::
back_inserter
(
scales
));
}
return
scales
;
}
static
void
parse_args
(
const
std
::
vector
<
instruction_ref
>&
args
,
const
std
::
vector
<
size_t
>&
in_lens
,
const
std
::
string
&
op_name
,
std
::
vector
<
double
>&
vec_scale
,
std
::
vector
<
std
::
size_t
>&
out_lens
)
{
for
(
const
auto
&
arg
:
args
)
{
if
(
arg
->
name
()
==
"undefined"
or
arg
==
args
.
front
())
{
continue
;
}
// skipped empty input
auto
lens
=
arg
->
get_shape
().
lens
();
if
(
lens
.
empty
())
{
continue
;
}
auto
type
=
arg
->
get_shape
().
type
();
// output size
if
(
type
==
shape
::
int64_type
)
{
auto
arg_out_s
=
arg
->
eval
();
check_arg_empty
(
arg_out_s
,
"PARSE_"
+
op_name
+
": dynamic output size is not supported!"
);
arg_out_s
.
visit
([
&
](
const
auto
&
ol
)
{
out_lens
.
assign
(
ol
.
begin
(),
ol
.
end
());
});
if
(
out_lens
.
size
()
!=
in_lens
.
size
())
{
MIGRAPHX_THROW
(
"PARSE_"
+
op_name
+
": specified output size does not match input size"
);
}
// compute the scale
vec_scale
.
resize
(
in_lens
.
size
());
std
::
transform
(
in_lens
.
begin
(),
in_lens
.
end
(),
out_lens
.
begin
(),
vec_scale
.
begin
(),
[](
auto
iss
,
auto
oss
)
{
return
1.0
*
oss
/
iss
;
});
}
else
{
// scale input
if
(
lens
[
0
]
==
in_lens
.
size
())
{
auto
arg_scale
=
arg
->
eval
();
check_arg_empty
(
arg_scale
,
"PARSE_"
+
op_name
+
": dynamic input scale is not supported!"
);
arg_scale
.
visit
([
&
](
const
auto
&
v
)
{
vec_scale
.
assign
(
v
.
begin
(),
v
.
end
());
});
}
}
}
}
struct
parse_resize
:
op_parser
<
parse_resize
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"Resize"
},
{
"Upsample"
}};
}
...
...
@@ -214,72 +284,30 @@ struct parse_resize : op_parser<parse_resize>
std
::
vector
<
std
::
size_t
>
out_lens
(
in_lens
.
size
());
// scale
std
::
vector
<
double
>
vec_scale
;
std
::
vector
<
double
>
vec_scale
=
get_scales
(
info
.
attributes
)
;
for
(
const
auto
&
arg
:
args
)
// If `scales` was not an attribute, it must be an input
if
(
vec_scale
.
empty
())
{
if
(
arg
->
name
()
==
"undefined"
or
arg
==
args
.
front
())
{
continue
;
}
// skipped empty input
auto
lens
=
arg
->
get_shape
().
lens
();
if
(
lens
.
empty
())
{
continue
;
}
auto
type
=
arg
->
get_shape
().
type
();
// output size
if
(
type
==
shape
::
int64_type
)
{
auto
arg_out_s
=
arg
->
eval
();
check_arg_empty
(
arg_out_s
,
"PARSE_"
+
opd
.
op_name
+
": dynamic output size is not supported!"
);
arg_out_s
.
visit
([
&
](
const
auto
&
ol
)
{
out_lens
.
assign
(
ol
.
begin
(),
ol
.
end
());
});
if
(
out_lens
.
size
()
!=
in_lens
.
size
())
{
MIGRAPHX_THROW
(
"PARSE_"
+
opd
.
op_name
+
": specified output size does not match input size"
);
}
// Depending on the args, it *must* populate the `vec_scale`, and might populate
// `out_lens`
parse_args
(
args
,
in_lens
,
opd
.
op_name
,
vec_scale
,
out_lens
);
}
// compute the scale
vec_scale
.
resize
(
in_lens
.
size
());
std
::
transform
(
in_lens
.
begin
(),
in_lens
.
end
(),
out_lens
.
begin
(),
vec_scale
.
begin
(),
[](
auto
iss
,
auto
oss
)
{
return
1.0
*
oss
/
iss
;
});
}
else
{
if
(
in_lens
.
size
()
!=
vec_scale
.
size
())
{
MIGRAPHX_THROW
(
"PARSE_"
+
opd
.
op_name
+
": ranks of input and scale are different!"
);
}
// scale input
if
(
lens
[
0
]
==
in_lens
.
size
())
{
auto
arg_scale
=
arg
->
eval
();
check_arg_empty
(
arg_scale
,
"PARSE_"
+
opd
.
op_name
+
": dynamic input scale is not supported!"
);
arg_scale
.
visit
([
&
](
const
auto
&
v
)
{
vec_scale
.
assign
(
v
.
begin
(),
v
.
end
());
});
if
(
in_lens
.
size
()
!=
vec_scale
.
size
())
{
MIGRAPHX_THROW
(
"PARSE_"
+
opd
.
op_name
+
": ranks of input and scale are different!"
);
}
std
::
transform
(
in_lens
.
begin
(),
in_lens
.
end
(),
vec_scale
.
begin
(),
out_lens
.
begin
(),
[
&
](
auto
idx
,
auto
scale
)
{
return
static_cast
<
std
::
size_t
>
(
idx
*
scale
);
});
}
}
// if the output was not calculated yet, we update it based on the scales
if
(
all_of
(
out_lens
.
cbegin
(),
out_lens
.
cend
(),
[](
auto
o
)
{
return
o
==
0
;
}))
{
std
::
transform
(
in_lens
.
begin
(),
in_lens
.
end
(),
vec_scale
.
begin
(),
out_lens
.
begin
(),
[
&
](
auto
idx
,
auto
scale
)
{
return
static_cast
<
std
::
size_t
>
(
idx
*
scale
);
});
}
shape
out_s
{
in_s
.
type
(),
out_lens
};
...
...
@@ -288,7 +316,6 @@ struct parse_resize : op_parser<parse_resize>
// reshape input to one-dimension
std
::
vector
<
int64_t
>
rsp_lens
=
{
static_cast
<
int64_t
>
(
in_s
.
elements
())};
args
[
0
]
=
info
.
make_contiguous
(
args
[
0
]);
auto
rsp
=
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
rsp_lens
}}),
args
[
0
]);
if
(
mode
==
"nearest"
)
...
...
src/onnx/parse_scatternd.cpp
View file @
70d9faf7
...
...
@@ -39,15 +39,17 @@ struct parse_scatternd : op_parser<parse_scatternd>
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>&
args
)
const
{
std
::
string
reduction
=
"none"
;
if
(
contains
(
info
.
attributes
,
"reduction"
))
{
if
(
info
.
attributes
.
at
(
"reduction"
).
s
()
==
"add"
)
return
info
.
add_instruction
(
migraphx
::
make_op
(
"scatternd_add"
),
args
);
if
(
info
.
attributes
.
at
(
"reduction"
).
s
()
==
"mul"
)
return
info
.
add_instruction
(
migraphx
::
make_op
(
"scatternd_mul"
),
args
);
reduction
=
info
.
attributes
.
at
(
"reduction"
).
s
();
if
(
not
contains
({
"none"
,
"add"
,
"mul"
,
"min"
,
"max"
},
reduction
))
{
MIGRAPHX_THROW
(
"PARSE_SCATTERND: unsupported reduction mode "
+
reduction
);
}
}
return
info
.
add_instruction
(
migraphx
::
make_op
(
"scatternd_
none"
),
args
);
return
info
.
add_instruction
(
migraphx
::
make_op
(
"scatternd_
"
+
reduction
),
args
);
}
};
...
...
src/onnx/parse_slice.cpp
View file @
70d9faf7
...
...
@@ -46,6 +46,9 @@ struct parse_slice : op_parser<parse_slice>
void
always_insert
(
instruction_ref
arg
)
{
op_args
.
insert
(
op_args
.
begin
(),
arg
);
}
/**
* Either insert argument into `this->op_args` or return the constant value of the argument
*/
std
::
vector
<
int64_t
>
insert
(
instruction_ref
arg
)
{
std
::
vector
<
int64_t
>
result
;
...
...
@@ -144,16 +147,15 @@ struct parse_slice : op_parser<parse_slice>
sd
.
op
.
axes
=
axes
;
}
if
(
not
sd
.
steps
.
empty
(
))
if
(
std
::
any_of
(
sd
.
steps
.
begin
(),
sd
.
steps
.
end
(),
[](
auto
s
)
{
return
s
!=
1
;
}
))
{
if
(
sd
.
op
.
starts
.
empty
()
or
sd
.
op
.
ends
.
empty
())
MIGRAPHX_THROW
(
"PARSE_SLICE: steps and variable starts and ends is not supported"
);
MIGRAPHX_THROW
(
"PARSE_SLICE: steps and variable starts and/or ends is not supported"
);
if
(
sd
.
op
.
axes
.
empty
())
MIGRAPHX_THROW
(
"PARSE_SLICE: steps and variable axes is not supported"
);
}
assert
(
sd
.
steps
.
empty
()
or
sd
.
steps
.
size
()
==
sd
.
op
.
axes
.
size
());
// If any axes have negative step, prepare to add a "reverse" op
for
(
auto
i
:
range
(
sd
.
steps
.
size
()))
{
...
...
src/onnx/parse_split.cpp
View file @
70d9faf7
...
...
@@ -68,13 +68,34 @@ struct parse_split : op_parser<parse_split>
// no split attribute, input is equally divided
else
{
if
((
lens
[
tuned_axis
]
%
info
.
num_outputs
)
!=
0
)
std
::
size_t
num_outputs
=
info
.
num_outputs
;
// the num_outputs attribute seems to be redundant since we already have
// node_info::num_outputs, but we can still perform an error check
if
(
contains
(
info
.
attributes
,
"num_outputs"
))
{
MIGRAPHX_THROW
(
"PARSE_SPLIT: input cannot be equally divided into "
+
std
::
to_string
(
info
.
num_outputs
)
+
" splits!"
);
num_outputs
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"num_outputs"
)).
at
<
std
::
size_t
>
();
if
(
num_outputs
!=
info
.
num_outputs
)
{
MIGRAPHX_THROW
(
"PARSE_SPLIT: num_outputs attribute "
+
std
::
to_string
(
num_outputs
)
+
" doesn't match actual number of outputs "
+
std
::
to_string
(
info
.
num_outputs
)
+
"!"
);
}
}
if
(
lens
[
tuned_axis
]
%
num_outputs
==
0
)
{
std
::
size_t
chunk_size
=
lens
[
tuned_axis
]
/
num_outputs
;
vec_splits
.
resize
(
num_outputs
,
chunk_size
);
}
else
{
std
::
size_t
chunk_size
=
lens
[
tuned_axis
]
/
num_outputs
+
1
;
std
::
size_t
last_chunk_size
=
lens
[
tuned_axis
]
-
chunk_size
*
(
num_outputs
-
1
);
vec_splits
.
resize
(
num_outputs
-
1
,
chunk_size
);
vec_splits
.
push_back
(
last_chunk_size
);
}
auto
dl
=
lens
[
tuned_axis
]
/
info
.
num_outputs
;
vec_splits
.
resize
(
info
.
num_outputs
,
dl
);
}
if
(
std
::
accumulate
(
vec_splits
.
begin
(),
vec_splits
.
end
(),
int64_t
(
0
))
!=
...
...
src/onnx/parse_unique.cpp
0 → 100644
View file @
70d9faf7
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp>
#include <optional>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
// generate unique output stream y, given input stream x;
//
// case unsorted:
// input x: [2, 1, 1, 3, 4, 3], attr_sorted = 0;
// output(s):
// y: [2, 1, 3, 4] --- the unique output
// y_indices: [0, 1, 3, 4] --- first incidence, in terms of indices of x
// x_rev_indices: [0, 1, 1, 2, 3, 2] --- x seen in terms of indices of y
// y_count: [1, 2, 2, 1] -- count at each y_index. sum = len(x)
//
// case sorted:
// input x: [2, 1, 1, 3, 4, 3], attr_sorted = 1;
// output(s):
// y: [1, 2, 3, 4] --- the unique output
// y_indices: [1, 0, 3, 4] --- first incidence, in terms of indices of x
// x_rev_indices: [1, 0, 0, 2, 3, 2] --- x seen in terms of indices of y
// y_count: [2, 1, 2, 1] -- count at each y_index. sum = len(x)
struct
parse_unique
:
op_parser
<
parse_unique
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"Unique"
}};
}
std
::
vector
<
instruction_ref
>
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
int64_t
sorted
=
1
;
// default = sorted.
if
(
contains
(
info
.
attributes
,
"sorted"
))
sorted
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"sorted"
)).
at
<
int
>
();
std
::
optional
<
int64_t
>
axis
;
if
(
contains
(
info
.
attributes
,
"axis"
))
{
auto
n_dim
=
args
[
0
]
->
get_shape
().
ndim
();
axis
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"axis"
)).
at
<
int
>
();
axis
=
tune_axis
(
n_dim
,
*
axis
,
opd
.
op_name
);
}
migraphx
::
argument
data_arg
=
args
.
back
()
->
eval
();
auto
opr
=
axis
?
migraphx
::
make_op
(
"unique"
,
{{
"axis"
,
*
axis
},
{
"sorted"
,
sorted
}})
:
migraphx
::
make_op
(
"unique"
,
{{
"sorted"
,
sorted
}});
auto
u_opr
=
info
.
add_instruction
(
opr
,
args
.
at
(
0
));
auto
i_y
=
info
.
add_instruction
(
make_op
(
"get_tuple_elem"
,
{{
"index"
,
0
}}),
u_opr
);
auto
i_y_idx
=
info
.
add_instruction
(
make_op
(
"get_tuple_elem"
,
{{
"index"
,
1
}}),
u_opr
);
auto
i_x_idx
=
info
.
add_instruction
(
make_op
(
"get_tuple_elem"
,
{{
"index"
,
2
}}),
u_opr
);
auto
i_count
=
info
.
add_instruction
(
make_op
(
"get_tuple_elem"
,
{{
"index"
,
3
}}),
u_opr
);
return
{
i_y
,
i_y_idx
,
i_x_idx
,
i_count
};
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/pooling.cpp
0 → 100644
View file @
70d9faf7
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/ranges.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
value
handle_pooling_values
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
const
shape
&
in_shape
,
value
values
)
{
auto
kdims
=
in_shape
.
ndim
()
-
2
;
if
(
starts_with
(
opd
.
onnx_name
,
"Global"
)
or
starts_with
(
opd
.
onnx_name
,
"QLinearGlobal"
))
{
// if spatial dimensions are dynamic use dyn_global flag
if
(
in_shape
.
dynamic
()
and
std
::
any_of
(
in_shape
.
dyn_dims
().
cbegin
()
+
2
,
in_shape
.
dyn_dims
().
cend
(),
[](
auto
dd
)
{
return
not
dd
.
is_fixed
();
}))
{
values
[
"dyn_global"
]
=
true
;
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
();
}
else
{
// works with static and fixed dynamic shape
auto
m_lens
=
in_shape
.
max_lens
();
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
(
m_lens
.
begin
()
+
2
,
m_lens
.
end
());
}
}
if
(
contains
(
info
.
attributes
,
"ceil_mode"
))
{
values
[
"ceil_mode"
]
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"ceil_mode"
).
i
());
}
if
(
contains
(
info
.
attributes
,
"strides"
))
{
values
[
"stride"
].
clear
();
copy
(
info
.
attributes
[
"strides"
].
ints
(),
std
::
back_inserter
(
values
[
"stride"
]));
check_attr_sizes
(
kdims
,
values
[
"stride"
].
size
(),
"PARSE_POOLING: inconsistent strides"
);
}
if
(
contains
(
info
.
attributes
,
"kernel_shape"
))
{
values
[
"lengths"
].
clear
();
copy
(
info
.
attributes
[
"kernel_shape"
].
ints
(),
std
::
back_inserter
(
values
[
"lengths"
]));
check_attr_sizes
(
kdims
,
values
[
"lengths"
].
size
(),
"PARSE_POOLING: inconsistent lengths"
);
}
if
(
contains
(
info
.
attributes
,
"dilations"
))
{
values
[
"dilations"
].
clear
();
copy
(
info
.
attributes
[
"dilations"
].
ints
(),
std
::
back_inserter
(
values
[
"dilations"
]));
check_attr_sizes
(
kdims
,
values
[
"dilations"
].
size
(),
"PARSE_POOLING: inconsistent dilations"
);
}
// lp_order attribute
if
(
contains
(
info
.
attributes
,
"p"
))
{
values
[
"lp_order"
]
=
info
.
attributes
.
at
(
"p"
).
i
();
}
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode
(
info
,
"POOLING"
);
return
values
;
}
instruction_ref
add_pooling_op
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
instruction_ref
l0
)
{
std
::
string
mode
=
opd
.
op_name
;
const
std
::
unordered_map
<
std
::
string
,
op
::
pooling_mode
>
mode_map
=
{
{
"max"
,
op
::
pooling_mode
::
max
},
{
"average"
,
op
::
pooling_mode
::
average
},
{
"lpnorm"
,
op
::
pooling_mode
::
lpnorm
}};
if
(
not
contains
(
mode_map
,
mode
))
{
MIGRAPHX_THROW
(
"PARSE_POOLING: onnx pooling mode must be [
\"
max
\"
,
\"
average
\"
,
\"
lpnorm
\"
]"
);
}
operation
op
=
make_op
(
"pooling"
,
{{
"mode"
,
mode_map
.
at
(
mode
)}});
value
values
=
op
.
to_value
();
auto
in_shape
=
l0
->
get_shape
();
assert
(
in_shape
.
ndim
()
>
2
);
auto
kdims
=
in_shape
.
ndim
()
-
2
;
values
=
handle_pooling_values
(
opd
,
info
,
in_shape
,
values
);
// count include padding, if count include pad is 1, we always use
// explicit pad
int
count_include_pad
=
0
;
if
(
contains
(
info
.
attributes
,
"count_include_pad"
))
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape"
);
}
count_include_pad
=
info
.
attributes
.
at
(
"count_include_pad"
).
i
();
}
std
::
vector
<
int64_t
>
paddings
;
float
pad_val
=
((
mode
==
"max"
)
?
std
::
numeric_limits
<
float
>::
lowest
()
:
0.0
f
);
if
(
contains
(
info
.
attributes
,
"pads"
))
{
values
[
"padding"
].
clear
();
copy
(
info
.
attributes
[
"pads"
].
ints
(),
std
::
back_inserter
(
paddings
));
check_attr_sizes
(
kdims
,
paddings
.
size
()
/
2
,
"PARSE_POOLING: inconsistent explicit paddings"
);
}
if
(
paddings
.
size
()
!=
2
*
kdims
)
{
paddings
.
resize
(
kdims
*
2
);
std
::
fill_n
(
paddings
.
begin
(),
2
*
kdims
,
0
);
}
if
(
values
[
"padding"
].
size
()
!=
kdims
)
{
values
[
"padding"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"padding"
].
begin
(),
kdims
,
0
);
}
if
(
values
[
"stride"
].
size
()
!=
kdims
)
{
values
[
"stride"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"stride"
].
begin
(),
kdims
,
1
);
}
if
(
values
[
"dilations"
].
size
()
!=
kdims
)
{
values
[
"dilations"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"dilations"
].
begin
(),
kdims
,
1
);
}
// used to calculate the supposed output shape
std
::
vector
<
int64_t
>
orig_padding
=
paddings
;
// TODO: add parsing for dilations
if
(
contains
(
info
.
attributes
,
"auto_pad"
)
and
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
())
!=
"NOTSET"
)
{
auto
auto_pad
=
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
());
// don't use the given padding sizes, if any
// values["padding"].clear();
if
(
in_shape
.
dynamic
())
{
// set padding_mode to trigger auto padding at runtime
bool
is_same_upper
=
(
auto_pad
.
find
(
"SAME_UPPER"
)
!=
std
::
string
::
npos
);
values
[
"padding_mode"
]
=
is_same_upper
?
to_value
(
op
::
padding_mode_t
::
same_upper
)
:
to_value
(
op
::
padding_mode_t
::
same_lower
);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size
(
info
,
values
,
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
values
[
"dilations"
].
to_vector
<
std
::
size_t
>
(),
in_shape
.
lens
(),
paddings
);
values
[
"padding"
]
=
paddings
;
// default padding_mode indicates that padding sizes are not calculated dynamically
values
[
"padding_mode"
]
=
migraphx
::
op
::
padding_mode_t
::
default_
;
}
}
std
::
vector
<
int64_t
>
slice_start
;
std
::
vector
<
int64_t
>
slice_end
;
tune_padding_size
(
values
,
paddings
,
count_include_pad
,
slice_start
);
if
(
not
slice_start
.
empty
())
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape"
);
}
// calculate expected output shape
orig_padding
.
insert
(
orig_padding
.
begin
()
+
kdims
,
2
,
0
);
orig_padding
.
insert
(
orig_padding
.
begin
(),
2
,
0
);
op
::
pad
pad
{
orig_padding
,
0.0
f
};
shape
padded_shape
=
pad
.
compute_shape
({
l0
->
get_shape
()});
// make an op just to get its output shape
auto
out_lens
=
make_op
(
"pooling"
,
values
).
compute_shape
({
padded_shape
}).
lens
();
// compute slice_end information
slice_end
.
resize
(
slice_start
.
size
());
std
::
transform
(
out_lens
.
begin
()
+
2
,
out_lens
.
end
(),
slice_start
.
begin
(),
slice_end
.
begin
(),
[](
auto
i
,
auto
j
)
{
return
i
+
j
;
});
}
values
[
"padding"
]
=
std
::
vector
<
size_t
>
(
paddings
.
begin
(),
paddings
.
end
());
check_asym_padding
(
info
,
l0
,
paddings
,
values
,
count_include_pad
,
pad_val
);
op
.
from_value
(
values
);
auto
l1
=
info
.
add_instruction
(
op
,
l0
);
if
(
not
slice_start
.
empty
())
{
std
::
vector
<
int64_t
>
axes
(
kdims
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
2
);
l1
=
info
.
add_instruction
(
make_op
(
"slice"
,
{{
"axes"
,
axes
},
{
"starts"
,
slice_start
},
{
"ends"
,
slice_end
}}),
l1
);
}
return
l1
;
}
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/py/migraphx_py.cpp
View file @
70d9faf7
...
...
@@ -40,7 +40,7 @@
#include <migraphx/json.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/float8.hpp>
#ifdef HAVE_GPU
#include <migraphx/gpu/hip.hpp>
#endif
...
...
@@ -144,6 +144,18 @@ struct npy_format_descriptor<half>
static
constexpr
auto
name
()
{
return
_
(
"half"
);
}
};
template
<
>
struct
npy_format_descriptor
<
migraphx
::
fp8
::
fp8e4m3fnuz
>
{
static
std
::
string
format
()
{
// following: https://docs.python.org/3/library/struct.html#format-characters
// TODO: need to figure out correct encoding
return
"z"
;
}
static
constexpr
auto
name
()
{
return
_
(
"fp8e4m3fnuz"
);
}
};
}
// namespace detail
}
// namespace pybind11
...
...
@@ -472,7 +484,8 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
map_dyn_input_dims
,
bool
skip_unknown_operators
,
bool
print_program_on_error
,
int64_t
max_loop_iterations
)
{
int64_t
max_loop_iterations
,
int64_t
limit_max_iterations
)
{
migraphx
::
onnx_options
options
;
options
.
default_dim_value
=
default_dim_value
;
options
.
default_dyn_dim_value
=
default_dyn_dim_value
;
...
...
@@ -481,6 +494,7 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
options
.
skip_unknown_operators
=
skip_unknown_operators
;
options
.
print_program_on_error
=
print_program_on_error
;
options
.
max_loop_iterations
=
max_loop_iterations
;
options
.
limit_max_iterations
=
limit_max_iterations
;
return
migraphx
::
parse_onnx
(
filename
,
options
);
},
"Parse onnx file"
,
...
...
@@ -492,7 +506,8 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
migraphx
::
shape
::
dynamic_dimension
>>
(),
py
::
arg
(
"skip_unknown_operators"
)
=
false
,
py
::
arg
(
"print_program_on_error"
)
=
false
,
py
::
arg
(
"max_loop_iterations"
)
=
10
);
py
::
arg
(
"max_loop_iterations"
)
=
10
,
py
::
arg
(
"limit_max_iterations"
)
=
std
::
numeric_limits
<
uint16_t
>::
max
());
m
.
def
(
"parse_onnx_buffer"
,
...
...
@@ -565,7 +580,7 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
py
::
arg
(
"prog"
),
py
::
arg
(
"t"
),
py
::
arg
(
"calibration"
)
=
std
::
vector
<
migraphx
::
parameter_map
>
{},
py
::
arg
(
"ins_names"
)
=
std
::
vector
<
std
::
string
>
{
"dot"
,
"convolution"
});
py
::
arg
(
"ins_names"
)
=
std
::
unordered_set
<
std
::
string
>
{
"dot"
,
"convolution"
});
#ifdef HAVE_GPU
m
.
def
(
"allocate_gpu"
,
&
migraphx
::
gpu
::
allocate_gpu
,
py
::
arg
(
"s"
),
py
::
arg
(
"host"
)
=
false
);
...
...
src/quantization.cpp
View file @
70d9faf7
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -25,7 +25,7 @@
#include <migraphx/instruction_ref.hpp>
#include <migraphx/quantization.hpp>
#include <migraphx/quantize_fp16.hpp>
#include <migraphx/quantize_
int8
.hpp>
#include <migraphx/quantize_
8bits
.hpp>
#include <migraphx/simplify_reshapes.hpp>
#include <migraphx/simplify_qdq.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
...
...
@@ -45,7 +45,7 @@
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_
INT8
_QUANTIZATION_PARAMS
)
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_
8BITS
_QUANTIZATION_PARAMS
)
// This function is to convert any instructions specified in the input
// from double or float to float16 by inserting a convert operator.
...
...
@@ -57,29 +57,22 @@ void quantize_fp16(program& prog, const std::vector<std::string>& ins_names)
run_passes
(
prog
,
{
optimize_module
{},
quantize_fp16_pass
{
ins_names
},
optimize_module
{}});
}
void
quantize_int8
(
program
&
prog
,
const
target
&
t
,
const
std
::
vector
<
parameter_map
>&
calibration
,
const
std
::
vector
<
std
::
string
>&
ins_names
)
void
quantize_8bits
(
program
&
prog
,
const
target
&
t
,
shape
::
type_t
precision
,
const
std
::
vector
<
parameter_map
>&
calibration
,
const
std
::
unordered_set
<
std
::
string
>&
ins_names
)
{
std
::
set
<
std
::
string
>
op_names
=
{
"convolution"
,
"dot"
};
std
::
set
<
std
::
string
>
input_ins_names
(
ins_names
.
begin
(),
ins_names
.
end
());
if
(
not
std
::
includes
(
op_names
.
begin
(),
op_names
.
end
(),
input_ins_names
.
begin
(),
input_ins_names
.
end
()))
{
MIGRAPHX_THROW
(
"QUANTIZE_INT8: only support DOT and CONVOLUTION operation"
);
}
// Run optimize_module() before converting to int8 to const eval and fold in FP32 to
// Run optimize_module() before converting to int8/fp8 to const eval and fold in FP32 to
// avoid loss of precision.
run_passes
(
prog
,
{
optimize_module
{}});
std
::
shared_ptr
<
std
::
vector
<
std
::
pair
<
float
,
float
>>>
int8_quan
t_params
=
std
::
shared_ptr
<
std
::
vector
<
std
::
pair
<
float
,
float
>>>
quant_8bi
t_params
=
std
::
make_shared
<
std
::
vector
<
std
::
pair
<
float
,
float
>>>
();
std
::
shared_ptr
<
std
::
vector
<
float
>>
max_abs_vals
=
std
::
make_shared
<
std
::
vector
<
float
>>
();
auto
calc_quant_params
=
[
int8_quant_params
,
max_abs_vals
,
&
t
](
std
::
size_t
ins_index
,
std
::
vector
<
argument
>
args
)
{
float
quantized_range
=
(
precision
==
shape
::
type_t
::
int8_type
)
?
127.0
:
240.0
;
auto
calc_quant_params
=
[
&
](
std
::
size_t
ins_index
,
std
::
vector
<
argument
>
args
)
{
std
::
pair
<
float
,
float
>
param_pair
{
64.0
f
,
0.0
f
};
// scale and shift is need for only int8 type, and we do not
// consider shift, so set shift to 0
...
...
@@ -90,23 +83,22 @@ void quantize_int8(program& prog,
auto
min_val
=
*
std
::
min_element
(
vec_val
.
begin
(),
vec_val
.
end
());
auto
max_abs
=
std
::
max
(
std
::
fabs
(
max_val
),
std
::
fabs
(
min_val
));
max_abs_vals
->
at
(
ins_index
)
=
std
::
max
(
max_abs_vals
->
at
(
ins_index
),
max_abs
);
// if all values are 0, no need to do scaling
if
(
max_abs_vals
->
at
(
ins_index
)
==
0.0
f
)
if
(
float_equal
(
max_abs_vals
->
at
(
ins_index
)
,
0.0
f
)
)
{
param_pair
.
first
=
1.0
f
;
}
else
{
param_pair
.
first
=
127.0
f
/
max_abs_vals
->
at
(
ins_index
);
param_pair
.
first
=
quantized_range
/
max_abs_vals
->
at
(
ins_index
);
}
int8_quan
t_params
->
at
(
ins_index
)
=
param_pair
;
quant_8bi
t_params
->
at
(
ins_index
)
=
param_pair
;
};
// pass to add capture argument op
std
::
size_t
param_num
=
0
;
run_passes
(
prog
,
{
capture_arguments_pass
{
ins_names
,
calc_quant_params
,
&
param_num
}});
int8_quan
t_params
->
resize
(
param_num
,
std
::
pair
<
float
,
float
>
(
64.0
f
,
0.0
f
));
quant_8bi
t_params
->
resize
(
param_num
,
std
::
pair
<
float
,
float
>
(
64.0
f
,
0.0
f
));
max_abs_vals
->
resize
(
param_num
,
0.0
f
);
// use the calibration data to compute the quantization scale
...
...
@@ -134,11 +126,11 @@ void quantize_int8(program& prog,
}
// print the quantization parameters in only the main module
if
(
enabled
(
MIGRAPHX_
INT8
_QUANTIZATION_PARAMS
{}))
if
(
enabled
(
MIGRAPHX_
8BITS
_QUANTIZATION_PARAMS
{}))
{
for
(
std
::
size_t
i
=
0
;
i
<
int8_quan
t_params
->
size
();
++
i
)
for
(
std
::
size_t
i
=
0
;
i
<
quant_8bi
t_params
->
size
();
++
i
)
{
auto
param
=
int8_quan
t_params
->
at
(
i
);
auto
param
=
quant_8bi
t_params
->
at
(
i
);
std
::
cout
<<
"ins_index = "
<<
i
<<
", scale = "
<<
param
.
first
<<
", shift = "
<<
param
.
second
<<
std
::
endl
;
}
...
...
@@ -146,11 +138,44 @@ void quantize_int8(program& prog,
}
run_passes
(
prog
,
{
quantize_int8_pass
{
ins_names
,
*
int8_quant_params
},
optimize_module
{},
{
quantize_8bits_pass
{
precision
,
*
quant_8bit_params
},
simplify_qdq
{},
optimize_module
{},
dead_code_elimination
{}});
}
void
quantize_int8
(
program
&
prog
,
const
target
&
t
,
const
std
::
vector
<
parameter_map
>&
calibration
,
const
std
::
unordered_set
<
std
::
string
>&
ins_names
)
{
std
::
unordered_set
<
std
::
string
>
op_names
=
{
"convolution"
,
"dot"
};
if
(
op_names
!=
ins_names
)
{
MIGRAPHX_THROW
(
"QUANTIZE_INT8: only support DOT and CONVOLUTION operation"
);
}
quantize_8bits
(
prog
,
t
,
shape
::
int8_type
,
calibration
,
ins_names
);
}
void
quantize_fp8
(
program
&
prog
,
const
target
&
t
,
const
std
::
vector
<
parameter_map
>&
calibration
)
{
std
::
cout
<<
"[Warning] : MIGraphX has BETA support for FP8. Using FP8 may result in "
"incorrect final outputs
\n
"
;
std
::
unordered_set
<
std
::
string
>
supported_ins_names
;
auto
*
mm
=
prog
.
get_main_module
();
for
(
auto
ins
:
iterator_for
(
*
mm
))
{
if
(
ins
->
name
()
==
"convert"
)
{
continue
;
}
if
(
not
starts_with
(
ins
->
name
(),
"@"
))
{
supported_ins_names
.
insert
(
ins
->
name
());
}
}
quantize_8bits
(
prog
,
t
,
shape
::
fp8e4m3fnuz_type
,
calibration
,
supported_ins_names
);
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
Prev
1
2
3
4
5
6
7
8
9
10
…
23
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment