Commit 70837f1a authored by mei-ye's avatar mei-ye
Browse files

add memory coloring

parent 686b9ea9
......@@ -550,6 +550,31 @@ struct div : binary
std::string name() const { return "div"; }
};
struct get_mem_ptr
{
std::string name() const { return "get_mem_ptr:" + std::to_string(offset); }
shape compute_shape(std::vector<shape> inputs) const
{
return inputs.at(1);
}
argument compute(context&, shape output_shape, std::vector<argument> args) const {
return {output_shape, args.at(0).data() + offset};
}
std::size_t offset = 0;
};
struct write_literal
{
std::string name() const { return "write_literal"; }
shape compute_shape(std::vector<shape> inputs) const
{
return inputs.at(2);
}
argument compute(context&, shape output_shape, std::vector<argument> args) const {
assert(false);
}
};
struct outline
{
shape s;
......
......@@ -6,50 +6,68 @@ void memory_coloring_impl::run()
build();
if (num_of_lives != 0) {
DEBUG(dump("---Before memory coloring---"));
DEBUG(dump());
DEBUG(dump(p_program));
// Coloring
while (!alloc_queue.empty()) {
T_live_interval* interval = alloc_queue.top();
allocate(interval);
alloc_queue.pop();
}
for (int i = 0; i < num_of_lives; ++i)
rewrite();
DEBUG(verify());
for (int i = 0; i < num_of_lives; ++i) {
free(live_intervals[i]);
}
}
}
bool memory_coloring_impl::allocate(T_live_interval* interval)
{
shape s = interval->result;
int size = s.bytes();
std::size_t size = s.bytes();
std::size_t element_size = size / s.elements();
T_live_range& segment = interval->segment;
int vn = segment.vn;
std::priority_queue<T_live_range*, std::vector<T_live_range*>, ordering> conflict_queue;
std::unordered_map<long long, T_live_range*> offset2Live;
offset2Live.clear();
if (conflict_table.find(vn) != conflict_table.end()) {
std::set<int>& vn_set = conflict_table[vn];
for (auto iter = vn_set.begin(), end = vn_set.end(); iter != end; ++iter) {
T_live_range* range = live_ranges[*iter];
if (range->offset != -1)
long long offset = range->offset;
if (offset != InvalidOffset) {
conflict_queue.push(range);
if (offset2Live.find(offset) == offset2Live.end()) {
offset2Live[offset] = range;
} else {
T_live_range* prev = offset2Live[offset];
assert(prev->offset == offset);
if (prev->size < range->size)
offset2Live[offset] = range;
}
}
}
}
int offset = 0;
long long offset = 0;
while (!conflict_queue.empty()) {
T_live_range* range = conflict_queue.top();
int cur_offset = range->offset;
long long cur_offset = range->offset;
if (offset2Live[cur_offset] == range) {
if ((cur_offset > offset) && (cur_offset - offset) >= size) {
break;
}
offset = cur_offset + range->size;
if ((offset % element_size) != 0)
offset += (element_size - (offset % element_size));
}
conflict_queue.pop();
}
segment.offset = offset;
DEBUG(segment.dump());
required_bytes = std::max(required_bytes, offset + segment.size);
return true;
}
......@@ -62,9 +80,7 @@ void memory_coloring_impl::build()
instruction_ref iter = std::prev(p_program->end());
instruction_ref begin = p_program->begin();
std::vector<instruction_ref> dead_instrs;
std::unordered_map<const instruction*, T_live_interval*> instr2Live;
std::set<int> live_set;
T_live_interval* next_def = nullptr;
// Build live intervals.
do {
const instruction* p_iter = &(*iter);
......@@ -80,23 +96,25 @@ void memory_coloring_impl::build()
alloc_queue.push(def_interval);
range.begin = cur_points;
range.size = (iter->result).bytes();
next_def = def_interval;
live_set.erase(range.vn);
}
} else if (!isParam(iter) && !isOutline(iter) && !isCheckContext(iter)) {
isDead = true;
}
int tieNdx = getInputTieNdx(iter);
if (!iter->arguments.empty()) {
int cnt = -1;
for (auto&& arg : iter->arguments) {
cnt++;
if (isParam(arg) || isOutline(arg)) {
if (isOutputParam(arg))
isDead = false;
continue;
}
const instruction* p_arg = &(*arg);
if (isAllocate(arg)) {
// input is from hip::allocate, def is considered as use
// and coalesce the live intervals.
if (cnt == tieNdx) {
// input memory is used as this instruction's output.
// def is considered as use. Coalesce the live intervals.
def_interval->addUse(cur_points);
instr2Live[p_arg] = def_interval;
} else if (instr2Live.find(p_arg) == instr2Live.end()) {
......@@ -112,10 +130,6 @@ void memory_coloring_impl::build()
live_set.insert(max_value_number);
live_intervals[id] = interval;
live_ranges[max_value_number] = &(interval->segment);
// Keep track of live intervals that are inactive when
// next_def is enqueued.
if (next_def != nullptr)
next_def->inactive_afters.push_back(interval);
} else {
T_live_interval* interval = instr2Live[p_arg];
interval->addUse(cur_points);
......@@ -130,10 +144,57 @@ void memory_coloring_impl::build()
} while (iter != begin);
}
void memory_coloring_impl::rewrite()
{
instruction_ref end = p_program->end();
instruction_ref scratch_param = end;
for (auto ins : iterator_for(*p_program)) {
const instruction* p_iter = &(*ins);
if (isScratchParam(ins)) {
scratch_param = ins;
int allocated_bytes = ins->result.bytes();
if (allocated_bytes < required_bytes) {
std::cout << "required bytes: " << required_bytes << "allocated bytes: " << allocated_bytes << std::endl;
throw std::runtime_error("insufficent memory for MIGraph");
}
#ifdef DEBUG_OPT
float frac = 1.0 * required_bytes/allocated_bytes*100;
std::cout << "memory usage percentage: " << to_string(frac) << "%" << std::endl;
#endif
}
if (instr2Live.find(p_iter) != instr2Live.end()) {
T_live_interval* interval = instr2Live[p_iter];
if (interval->get_offset() == InvalidOffset) {
DEBUG(assert(interval->get_begin() == InvalidOffset));
continue;
}
std::size_t offset = interval->get_offset();
if (isAllocate(ins)) {
if (scratch_param == end)
throw std::runtime_error("missing scratch parameter");
p_program->replace_instruction(ins, get_mem_ptr{offset}, scratch_param, ins->arguments.at(0));
} else if (isLiteral(ins)) {
if (scratch_param == end)
throw std::runtime_error("missing scratch parameter");
auto pre = p_program->add_literal(ins->lit);
auto index = p_program->add_literal(offset);
p_program->replace_instruction(ins, write_literal{}, scratch_param, index, pre);
}
}
}
DEBUG(dump("---After rewrite---"));
DEBUG(dump(p_program));
}
#ifdef DEBUG_OPT
void memory_coloring_impl::dump(std::string str)
{
std::cout << str << std::endl;
}
void memory_coloring_impl::dump(program* p_program)
{
std::cout << *p_program << std::endl;
}
......@@ -145,7 +206,7 @@ void memory_coloring_impl::dump()
T_live_interval* interval = live_intervals[i];
interval->dump();
}
std::cout << "conflict table:" << std::endl;
std::cout << "---conflict table---" << std::endl;
for (int i = 0; i <= max_value_number; ++i) {
std::cout << " segment:" << i;
std::cout << " =>";
......@@ -158,15 +219,38 @@ void memory_coloring_impl::dump()
}
}
void memory_coloring_impl::verify()
{
if (num_of_lives > 0) {
for (int i = 0; i < num_of_lives; ++i) {
T_live_interval* interval = live_intervals[i];
T_live_range& segment = interval->segment;
if (segment.offset == InvalidOffset)
continue;
int vn = segment.vn;
if (conflict_table.find(vn) != conflict_table.end()) {
std::set<int>& vn_set = conflict_table[vn];
for (auto iter = vn_set.begin(), end = vn_set.end(); iter != end; ++iter) {
T_live_range* range = live_ranges[*iter];
if (range->offset == InvalidOffset)
continue;
if (!isDisjoin(*range, segment))
assert(false);
}
}
}
}
}
#define GET_INS_ENUM(x) (((x) >> 1) - 1)
void live_range::dump()
{
std::cout << " segment:" << vn;
std::cout << " [" << GET_INS_ENUM(begin) << ", " << GET_INS_ENUM(end) << "]";
if (offset != -1) {
if (offset != InvalidOffset) {
std::cout << " mem:";
std::cout << " [" << offset << "," << offset + size << "]";
std::cout << " [" << offset << "," << offset + size - 1 << "]";
}
std::cout << std::endl;
}
......@@ -181,13 +265,6 @@ void live_interval::dump()
std::cout << " " << GET_INS_ENUM(use) << ",";
}
if (!inactive_afters.empty()) {
std::cout << " inactivate:";
for (auto iter = inactive_afters.begin(), end = inactive_afters.end(); iter != end; ++iter) {
T_live_interval*& interval = *iter;
std::cout << " " << interval->id << ",";
}
}
if (isLiteral)
std::cout << " literal";
std::cout << " " << result;
......
......@@ -4,12 +4,14 @@
namespace migraph {
#define InvalidOffset -1
typedef struct live_range {
int begin; // begin point in the instruction stream.
int end; // end point in the instruction stream.
int offset; // offset to base pointer of allocated memory trunk.
long long offset; // offset to base pointer of allocated memory trunk.
int vn; // value number that identifies this live_range.
int size; // size of required memory in bytes
long long size; // size of required memory in bytes
#ifdef DEBUG_OPT
void dump();
#endif
......@@ -20,11 +22,12 @@ typedef struct live_interval {
void init() {
id = -1; isLiteral = false;
segment = { -1, -1, -1, -1, 0};
segment = { -1, -1, InvalidOffset, -1, 0};
}
void addUse(int use) { use_points.push_front(use); }
int get_begin() const { return segment.begin; }
int get_end() const { return segment.end; }
long long get_offset() const { return segment.offset; }
#ifdef DEBUG_OPT
void dump();
......@@ -33,9 +36,6 @@ typedef struct live_interval {
T_live_range segment;
int id;
std::list<int> use_points;
// Live intervals that are inactive when this live interval is enqueued.
// can be used for live interval collapsing.
std::list<struct live_interval*> inactive_afters;
shape result;
bool isLiteral;
......@@ -44,11 +44,13 @@ typedef struct live_interval {
struct memory_coloring_impl {
explicit memory_coloring_impl(program *p) : p_program(p)
{
instr2Live.clear();
live_intervals.clear();
live_ranges.clear();
conflict_table.clear();
num_of_lives = 0;
max_value_number = -1;
required_bytes = 0;
}
bool allocate(T_live_interval*);
void addConflicts(std::set<int>& live_set, int val)
......@@ -60,20 +62,43 @@ struct memory_coloring_impl {
}
void build();
void run();
void rewrite();
private:
bool isParam(const instruction_ref ins) { return ins->op.name() == "@param"; }
bool isOutputParam(const instruction_ref ins)
{
return isParam(ins) && any_cast<builtin::param>(ins->op).parameter == "output";
}
bool isScratchParam(const instruction_ref ins)
{
return isParam(ins) && any_cast<builtin::param>(ins->op).parameter == "scratch";
}
bool isAllocate(const instruction_ref ins) { return ins->op.name() == "hip::allocate"; }
bool isOutline(const instruction_ref ins) { return ins->op.name() == "@outline"; }
bool isLiteral(const instruction_ref ins) { return ins->op.name() == "@literal"; }
bool isCheckContext(const instruction_ref ins) { return ins->op.name() == "check_context"; }
bool isGPUTranspose(const instruction_ref ins) { return ins->op.name() == "gpu::transpose"; }
int getInputTieNdx(const instruction_ref ins) {
if (isGPUTranspose(ins))
return 0;
int cnt = -1;
for (auto&& arg : ins->arguments) {
cnt++;
if (isAllocate(arg))
return cnt;
}
return -1;
}
bool isDisjoin(T_live_range& range1, T_live_range& range2) {
long long end1 = range1.offset + range1.size - 1;
long long end2 = range2.offset + range2.size - 1;
return ((end1 < range2.offset) || (end2 < range1.offset));
}
#ifdef DEBUG_OPT
void dump(std::string);
void dump();
void dump(program*);
void verify();
#endif
struct ordering {
bool operator() (const T_live_interval* I1, const T_live_interval* I2) const
......@@ -94,6 +119,7 @@ struct memory_coloring_impl {
}
};
program* p_program;
std::unordered_map<const instruction*, T_live_interval*> instr2Live;
// Map live interval Id to live interval.
std::unordered_map<int, T_live_interval*> live_intervals;
// Map live range value number to live range.
......@@ -105,6 +131,7 @@ struct memory_coloring_impl {
int num_of_lives;
int max_value_number;
long long required_bytes;
};
} // namespace migraph
......
......@@ -18,6 +18,8 @@ hip_ptr allocate_gpu(std::size_t sz)
hipMalloc(&result, sz);
if (result == nullptr)
throw std::runtime_error("can not allocate GPU memory");
char * ptr = reinterpret_cast<char*>(result);
std::cout << "MIGraph allocated mem: [" << result << "," << ptr + sz -1 << "]" << std::endl;
return hip_ptr{result};
}
......@@ -69,6 +71,11 @@ migraph::argument from_gpu(migraph::argument arg)
return result;
}
void copy_to_gpu(char* dst, const char* src, std::size_t size)
{
hipMemcpy(dst, src, size, hipMemcpyHostToDevice);
}
} // namespace gpu
} // namespace migraph
......@@ -12,6 +12,8 @@ migraph::argument to_gpu(migraph::argument arg);
migraph::argument from_gpu(migraph::argument arg);
void copy_to_gpu(char* dst, const char* src, std::size_t size);
struct hip_allocate
{
std::string name() const { return "hip::allocate"; }
......@@ -40,6 +42,23 @@ struct hip_write
}
};
struct hip_memcpy
{
std::string name() const { return "hip_memcpy"; }
shape compute_shape(std::vector<shape> inputs) const
{
return inputs.at(2);
}
argument compute(context&, shape output_shape, std::vector<argument> args) const {
std::size_t * p_data = reinterpret_cast<std::size_t*>(args.at(1).data());
char* dst = args.at(0).data() + p_data[0];
const char* src = args.at(2).data();
std::size_t size = args.at(2).get_shape().bytes();
copy_to_gpu(dst, src, size);
return {output_shape, dst};
}
};
} // namespace gpu
} // namespace migraph
......
......@@ -11,12 +11,18 @@ void write_literals::apply(program& p) const
{
for(auto ins : iterator_for(p))
{
#if 0
if(ins->op.name() == "@literal")
{
literal l = ins->lit;
auto pre = p.add_literal(l);
p.replace_instruction(ins, hip_write{}, pre);
}
#else
if (ins->op.name() == "write_literal") {
p.replace_instruction(ins, hip_memcpy{}, ins->arguments);
}
#endif
}
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment