Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
6f768035
Commit
6f768035
authored
Dec 06, 2023
by
Umang Yadav
Browse files
Merge branch 'rocblas_mlir_fp8' into miopen_fp8
parents
da7717ce
b2542239
Changes
208
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1191 additions
and
375 deletions
+1191
-375
src/onnx/include/migraphx/onnx/pooling.hpp
src/onnx/include/migraphx/onnx/pooling.hpp
+12
-17
src/onnx/onnx.proto
src/onnx/onnx.proto
+193
-61
src/onnx/onnx_parser.cpp
src/onnx/onnx_parser.cpp
+23
-0
src/onnx/parse_multinomial.cpp
src/onnx/parse_multinomial.cpp
+3
-3
src/onnx/parse_pooling.cpp
src/onnx/parse_pooling.cpp
+11
-207
src/onnx/parse_qlinearpooling.cpp
src/onnx/parse_qlinearpooling.cpp
+115
-0
src/onnx/parse_qlinearunary.cpp
src/onnx/parse_qlinearunary.cpp
+151
-0
src/onnx/parse_scatternd.cpp
src/onnx/parse_scatternd.cpp
+7
-5
src/onnx/parse_unique.cpp
src/onnx/parse_unique.cpp
+92
-0
src/onnx/pooling.cpp
src/onnx/pooling.cpp
+247
-0
src/rewrite_pooling.cpp
src/rewrite_pooling.cpp
+131
-17
src/schedule.cpp
src/schedule.cpp
+2
-2
src/simplify_dyn_ops.cpp
src/simplify_dyn_ops.cpp
+134
-21
src/targets/cpu/dnnl.cpp
src/targets/cpu/dnnl.cpp
+2
-2
src/targets/cpu/lowering.cpp
src/targets/cpu/lowering.cpp
+12
-1
src/targets/cpu/pooling.cpp
src/targets/cpu/pooling.cpp
+13
-4
src/targets/gpu/CMakeLists.txt
src/targets/gpu/CMakeLists.txt
+0
-4
src/targets/gpu/compile_hip.cpp
src/targets/gpu/compile_hip.cpp
+27
-23
src/targets/gpu/compile_hip_code_object.cpp
src/targets/gpu/compile_hip_code_object.cpp
+1
-1
src/targets/gpu/device/include/migraphx/gpu/device/scan.hpp
src/targets/gpu/device/include/migraphx/gpu/device/scan.hpp
+15
-7
No files found.
src/include/migraphx/
eliminate_fp8
.hpp
→
src/
onnx/
include/migraphx/
onnx/pooling
.hpp
View file @
6f768035
...
...
@@ -21,31 +21,26 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_AMDMIGRAPHX_
ELIMINATE_FP8
_HPP
#define MIGRAPHX_GUARD_AMDMIGRAPHX_
ELIMINATE_FP8
_HPP
#ifndef MIGRAPHX_GUARD_AMDMIGRAPHX_
ONNX_POOLING
_HPP
#define MIGRAPHX_GUARD_AMDMIGRAPHX_
ONNX_POOLING
_HPP
#include <migraphx/config.hpp>
#include <migraphx/
shape
.hpp>
#include <
set
>
#include <
string
>
#include <migraphx/
onnx/onnx_parser
.hpp>
#include <
migraphx/onnx/op_parser.hpp
>
#include <
migraphx/instruction.hpp
>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
struct
module
;
value
handle_pooling_values
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
const
shape
&
in_shape
,
value
values
);
/**
This will insert convert operators for the operators that are not implemented for FP8 dtypes
*/
struct
MIGRAPHX_EXPORT
eliminate_fp8
{
// TODO: Add all device ops as a later PR and add tests for those.
std
::
set
<
std
::
string
>
op_names
;
shape
::
type_t
target_type
=
migraphx
::
shape
::
float_type
;
std
::
string
name
()
const
{
return
"eliminate_fp8"
;
}
void
apply
(
module
&
m
)
const
;
};
instruction_ref
add_pooling_op
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
instruction_ref
l0
);
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/onnx/onnx.proto
View file @
6f768035
...
...
@@ -3,8 +3,8 @@
//
//
Copyright (c) ONNX Project Contributors.
// Licensed under the MIT license.
//
SPDX-License-Identifier: Apache-2.0
syntax
=
"proto2"
;
...
...
@@ -20,23 +20,16 @@ package onnx_for_migraphx;
//
// This document describes the syntax of models and their computation graphs,
// as well as the standard data types. Together, they are referred to as the ONNX
// Intermediate Representation, or 'IR' for short.
// Intermediate Representation, or 'IR' for short.
//
// The normative semantic specification of the ONNX IR is found in docs/IR.md.
// Definitions of the built-in neural network operators may be found in docs/Operators.md.
// Notes
//
// Release
//
// We are still in the very early stage of defining ONNX. The current
// version of ONNX is a starting point. While we are actively working
// towards a complete spec, we would like to get the community involved
// by sharing our working version of ONNX.
//
// Protobuf compatibility
//
// To simplify framework compatibility, ONNX is defined using the subset of protobuf
//
// To simplify framework compatibility, ONNX is defined using the subset of protobuf
// that is compatible with both protobuf v2 and v3. This means that we do not use any
// protobuf features that are only available in one of the two versions.
//
...
...
@@ -60,7 +53,7 @@ enum Version {
_START_VERSION
=
0
;
// The version field is always serialized and we will use it to store the
// version that the graph is generated from. This helps us set up version
// control.
// control.
// For the IR, we are using simple numbers starting with 0x00000001,
// which was the version we published on Oct 10, 2017.
IR_VERSION_2017_10_10
=
0x0000000000000001
;
...
...
@@ -92,15 +85,28 @@ enum Version {
// - Add sparse initializers
IR_VERSION_2019_9_19
=
0x0000000000000006
;
// IR VERSION 7 published on <TBD>
// IR VERSION 7 published on May 8, 2020
// - Add support to allow function body graph to rely on multiple external opreator sets.
// - Add a list to promote inference graph's initializers to global and
// mutable variables. Global variables are visible in all graphs of the
// stored models.
// - Add message TrainingInfoProto to store initialization
// method and training algorithm. The execution of TrainingInfoProto
// can modify the values of mutable variables.
// - Make inference graph callable from TrainingInfoProto via GraphCall operator.
IR_VERSION
=
0x0000000000000007
;
// - Implicitly add inference graph into each TrainingInfoProto's algorithm.
IR_VERSION_2020_5_8
=
0x0000000000000007
;
// IR VERSION 8 published on July 30, 2021
// Introduce TypeProto.SparseTensor
// Introduce TypeProto.Optional
// Added a list of FunctionProtos local to the model
// Deprecated since_version and operator status from FunctionProto
IR_VERSION_2021_7_30
=
0x0000000000000008
;
// IR VERSION 9 published on TBD
// Added AttributeProto to FunctionProto so that default attribute values can be set.
// Added FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ.
IR_VERSION
=
0x0000000000000009
;
}
// Attributes
...
...
@@ -121,6 +127,7 @@ message AttributeProto {
TENSOR
=
4
;
GRAPH
=
5
;
SPARSE_TENSOR
=
11
;
TYPE_PROTO
=
13
;
FLOATS
=
6
;
INTS
=
7
;
...
...
@@ -128,11 +135,12 @@ message AttributeProto {
TENSORS
=
9
;
GRAPHS
=
10
;
SPARSE_TENSORS
=
12
;
TYPE_PROTOS
=
14
;
}
// The name field MUST be present for this version of the IR.
optional
string
name
=
1
;
// namespace Attribute
// if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
// In this case, this AttributeProto does not contain data, and it's a reference of attribute
// in parent scope.
...
...
@@ -159,6 +167,7 @@ message AttributeProto {
optional
SparseTensorProto
sparse_tensor
=
22
;
// sparse tensor value
// Do not use field below, it's deprecated.
// optional ValueProto v = 12; // value - subsumes everything but graph
optional
TypeProto
tp
=
14
;
// type proto
repeated
float
floats
=
7
;
// list of floats
repeated
int64
ints
=
8
;
// list of ints
...
...
@@ -166,6 +175,7 @@ message AttributeProto {
repeated
TensorProto
tensors
=
10
;
// list of tensors
repeated
GraphProto
graphs
=
11
;
// list of graph
repeated
SparseTensorProto
sparse_tensors
=
23
;
// list of sparse tensors
repeated
TypeProto
type_protos
=
15
;
// list of type protos
}
// Defines information on value, including the name, the type, and
...
...
@@ -185,7 +195,7 @@ message ValueInfoProto {
// Computation graphs are made up of a DAG of nodes, which represent what is
// commonly called a "layer" or "pipeline stage" in machine learning frameworks.
//
// For example, it can be a node of type "Conv" that takes in an image, a filter
// For example, it can be a node of type "Conv" that takes in an image, a filter
// tensor and a bias tensor, and produces the convolved output.
message
NodeProto
{
repeated
string
input
=
1
;
// namespace Value
...
...
@@ -211,7 +221,7 @@ message NodeProto {
// TrainingInfoProto stores information for training a model.
// In particular, this defines two functionalities: an initialization-step
// and a training-algorithm-step. Initialization resets the model
// back to its original state as if no training has been
consu
med.
// back to its original state as if no training has been
perfor
med.
// Training algorithm improves the model based on input data.
//
// The semantics of the initialization-step is that the initializers
...
...
@@ -224,8 +234,8 @@ message NodeProto {
// training algorithm's step. After the execution of a
// TrainingInfoProto.algorithm, the initializers specified by "update_binding"
// may be immediately updated. If the targeted training algorithm contains
// consecutive update st
ag
es (such as block coordinate descent methods),
// the user needs to create a TrainingInfoProto for each st
ag
e.
// consecutive update ste
p
s (such as block coordinate descent methods),
// the user needs to create a TrainingInfoProto for each ste
p
.
message
TrainingInfoProto
{
// This field describes a graph to compute the initial tensors
// upon starting the training process. Initialization graph has no input
...
...
@@ -239,24 +249,42 @@ message TrainingInfoProto {
// iteration to zero.
//
// By default, this field is an empty graph and its evaluation does not
// produce any output.
// produce any output.
Thus, no initializer would be changed by default.
optional
GraphProto
initialization
=
1
;
// This field represents a training algorithm step. Given required inputs,
// it computes outputs to update initializers in its own or inference graph's
// initializer lists. In general, this graph contains loss node, gradient node,
// optimizer node, increment of iteration count, and some calls to the inference
// graph.
// initializer lists. In general, this field contains loss node, gradient node,
// optimizer node, increment of iteration count.
//
// The field algorithm.node is the only place the user can use GraphCall
// operator. The only callable graph is the one stored in ModelProto.graph.
// An execution of the training algorithm step is performed by executing the
// graph obtained by combining the inference graph (namely "ModelProto.graph")
// and the "algorithm" graph. That is, the actual the actual
// input/initializer/output/node/value_info/sparse_initializer list of
// the training graph is the concatenation of
// "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
// and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
// in that order. This combined graph must satisfy the normal ONNX conditions.
// Now, let's provide a visualization of graph combination for clarity.
// Let the inference graph (i.e., "ModelProto.graph") be
// tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
// and the "algorithm" graph be
// tensor_d -> Add -> tensor_e
// The combination process results
// tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
//
// Notice that an input of a node in the "algorithm" graph may reference the
// output of a node in the inference graph (but not the other way round). Also, inference
// node cannot reference inputs of "algorithm". With these restrictions, inference graph
// can always be run independently without training information.
//
// By default, this field is an empty graph and its evaluation does not
// produce any output.
// produce any output. Evaluating the default training step never
// update any initializers.
optional
GraphProto
algorithm
=
2
;
// This field specifies the bindings from the outputs of "initialization" to
// some initializers in "ModelProto.graph.initializer" and
// some initializers in "ModelProto.graph.initializer" and
// the "algorithm.initializer" in the same TrainingInfoProto.
// See "update_binding" below for details.
//
...
...
@@ -284,23 +312,16 @@ message TrainingInfoProto {
// be multiple key-value pairs in "update_binding".
//
// The initializers appears as keys in "update_binding" are considered
// mutable
and globally-visible
variables. This implies some behaviors
// mutable variables. This implies some behaviors
// as described below.
//
// 1. We have only unique keys in all "update_binding"s so that two
global
// 1. We have only unique keys in all "update_binding"s so that two
// variables may not have the same name. This ensures that one
//
global
variable is assigned up to once.
// variable is assigned up to once.
// 2. The keys must appear in names of "ModelProto.graph.initializer" or
// "TrainingInfoProto.algorithm.initializer".
// 3. The values must be output names of "algorithm".
// 4. If an optional input of a graph is omitted when using GraphCall, the
// global variable with the same name may be used.
// 5. When using GraphCall, the users always can pass values to optional
// inputs of the called graph even if the associated initializers appears
// as keys in "update_binding"s.
// 6. The graphs in TrainingInfoProto's can use global variables as
// their operator inputs.
// 7. Mutable variables are initialized to the value specified by the
// 3. The values must be output names of "algorithm" or "ModelProto.graph.output".
// 4. Mutable variables are initialized to the value specified by the
// corresponding initializer, and then potentially updated by
// "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
//
...
...
@@ -375,13 +396,31 @@ message ModelProto {
//
// If this field is empty, the training behavior of the model is undefined.
repeated
TrainingInfoProto
training_info
=
20
;
// A list of function protos local to the model.
//
// Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
// In case of any conflicts the behavior (whether the model local functions are given higher priority,
// or standard opserator sets are given higher priotity or this is treated as error) is defined by
// the runtimes.
//
// The operator sets imported by FunctionProto should be compatible with the ones
// imported by ModelProto and other model local FunctionProtos.
// Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
// or by 2 FunctionProtos then versions for the operator set may be different but,
// the operator schema returned for op_type, domain, version combination
// for both the versions should be same for every node in the function body.
//
// One FunctionProto can reference other FunctionProto in the model, however, recursive reference
// is not allowed.
repeated
FunctionProto
functions
=
25
;
};
// StringStringEntryProto follows the pattern for cross-proto-version maps.
// See https://developers.google.com/protocol-buffers/docs/proto3#maps
message
StringStringEntryProto
{
optional
string
key
=
1
;
optional
string
value
=
2
;
optional
string
value
=
2
;
};
message
TensorAnnotation
{
...
...
@@ -397,7 +436,7 @@ message TensorAnnotation {
// Graphs
//
// A graph defines the computational logic of a model and is comprised of a parameterized
// A graph defines the computational logic of a model and is comprised of a parameterized
// list of nodes that form a directed acyclic graph based on their inputs and outputs.
// This is the equivalent of the "network" or "graph" in many deep learning
// frameworks.
...
...
@@ -409,8 +448,9 @@ message GraphProto {
optional
string
name
=
2
;
// namespace Graph
// A list of named tensor values, used to specify constant inputs of the graph.
// Each TensorProto entry must have a distinct name (within the list) that
// MAY also appear in the input list.
// Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
// The name MUST be unique across both initializer and sparse_initializer,
// but the name MAY also appear in the input list.
repeated
TensorProto
initializer
=
5
;
// Initializers (see above) stored in sparse format.
...
...
@@ -433,13 +473,8 @@ message GraphProto {
// which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
repeated
TensorAnnotation
quantization_annotation
=
14
;
// DO NOT USE the following fields, they were deprecated from earlier versions.
// repeated string input = 3;
// repeated string output = 4;
// optional int64 ir_version = 6;
// optional int64 producer_version = 7;
// optional string producer_tag = 8;
// optional string domain = 9;
reserved
3
,
4
,
6
to
9
;
reserved
"ir_version"
,
"producer_version"
,
"producer_tag"
,
"domain"
;
}
// Tensors
...
...
@@ -474,6 +509,17 @@ message TensorProto {
// This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits.
BFLOAT16
=
16
;
// Non-IEEE floating-point format based on papers
// FP8 Formats for Deep Learning, https://arxiv.org/abs/2209.05433,
// 8-bit Numerical Formats For Deep Neural Networks, https://arxiv.org/pdf/2206.02915.pdf.
// Operators supported FP8 are Cast, CastLike, QuantizeLinear, DequantizeLinear.
// The computation usually happens inside a block quantize / dequantize
// fused by the runtime.
FLOAT8E4M3FN
=
17
;
// float 8, mostly used for coefficients, supports nan, not inf
FLOAT8E4M3FNUZ
=
18
;
// float 8, mostly used for coefficients, supports nan, not inf, no negative zero
FLOAT8E5M2
=
19
;
// follows IEEE 754, supports nan, inf, mostly used for gradients
FLOAT8E5M2FNUZ
=
20
;
// follows IEEE 754, supports nan, inf, mostly used for gradients, no negative zero
// Future extensions go here.
}
...
...
@@ -507,11 +553,11 @@ message TensorProto {
// When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
repeated
float
float_data
=
4
[
packed
=
true
];
// For int32, uint8, int8, uint16, int16, bool, and float16 values
// float16 values must be bit-wise converted to an uint16_t prior
// For int32, uint8, int8, uint16, int16, bool,
float8,
and float16 values
// float16
and float8
values must be bit-wise converted to an uint16_t prior
// to writing to the buffer.
// When this field is present, the data_type field MUST be
// INT32, INT16, INT8, UINT16, UINT8, BOOL,
or
FLOAT16
// INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16
, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
repeated
int32
int32_data
=
5
[
packed
=
true
];
// For strings.
...
...
@@ -589,6 +635,8 @@ message TensorProto {
message
SparseTensorProto
{
// The sequence of non-default values are encoded as a tensor of shape [NNZ].
// The default-value is zero for numeric tensors, and empty-string for string tensors.
// values must have a non-empty name present which serves as a name for SparseTensorProto
// when used in sparse_initializer list.
optional
TensorProto
values
=
1
;
// The indices of the non-default values, which may be stored in one of two formats.
...
...
@@ -619,7 +667,7 @@ message TensorShapeProto {
// Standard denotation can optionally be used to denote tensor
// dimensions with standard semantic descriptions to ensure
// that operations are applied to the correct axis of a tensor.
// Refer to https://github.com/onnx/onnx/blob/ma
ster
/docs/DimensionDenotation.md#denotation-definition
// Refer to https://github.com/onnx/onnx/blob/ma
in
/docs/DimensionDenotation.md#denotation-definition
// for pre-defined dimension denotations.
optional
string
denotation
=
3
;
};
...
...
@@ -656,6 +704,23 @@ message TypeProto {
optional
TypeProto
value_type
=
2
;
};
// wrapper for Tensor, Sequence, or Map
message
Optional
{
// The type and optional shape of the element wrapped.
// This field MUST be present for this version of the IR.
// Possible values correspond to OptionalProto.DataType enum
optional
TypeProto
elem_type
=
1
;
};
message
SparseTensor
{
// This field MUST NOT have the value of UNDEFINED
// This field MUST have a valid TensorProto.DataType value
// This field MUST be present for this version of the IR.
optional
int32
elem_type
=
1
;
optional
TensorShapeProto
shape
=
2
;
}
oneof
value
{
// The type of a tensor.
...
...
@@ -672,11 +737,18 @@ message TypeProto {
// The type of a map.
Map
map_type
=
5
;
// The type of an optional.
Optional
optional_type
=
9
;
// Type of the sparse tensor
SparseTensor
sparse_tensor_type
=
8
;
}
// An optional denotation can be used to denote the whole
// type with a standard semantic description as to what is
// stored inside. Refer to https://github.com/onnx/onnx/blob/ma
ster
/docs/TypeDenotation.md#type-denotation-definition
// An optional denotation can be used to denote the whole
// type with a standard semantic description as to what is
// stored inside. Refer to https://github.com/onnx/onnx/blob/ma
in
/docs/TypeDenotation.md#type-denotation-definition
// for pre-defined type denotations.
optional
string
denotation
=
6
;
}
...
...
@@ -696,7 +768,67 @@ message OperatorSetIdProto {
optional
int64
version
=
2
;
}
// Operator/function status.
enum
OperatorStatus
{
EXPERIMENTAL
=
0
;
STABLE
=
1
;
}
message
FunctionProto
{
// The name of the function, similar usage of op_type in OperatorProto.
// Combined with FunctionProto.domain, this forms the unique identity of
// the FunctionProto.
optional
string
name
=
1
;
// Deprecated since IR Version 8
// optional int64 since_version = 2;
reserved
2
;
reserved
"since_version"
;
// Deprecated since IR Version 8
// optional OperatorStatus status = 3;
reserved
3
;
reserved
"status"
;
// The inputs and outputs of the function.
repeated
string
input
=
4
;
repeated
string
output
=
5
;
// The attribute parameters of the function.
// It is for function parameters without default values.
repeated
string
attribute
=
6
;
// The attribute protos of the function.
// It is for function attributes with default values.
// A function attribute shall be represented either as
// a string attribute or an AttributeProto, not both.
repeated
AttributeProto
attribute_proto
=
11
;
// The nodes in the function.
repeated
NodeProto
node
=
7
;
// A human-readable documentation for this function. Markdown is allowed.
optional
string
doc_string
=
8
;
// The OperatorSets this function body (graph) relies on.
//
// All nodes in the function body (graph) will bind against the operator
// with the same-domain/same-op_type operator with the HIGHEST version
// in the referenced operator sets. This means at most one version can be relied
// for one domain.
//
// The operator sets imported by FunctionProto should be compatible with the ones
// imported by ModelProto. Example, if same operator set say 'A' is imported by FunctionProto
// and ModelProto then versions for the operator set may be different but,
// the operator schema returned for op_type, domain, version combination
// for both the versions should be same.
// For using protobuf-lite
option
optimize_for
=
LITE_RUNTIME
;
repeated
OperatorSetIdProto
opset_import
=
9
;
// The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
// the FunctionProto.
optional
string
domain
=
10
;
}
// For using protobuf-lite
option
optimize_for
=
LITE_RUNTIME
;
\ No newline at end of file
src/onnx/onnx_parser.cpp
View file @
6f768035
...
...
@@ -34,7 +34,9 @@
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/float8.hpp>
#include <migraphx/env.hpp>
#include <onnx.pb.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -484,6 +486,8 @@ literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
case
onnx
::
AttributeProto
::
TENSORS
:
case
onnx
::
AttributeProto
::
SPARSE_TENSOR
:
case
onnx
::
AttributeProto
::
SPARSE_TENSORS
:
case
onnx
::
AttributeProto
::
TYPE_PROTOS
:
case
onnx
::
AttributeProto
::
TYPE_PROTO
:
case
onnx
::
AttributeProto
::
GRAPHS
:
return
{};
}
MIGRAPHX_THROW
(
"PARSE_VALUE: Invalid attribute type "
+
std
::
to_string
(
attr
.
type
()));
...
...
@@ -545,6 +549,18 @@ literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
case
onnx
::
TensorProto
::
DOUBLE
:
return
create_literal
(
shape
::
double_type
,
dims
,
t
.
double_data
());
case
onnx
::
TensorProto
::
FLOAT
:
return
create_literal
(
shape
::
float_type
,
dims
,
t
.
float_data
());
case
onnx
::
TensorProto
::
FLOAT8E4M3FNUZ
:
{
std
::
vector
<
int32_t
>
data_int32
(
t
.
int32_data
().
begin
(),
t
.
int32_data
().
end
());
std
::
vector
<
migraphx
::
fp8
::
fp8e4m3fnuz
>
data_fp8
;
std
::
transform
(
data_int32
.
begin
(),
data_int32
.
end
(),
std
::
back_inserter
(
data_fp8
),
[](
float
raw_val
)
{
return
migraphx
::
fp8
::
fp8e4m3fnuz
{
raw_val
};
});
return
create_literal
(
shape
::
fp8e4m3fnuz_type
,
dims
,
data_fp8
);
}
case
onnx
::
TensorProto
::
FLOAT8E5M2FNUZ
:
case
onnx
::
TensorProto
::
FLOAT8E5M2
:
case
onnx
::
TensorProto
::
FLOAT8E4M3FN
:
case
onnx
::
TensorProto
::
UNDEFINED
:
case
onnx
::
TensorProto
::
STRING
:
case
onnx
::
TensorProto
::
COMPLEX64
:
...
...
@@ -609,6 +625,13 @@ shape::type_t get_type(int dtype)
case
11
:
return
shape
::
double_type
;
case
12
:
return
shape
::
uint32_type
;
case
13
:
return
shape
::
uint64_type
;
case
18
:
return
shape
::
fp8e4m3fnuz_type
;
case
14
:
case
15
:
case
16
:
case
17
:
case
19
:
case
20
:
default:
{
MIGRAPHX_THROW
(
"Prototensor data type "
+
std
::
to_string
(
dtype
)
+
" not supported"
);
}
...
...
src/onnx/parse_multinomial.cpp
View file @
6f768035
...
...
@@ -127,9 +127,9 @@ struct parse_multinomial : op_parser<parse_multinomial>
// use literal. The array populated by random_uniform may have any shape, as long its
// number of elements is batch_size * sample_size .
size_t
batch_size
=
s0
.
lens
().
front
();
auto
rand_dummy
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
batch_size
*
sample_size
}}
);
auto
rand_dummy
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
batch_size
,
sample_size
}}
,
std
::
vector
<
float
>
(
batch_size
*
sample_size
)});
randoms
=
info
.
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
rand_dummy
);
}
...
...
src/onnx/parse_pooling.cpp
View file @
6f768035
...
...
@@ -22,14 +22,8 @@
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -39,68 +33,14 @@ struct parse_pooling : op_parser<parse_pooling>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"AveragePool"
,
"average"
},
{
"GlobalAveragePool"
,
"average"
},
{
"GlobalMaxPool"
,
"max"
},
{
"MaxPool"
,
"max"
},
{
"LpPool"
,
"lpnorm"
},
{
"GlobalLpPool"
,
"lpnorm"
}};
}
value
handle_values
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
const
shape
&
in_shape
,
value
values
)
const
{
auto
kdims
=
in_shape
.
ndim
()
-
2
;
if
(
starts_with
(
opd
.
onnx_name
,
"Global"
))
{
// if spatial dimensions are dynamic use dyn_global flag
if
(
in_shape
.
dynamic
()
and
std
::
any_of
(
in_shape
.
dyn_dims
().
cbegin
()
+
2
,
in_shape
.
dyn_dims
().
cend
(),
[](
auto
dd
)
{
return
not
dd
.
is_fixed
();
}))
{
values
[
"dyn_global"
]
=
true
;
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
();
}
else
{
// works with static and fixed dynamic shape
auto
m_lens
=
in_shape
.
max_lens
();
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
(
m_lens
.
begin
()
+
2
,
m_lens
.
end
());
}
}
if
(
contains
(
info
.
attributes
,
"ceil_mode"
))
{
values
[
"ceil_mode"
]
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"ceil_mode"
).
i
());
}
if
(
contains
(
info
.
attributes
,
"strides"
))
{
values
[
"stride"
].
clear
();
copy
(
info
.
attributes
[
"strides"
].
ints
(),
std
::
back_inserter
(
values
[
"stride"
]));
check_attr_sizes
(
kdims
,
values
[
"stride"
].
size
(),
"PARSE_POOLING: inconsistent strides"
);
}
if
(
contains
(
info
.
attributes
,
"kernel_shape"
))
{
values
[
"lengths"
].
clear
();
copy
(
info
.
attributes
[
"kernel_shape"
].
ints
(),
std
::
back_inserter
(
values
[
"lengths"
]));
check_attr_sizes
(
kdims
,
values
[
"lengths"
].
size
(),
"PARSE_POOLING: inconsistent lengths"
);
}
// lp_order attribute
if
(
contains
(
info
.
attributes
,
"p"
))
{
values
[
"lp_order"
]
=
info
.
attributes
.
at
(
"p"
).
i
();
}
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode
(
info
,
"POOLING"
);
return
values
;
return
{
{
"AveragePool"
,
"average"
},
{
"GlobalAveragePool"
,
"average"
},
{
"GlobalMaxPool"
,
"max"
},
{
"MaxPool"
,
"max"
},
{
"LpPool"
,
"lpnorm"
},
{
"GlobalLpPool"
,
"lpnorm"
},
};
}
instruction_ref
parse
(
const
op_desc
&
opd
,
...
...
@@ -108,144 +48,8 @@ struct parse_pooling : op_parser<parse_pooling>
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
std
::
string
mode
=
opd
.
op_name
;
const
std
::
unordered_map
<
std
::
string
,
op
::
pooling_mode
>
mode_map
=
{
{
"max"
,
op
::
pooling_mode
::
max
},
{
"average"
,
op
::
pooling_mode
::
average
},
{
"lpnorm"
,
op
::
pooling_mode
::
lpnorm
}};
if
(
not
contains
(
mode_map
,
mode
))
{
MIGRAPHX_THROW
(
"PARSE_POOLING: onnx pooling mode must be [
\"
max
\"
,
\"
average
\"
,
\"
lpnorm
\"
]"
);
}
operation
op
=
make_op
(
"pooling"
,
{{
"mode"
,
mode_map
.
at
(
mode
)}});
value
values
=
op
.
to_value
();
auto
l0
=
args
[
0
];
auto
in_shape
=
l0
->
get_shape
();
assert
(
in_shape
.
ndim
()
>
2
);
auto
kdims
=
in_shape
.
ndim
()
-
2
;
values
=
handle_values
(
opd
,
info
,
in_shape
,
values
);
// count include padding, if count include pad is 1, we always use
// explicit pad
int
count_include_pad
=
0
;
if
(
contains
(
info
.
attributes
,
"count_include_pad"
))
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape"
);
}
count_include_pad
=
info
.
attributes
.
at
(
"count_include_pad"
).
i
();
}
std
::
vector
<
int64_t
>
paddings
;
float
pad_val
=
((
mode
==
"max"
)
?
std
::
numeric_limits
<
float
>::
lowest
()
:
0.0
f
);
if
(
contains
(
info
.
attributes
,
"pads"
))
{
values
[
"padding"
].
clear
();
copy
(
info
.
attributes
[
"pads"
].
ints
(),
std
::
back_inserter
(
paddings
));
check_attr_sizes
(
kdims
,
paddings
.
size
()
/
2
,
"PARSE_POOLING: inconsistent explicit paddings"
);
}
if
(
paddings
.
size
()
!=
2
*
kdims
)
{
paddings
.
resize
(
kdims
*
2
);
std
::
fill_n
(
paddings
.
begin
(),
2
*
kdims
,
0
);
}
if
(
values
[
"padding"
].
size
()
!=
kdims
)
{
values
[
"padding"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"padding"
].
begin
(),
kdims
,
0
);
}
if
(
values
[
"stride"
].
size
()
!=
kdims
)
{
values
[
"stride"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"stride"
].
begin
(),
kdims
,
1
);
}
// used to calculate the supposed output shape
std
::
vector
<
int64_t
>
orig_padding
=
paddings
;
// TODO: add parsing for dilations
if
(
contains
(
info
.
attributes
,
"auto_pad"
)
and
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
())
!=
"NOTSET"
)
{
auto
auto_pad
=
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
());
// don't use the given padding sizes, if any
// values["padding"].clear();
if
(
in_shape
.
dynamic
())
{
// set padding_mode to trigger auto padding at runtime
bool
is_same_upper
=
(
auto_pad
.
find
(
"SAME_UPPER"
)
!=
std
::
string
::
npos
);
values
[
"padding_mode"
]
=
is_same_upper
?
to_value
(
op
::
padding_mode_t
::
same_upper
)
:
to_value
(
op
::
padding_mode_t
::
same_lower
);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size
(
info
,
values
,
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
std
::
vector
<
size_t
>
(
in_shape
.
ndim
()
-
2
,
1
),
in_shape
.
lens
(),
paddings
);
values
[
"padding"
]
=
paddings
;
// default padding_mode indicates that padding sizes are not calculated dynamically
values
[
"padding_mode"
]
=
migraphx
::
op
::
padding_mode_t
::
default_
;
}
}
std
::
vector
<
int64_t
>
slice_start
;
std
::
vector
<
int64_t
>
slice_end
;
tune_padding_size
(
values
,
paddings
,
count_include_pad
,
slice_start
);
if
(
not
slice_start
.
empty
())
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape"
);
}
// calculate expected output shape
orig_padding
.
insert
(
orig_padding
.
begin
()
+
kdims
,
2
,
0
);
orig_padding
.
insert
(
orig_padding
.
begin
(),
2
,
0
);
op
::
pad
pad
{
orig_padding
,
0.0
f
};
shape
padded_shape
=
pad
.
compute_shape
({
l0
->
get_shape
()});
// make an op just to get its output shape
auto
out_lens
=
make_op
(
"pooling"
,
values
).
compute_shape
({
padded_shape
}).
lens
();
// compute slice_end information
slice_end
.
resize
(
slice_start
.
size
());
std
::
transform
(
out_lens
.
begin
()
+
2
,
out_lens
.
end
(),
slice_start
.
begin
(),
slice_end
.
begin
(),
[](
auto
i
,
auto
j
)
{
return
i
+
j
;
});
}
values
[
"padding"
]
=
std
::
vector
<
size_t
>
(
paddings
.
begin
(),
paddings
.
end
());
check_asym_padding
(
info
,
l0
,
paddings
,
values
,
count_include_pad
,
pad_val
);
op
.
from_value
(
values
);
auto
l1
=
info
.
add_instruction
(
op
,
l0
);
if
(
not
slice_start
.
empty
())
{
std
::
vector
<
int64_t
>
axes
(
kdims
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
2
);
l1
=
info
.
add_instruction
(
make_op
(
"slice"
,
{{
"axes"
,
axes
},
{
"starts"
,
slice_start
},
{
"ends"
,
slice_end
}}),
l1
);
}
return
l1
;
}
return
add_pooling_op
(
opd
,
std
::
move
(
info
),
args
[
0
]);
};
};
}
// namespace onnx
...
...
src/onnx/parse_qlinear
glavg
pool.cpp
→
src/onnx/parse_qlinearpool
ing
.cpp
View file @
6f768035
...
...
@@ -23,6 +23,7 @@
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
...
...
@@ -36,90 +37,56 @@ namespace onnx {
/*
*********************************************************************************
* Reference: see QLinear
GlobalAveragePool in
*
* Reference: see QLinear
AveragePool and QLinearGlobalAveragePool in
*
* github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
*/
QLinearGlobalAveragePool consumes an input tensor X and applies
Average pooling across the values in the same channel. This is
equivalent to AveragePool with kernel size equal to the spatial
dimension of input tensor. Input is of type uint8_t or int8_t.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
channels_last : int
Inputs
X : T
Input data tensor from the previous operator; According to channels_last, dimensions for image case
are (N x C x H x W), or (N x H x W x C) where N is the batch size, C is the number of channels, and
H and W are the height and the width of the data. For non image case, the dimensions are in the form
of (N x C x D1 x D2 ... Dn), or (N x D1 X D2 ... Dn x C) where N is the batch size.
x_scale : tensor(float)
Scale of quantized input 'X'. It must be a scalar.
x_zero_point : T
Zero point tensor for input 'X'. It must be a scalar.
y_scale : tensor(float)
Scale of quantized output 'Y'. It must be a scalar.
y_zero_point : T
Zero point tensor for output 'Y'. It must be a scalar.
Outputs
Y : T
Output data tensor from pooling across the input tensor. The output tensor has the same rank as the
input. with the N and C value keep it value, while the other dimensions are all 1. Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to signed/unsigned int8 tensors.
*/
struct
parse_qlinearglobalaveragepool
:
op_parser
<
parse_qlinearglobalaveragepool
>
struct
parse_qlinearpooling
:
op_parser
<
parse_qlinearpooling
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearGlobalAveragePool"
}};
}
// basic type checking for QLinearGlobalAveragePool Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
std
::
vector
<
op_desc
>
operators
()
const
{
if
(
args
.
size
()
<
5
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: missing inputs"
);
return
{{
"QLinearGlobalAveragePool"
,
"average"
},
{
"QLinearAveragePool"
,
"average"
}};
}
const
auto
&
in_x
=
args
[
0
];
const
auto
&
zero_pt_x
=
args
[
2
];
const
auto
&
zero_pt_y
=
args
[
4
];
void
check_inputs
(
const
op_desc
&
opd
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
const
auto
&
in_x
=
args
[
0
];
const
auto
onnx_name
=
opd
.
onnx_name
;
if
(
in_x
->
get_shape
().
ndim
()
<=
2
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL
: input dimensions too small"
);
MIGRAPHX_THROW
(
onnx_name
+
"
: input dimensions too small"
);
auto
type_x
=
in_x
->
get_shape
().
type
();
if
(
type_x
!=
migraphx
::
shape
::
int8_type
and
type_x
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL
: unsupported input type"
);
MIGRAPHX_THROW
(
onnx_name
+
"
: unsupported input type"
);
const
auto
&
zero_pt_x
=
args
[
2
];
if
(
type_x
!=
zero_pt_x
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: input zero point"
);
if
(
type_x
!=
zero_pt_y
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: output zero point"
);
MIGRAPHX_THROW
(
onnx_name
+
": mismatched type: input zero point"
);
if
(
args
.
size
()
==
5
)
{
const
auto
&
zero_pt_y
=
args
[
4
];
if
(
type_x
!=
zero_pt_y
->
get_shape
().
type
())
MIGRAPHX_THROW
(
onnx_name
+
": mismatched type: output zero point"
);
}
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
int
channels_last
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"channels_last"
)).
template
at
<
int
>();
if
(
channels_last
!=
0
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: channels_last (N x D1..Dn x C) is not supported"
);
if
(
contains
(
info
.
attributes
,
"channel_last"
))
{
int
channels_last
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"channels_last"
)).
template
at
<
int
>();
if
(
channels_last
!=
0
)
MIGRAPHX_THROW
(
opd
.
onnx_name
+
": channels_last (N x D1..Dn x C) is not supported"
);
}
check_inputs
(
args
);
check_inputs
(
opd
,
args
);
// Input: X
...
...
@@ -128,21 +95,18 @@ struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool
const
auto
&
zero_pt_x
=
args
[
2
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
scale_x
,
zero_pt_x
,
info
);
// Output Y = globalaveragepool(X)
auto
op
=
migraphx
::
op
::
pooling
{
migraphx
::
op
::
pooling_mode
::
average
};
auto
lens
=
in_x
->
get_shape
().
lens
();
std
::
vector
<
size_t
>
lengths
(
lens
.
begin
()
+
2
,
lens
.
end
());
op
.
lengths
=
lengths
;
op
.
padding
=
std
::
vector
<
size_t
>
(
lens
.
size
());
auto
out_y
=
info
.
add_instruction
(
op
,
dquant_x
);
// Output Y = pooling_op(X)
const
auto
&
scale_y
=
args
[
3
];
const
auto
&
zero_pt_y
=
args
[
4
];
auto
out_y
=
add_pooling_op
(
opd
,
info
,
dquant_x
);
auto
out_quant_y
=
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
scale_y
,
zero_pt_y
,
info
);
const
auto
&
in_scale_y
=
args
[
3
];
// zero_pt for Y is supplied as the last optional argument..
if
(
args
.
size
()
==
5
)
return
(
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
in_scale_y
,
args
[
4
],
info
));
return
out_quant_y
;
// if no zero_pt: just broadcast the scale..
auto
bcast_scale_y
=
bcast_scalar_instr
(
out_y
->
get_shape
(),
in_scale_y
,
info
);
return
(
info
.
add_instruction
(
migraphx
::
make_op
(
"quantizelinear"
),
out_y
,
bcast_scale_y
));
}
};
...
...
src/onnx/parse_qlinearunary.cpp
0 → 100644
View file @
6f768035
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/common.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearSigmoid, QLinearLeakyRelu in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearSigmoid
QLinearSigmoid takes quantized input data (Tensor), and quantize parameter for output, and produces
one output data (Tensor) where the function f(x) = quantize(Sigmoid(dequantize(x))), is applied to
the data tensor elementwise. Where the function Sigmoid(x) = 1 / (1 + exp(-x))
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
*****************************************************************************************************
com.microsoft.QLinearLeakyRelu
QLinearLeakyRelu takes quantized input data (Tensor), an argument alpha, and quantize parameter for
output, and produces one output data (Tensor) where the function f(x) = quantize(alpha *
dequantize(x)) for dequantize(x) < 0, f(x) = quantize(dequantize(x)) for dequantize(x) >= 0, is
applied to the data tensor elementwise.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
alpha : float
Coefficient of leakage.
******************************************************************************************************
Generic input layout of QLinear unary operators:
Inputs (4 - 5)
X : T
Input tensor
X_scale : tensor(float)
Input X's scale. It's a scalar, which means a per-tensor/layer quantization.
X_zero_point (optional) : T
Input X's zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
Y_scale : tensor(float) Output Y's scale. It's a scalar, which means
a per-tensor/layer quantization.
Y_zero_point (optional) : T Output Y's zero point. Default value is
0 if it's not specified. It's a scalar, which means a per-tensor/layer quantization.
Outputs
Y : T
Output tensor
Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to 8 bit tensors.
*/
struct
parse_qlinearunary
:
op_parser
<
parse_qlinearunary
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearSigmoid"
,
"sigmoid"
},
{
"QLinearLeakyRelu"
,
"leaky_relu"
}};
}
void
check_inputs
(
const
op_desc
&
opd
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
if
(
args
.
size
()
<
4
)
MIGRAPHX_THROW
(
opd
.
op_name
+
": missing inputs"
);
const
auto
&
in_x
=
args
[
0
];
auto
sh_x
=
in_x
->
get_shape
();
auto
type_x
=
sh_x
.
type
();
if
(
type_x
!=
migraphx
::
shape
::
int8_type
and
type_x
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
opd
.
op_name
+
": unsupported input type"
);
}
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
opd
,
args
);
// X
const
auto
&
in_x
=
args
[
0
];
const
auto
&
in_scale_x
=
args
[
1
];
const
auto
&
in_zero_pt_x
=
args
[
2
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
in_scale_x
,
in_zero_pt_x
,
info
);
// Y = (op(dequantizelinear(x))
auto
op
=
parser
.
load
(
opd
.
op_name
,
info
);
auto
y
=
info
.
add_instruction
(
op
,
dquant_x
);
const
auto
&
in_scale_y
=
args
[
3
];
// zero_pt for Y is supplied as the last optional argument..
if
(
args
.
size
()
==
5
)
return
(
bcast_qdq_instr
(
"quantizelinear"
,
y
,
in_scale_y
,
args
[
4
],
info
));
// if no zero_pt: just broadcast the scale..
auto
bcast_scale_sigm
=
bcast_scalar_instr
(
y
->
get_shape
(),
in_scale_y
,
info
);
return
(
info
.
add_instruction
(
migraphx
::
make_op
(
"quantizelinear"
),
y
,
bcast_scale_sigm
));
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_scatternd.cpp
View file @
6f768035
...
...
@@ -39,15 +39,17 @@ struct parse_scatternd : op_parser<parse_scatternd>
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>&
args
)
const
{
std
::
string
reduction
=
"none"
;
if
(
contains
(
info
.
attributes
,
"reduction"
))
{
if
(
info
.
attributes
.
at
(
"reduction"
).
s
()
==
"add"
)
return
info
.
add_instruction
(
migraphx
::
make_op
(
"scatternd_add"
),
args
);
if
(
info
.
attributes
.
at
(
"reduction"
).
s
()
==
"mul"
)
return
info
.
add_instruction
(
migraphx
::
make_op
(
"scatternd_mul"
),
args
);
reduction
=
info
.
attributes
.
at
(
"reduction"
).
s
();
if
(
not
contains
({
"none"
,
"add"
,
"mul"
,
"min"
,
"max"
},
reduction
))
{
MIGRAPHX_THROW
(
"PARSE_SCATTERND: unsupported reduction mode "
+
reduction
);
}
}
return
info
.
add_instruction
(
migraphx
::
make_op
(
"scatternd_
none"
),
args
);
return
info
.
add_instruction
(
migraphx
::
make_op
(
"scatternd_
"
+
reduction
),
args
);
}
};
...
...
src/onnx/parse_unique.cpp
0 → 100644
View file @
6f768035
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp>
#include <optional>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
// generate unique output stream y, given input stream x;
//
// case unsorted:
// input x: [2, 1, 1, 3, 4, 3], attr_sorted = 0;
// output(s):
// y: [2, 1, 3, 4] --- the unique output
// y_indices: [0, 1, 3, 4] --- first incidence, in terms of indices of x
// x_rev_indices: [0, 1, 1, 2, 3, 2] --- x seen in terms of indices of y
// y_count: [1, 2, 2, 1] -- count at each y_index. sum = len(x)
//
// case sorted:
// input x: [2, 1, 1, 3, 4, 3], attr_sorted = 1;
// output(s):
// y: [1, 2, 3, 4] --- the unique output
// y_indices: [1, 0, 3, 4] --- first incidence, in terms of indices of x
// x_rev_indices: [1, 0, 0, 2, 3, 2] --- x seen in terms of indices of y
// y_count: [2, 1, 2, 1] -- count at each y_index. sum = len(x)
struct
parse_unique
:
op_parser
<
parse_unique
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"Unique"
}};
}
std
::
vector
<
instruction_ref
>
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
int64_t
sorted
=
1
;
// default = sorted.
if
(
contains
(
info
.
attributes
,
"sorted"
))
sorted
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"sorted"
)).
at
<
int
>
();
std
::
optional
<
int64_t
>
axis
;
if
(
contains
(
info
.
attributes
,
"axis"
))
{
auto
n_dim
=
args
[
0
]
->
get_shape
().
ndim
();
axis
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"axis"
)).
at
<
int
>
();
axis
=
tune_axis
(
n_dim
,
*
axis
,
opd
.
op_name
);
}
migraphx
::
argument
data_arg
=
args
.
back
()
->
eval
();
auto
opr
=
axis
?
migraphx
::
make_op
(
"unique"
,
{{
"axis"
,
*
axis
},
{
"sorted"
,
sorted
}})
:
migraphx
::
make_op
(
"unique"
,
{{
"sorted"
,
sorted
}});
auto
u_opr
=
info
.
add_instruction
(
opr
,
args
.
at
(
0
));
auto
i_y
=
info
.
add_instruction
(
make_op
(
"get_tuple_elem"
,
{{
"index"
,
0
}}),
u_opr
);
auto
i_y_idx
=
info
.
add_instruction
(
make_op
(
"get_tuple_elem"
,
{{
"index"
,
1
}}),
u_opr
);
auto
i_x_idx
=
info
.
add_instruction
(
make_op
(
"get_tuple_elem"
,
{{
"index"
,
2
}}),
u_opr
);
auto
i_count
=
info
.
add_instruction
(
make_op
(
"get_tuple_elem"
,
{{
"index"
,
3
}}),
u_opr
);
return
{
i_y
,
i_y_idx
,
i_x_idx
,
i_count
};
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/pooling.cpp
0 → 100644
View file @
6f768035
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/ranges.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
value
handle_pooling_values
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
const
shape
&
in_shape
,
value
values
)
{
auto
kdims
=
in_shape
.
ndim
()
-
2
;
if
(
starts_with
(
opd
.
onnx_name
,
"Global"
)
or
starts_with
(
opd
.
onnx_name
,
"QLinearGlobal"
))
{
// if spatial dimensions are dynamic use dyn_global flag
if
(
in_shape
.
dynamic
()
and
std
::
any_of
(
in_shape
.
dyn_dims
().
cbegin
()
+
2
,
in_shape
.
dyn_dims
().
cend
(),
[](
auto
dd
)
{
return
not
dd
.
is_fixed
();
}))
{
values
[
"dyn_global"
]
=
true
;
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
();
}
else
{
// works with static and fixed dynamic shape
auto
m_lens
=
in_shape
.
max_lens
();
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
(
m_lens
.
begin
()
+
2
,
m_lens
.
end
());
}
}
if
(
contains
(
info
.
attributes
,
"ceil_mode"
))
{
values
[
"ceil_mode"
]
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"ceil_mode"
).
i
());
}
if
(
contains
(
info
.
attributes
,
"strides"
))
{
values
[
"stride"
].
clear
();
copy
(
info
.
attributes
[
"strides"
].
ints
(),
std
::
back_inserter
(
values
[
"stride"
]));
check_attr_sizes
(
kdims
,
values
[
"stride"
].
size
(),
"PARSE_POOLING: inconsistent strides"
);
}
if
(
contains
(
info
.
attributes
,
"kernel_shape"
))
{
values
[
"lengths"
].
clear
();
copy
(
info
.
attributes
[
"kernel_shape"
].
ints
(),
std
::
back_inserter
(
values
[
"lengths"
]));
check_attr_sizes
(
kdims
,
values
[
"lengths"
].
size
(),
"PARSE_POOLING: inconsistent lengths"
);
}
if
(
contains
(
info
.
attributes
,
"dilations"
))
{
values
[
"dilations"
].
clear
();
copy
(
info
.
attributes
[
"dilations"
].
ints
(),
std
::
back_inserter
(
values
[
"dilations"
]));
check_attr_sizes
(
kdims
,
values
[
"dilations"
].
size
(),
"PARSE_POOLING: inconsistent dilations"
);
}
// lp_order attribute
if
(
contains
(
info
.
attributes
,
"p"
))
{
values
[
"lp_order"
]
=
info
.
attributes
.
at
(
"p"
).
i
();
}
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode
(
info
,
"POOLING"
);
return
values
;
}
instruction_ref
add_pooling_op
(
const
op_desc
&
opd
,
onnx_parser
::
node_info
info
,
instruction_ref
l0
)
{
std
::
string
mode
=
opd
.
op_name
;
const
std
::
unordered_map
<
std
::
string
,
op
::
pooling_mode
>
mode_map
=
{
{
"max"
,
op
::
pooling_mode
::
max
},
{
"average"
,
op
::
pooling_mode
::
average
},
{
"lpnorm"
,
op
::
pooling_mode
::
lpnorm
}};
if
(
not
contains
(
mode_map
,
mode
))
{
MIGRAPHX_THROW
(
"PARSE_POOLING: onnx pooling mode must be [
\"
max
\"
,
\"
average
\"
,
\"
lpnorm
\"
]"
);
}
operation
op
=
make_op
(
"pooling"
,
{{
"mode"
,
mode_map
.
at
(
mode
)}});
value
values
=
op
.
to_value
();
auto
in_shape
=
l0
->
get_shape
();
assert
(
in_shape
.
ndim
()
>
2
);
auto
kdims
=
in_shape
.
ndim
()
-
2
;
values
=
handle_pooling_values
(
opd
,
info
,
in_shape
,
values
);
// count include padding, if count include pad is 1, we always use
// explicit pad
int
count_include_pad
=
0
;
if
(
contains
(
info
.
attributes
,
"count_include_pad"
))
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape"
);
}
count_include_pad
=
info
.
attributes
.
at
(
"count_include_pad"
).
i
();
}
std
::
vector
<
int64_t
>
paddings
;
float
pad_val
=
((
mode
==
"max"
)
?
std
::
numeric_limits
<
float
>::
lowest
()
:
0.0
f
);
if
(
contains
(
info
.
attributes
,
"pads"
))
{
values
[
"padding"
].
clear
();
copy
(
info
.
attributes
[
"pads"
].
ints
(),
std
::
back_inserter
(
paddings
));
check_attr_sizes
(
kdims
,
paddings
.
size
()
/
2
,
"PARSE_POOLING: inconsistent explicit paddings"
);
}
if
(
paddings
.
size
()
!=
2
*
kdims
)
{
paddings
.
resize
(
kdims
*
2
);
std
::
fill_n
(
paddings
.
begin
(),
2
*
kdims
,
0
);
}
if
(
values
[
"padding"
].
size
()
!=
kdims
)
{
values
[
"padding"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"padding"
].
begin
(),
kdims
,
0
);
}
if
(
values
[
"stride"
].
size
()
!=
kdims
)
{
values
[
"stride"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"stride"
].
begin
(),
kdims
,
1
);
}
if
(
values
[
"dilations"
].
size
()
!=
kdims
)
{
values
[
"dilations"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"dilations"
].
begin
(),
kdims
,
1
);
}
// used to calculate the supposed output shape
std
::
vector
<
int64_t
>
orig_padding
=
paddings
;
// TODO: add parsing for dilations
if
(
contains
(
info
.
attributes
,
"auto_pad"
)
and
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
())
!=
"NOTSET"
)
{
auto
auto_pad
=
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
());
// don't use the given padding sizes, if any
// values["padding"].clear();
if
(
in_shape
.
dynamic
())
{
// set padding_mode to trigger auto padding at runtime
bool
is_same_upper
=
(
auto_pad
.
find
(
"SAME_UPPER"
)
!=
std
::
string
::
npos
);
values
[
"padding_mode"
]
=
is_same_upper
?
to_value
(
op
::
padding_mode_t
::
same_upper
)
:
to_value
(
op
::
padding_mode_t
::
same_lower
);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size
(
info
,
values
,
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
values
[
"dilations"
].
to_vector
<
std
::
size_t
>
(),
in_shape
.
lens
(),
paddings
);
values
[
"padding"
]
=
paddings
;
// default padding_mode indicates that padding sizes are not calculated dynamically
values
[
"padding_mode"
]
=
migraphx
::
op
::
padding_mode_t
::
default_
;
}
}
std
::
vector
<
int64_t
>
slice_start
;
std
::
vector
<
int64_t
>
slice_end
;
tune_padding_size
(
values
,
paddings
,
count_include_pad
,
slice_start
);
if
(
not
slice_start
.
empty
())
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape"
);
}
// calculate expected output shape
orig_padding
.
insert
(
orig_padding
.
begin
()
+
kdims
,
2
,
0
);
orig_padding
.
insert
(
orig_padding
.
begin
(),
2
,
0
);
op
::
pad
pad
{
orig_padding
,
0.0
f
};
shape
padded_shape
=
pad
.
compute_shape
({
l0
->
get_shape
()});
// make an op just to get its output shape
auto
out_lens
=
make_op
(
"pooling"
,
values
).
compute_shape
({
padded_shape
}).
lens
();
// compute slice_end information
slice_end
.
resize
(
slice_start
.
size
());
std
::
transform
(
out_lens
.
begin
()
+
2
,
out_lens
.
end
(),
slice_start
.
begin
(),
slice_end
.
begin
(),
[](
auto
i
,
auto
j
)
{
return
i
+
j
;
});
}
values
[
"padding"
]
=
std
::
vector
<
size_t
>
(
paddings
.
begin
(),
paddings
.
end
());
check_asym_padding
(
info
,
l0
,
paddings
,
values
,
count_include_pad
,
pad_val
);
op
.
from_value
(
values
);
auto
l1
=
info
.
add_instruction
(
op
,
l0
);
if
(
not
slice_start
.
empty
())
{
std
::
vector
<
int64_t
>
axes
(
kdims
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
2
);
l1
=
info
.
add_instruction
(
make_op
(
"slice"
,
{{
"axes"
,
axes
},
{
"starts"
,
slice_start
},
{
"ends"
,
slice_end
}}),
l1
);
}
return
l1
;
}
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/rewrite_pooling.cpp
View file @
6f768035
...
...
@@ -35,6 +35,110 @@
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
static
void
replace_with_reduce
(
module
&
m
,
instruction_ref
ins
)
{
auto
&&
s
=
ins
->
inputs
().
front
()
->
get_shape
();
auto
&&
op
=
any_cast
<
op
::
pooling
>
(
ins
->
get_operator
());
auto
lens
=
s
.
lens
();
std
::
vector
<
std
::
int64_t
>
axes
(
lens
.
size
()
-
2
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
2
);
// average pooling
if
(
op
.
mode
==
op
::
pooling_mode
::
average
)
{
m
.
replace_instruction
(
ins
,
make_op
(
"reduce_mean"
,
{{
"axes"
,
axes
}}),
ins
->
inputs
());
}
// max pooling
else
{
m
.
replace_instruction
(
ins
,
make_op
(
"reduce_max"
,
{{
"axes"
,
axes
}}),
ins
->
inputs
());
}
}
static
void
replace_dilations_with_gather_pooling
(
module
&
m
,
instruction_ref
ins
)
{
// TODO remove this when MIOpen supports dilated pooling
auto
&&
s
=
ins
->
inputs
().
front
()
->
get_shape
();
auto
&&
op
=
any_cast
<
op
::
pooling
>
(
ins
->
get_operator
());
// Ignore N, C axes
std
::
vector
<
size_t
>
dims
=
{
s
.
lens
().
cbegin
()
+
2
,
s
.
lens
().
cend
()};
bool
default_padding
=
std
::
all_of
(
op
.
padding
.
cbegin
(),
op
.
padding
.
cend
(),
[](
auto
i
)
{
return
i
==
0
;
});
if
(
not
default_padding
)
{
for
(
size_t
idx
{
0
};
idx
<
op
.
padding
.
size
();
++
idx
)
{
// We need to pad both ends
dims
[
idx
]
+=
op
.
padding
.
at
(
idx
)
*
2
;
}
}
std
::
vector
<
size_t
>
kernels
=
op
.
lengths
;
std
::
vector
<
size_t
>
strides
=
op
.
stride
;
std
::
vector
<
size_t
>
dilations
=
op
.
dilations
;
std
::
vector
<
std
::
vector
<
int
>>
axis_indices
;
axis_indices
.
resize
(
dims
.
size
());
for
(
auto
idx
{
0
};
idx
<
dims
.
size
();
++
idx
)
{
// Only consider if iw fits into the window
for
(
size_t
stride
{
0
};
stride
<
dims
.
at
(
idx
)
-
dilations
.
at
(
idx
)
*
(
kernels
.
at
(
idx
)
-
1
);
stride
+=
strides
.
at
(
idx
))
{
for
(
size_t
step
{
0
};
step
<
kernels
.
at
(
idx
);
++
step
)
{
axis_indices
.
at
(
idx
).
push_back
(
stride
+
dilations
.
at
(
idx
)
*
step
);
}
}
}
auto
elements
=
ins
->
inputs
().
front
();
if
(
not
default_padding
)
{
// Pad supports asym, we need to provide both ends
std
::
vector
<
size_t
>
padding
(
2
*
s
.
lens
().
size
(),
0
);
// Format will be e.g {N, C, P1, P2, N, C, P1, P2}
for
(
size_t
idx
{
0
};
idx
<
op
.
padding
.
size
();
++
idx
)
{
// Ignore N, C axes
padding
.
at
(
2
+
idx
)
=
op
.
padding
.
at
(
idx
);
padding
.
at
(
2
+
idx
+
s
.
lens
().
size
())
=
op
.
padding
.
at
(
idx
);
}
// Default value needed for Max pooling
elements
=
m
.
insert_instruction
(
ins
,
make_op
(
"pad"
,
{{
"pads"
,
padding
},
{
"value"
,
std
::
numeric_limits
<
float
>::
lowest
()}}),
elements
);
}
for
(
auto
idx
{
0
};
idx
<
axis_indices
.
size
();
++
idx
)
{
migraphx
::
shape
s_indices
{
migraphx
::
shape
::
int32_type
,
{
axis_indices
.
at
(
idx
).
size
()}};
auto
indices
=
m
.
add_literal
(
migraphx
::
literal
{
s_indices
,
axis_indices
.
at
(
idx
)});
elements
=
m
.
insert_instruction
(
ins
,
make_op
(
"gather"
,
{{
"axis"
,
idx
+
2
/*ignore N,C*/
}}),
elements
,
indices
);
}
// Ignore padding
std
::
vector
<
size_t
>
new_padding
(
kernels
.
size
(),
0
);
// The kernel window elements are places next to each other. E.g. {x1, y1, x2, y2, ...}
// We need to skip them to not overlap
std
::
vector
<
size_t
>
new_strides
(
kernels
);
// Ignore dilations
std
::
vector
<
size_t
>
new_dilations
(
kernels
.
size
(),
1
);
m
.
replace_instruction
(
ins
,
make_op
(
"pooling"
,
{{
"mode"
,
op
.
mode
},
{
"padding"
,
new_padding
},
{
"stride"
,
new_strides
},
{
"lengths"
,
kernels
},
{
"dilations"
,
new_dilations
}}),
elements
);
}
void
rewrite_pooling
::
apply
(
module
&
m
)
const
{
for
(
auto
ins
:
iterator_for
(
m
))
...
...
@@ -43,26 +147,36 @@ void rewrite_pooling::apply(module& m) const
continue
;
if
(
ins
->
inputs
().
empty
())
continue
;
auto
&&
s
=
ins
->
inputs
().
front
()
->
get_shape
();
auto
&&
op
=
any_cast
<
op
::
pooling
>
(
ins
->
get_operator
());
if
(
not
std
::
all_of
(
op
.
padding
.
begin
(),
op
.
padding
.
end
(),
[](
auto
i
)
{
return
i
==
0
;
}))
continue
;
if
(
not
std
::
all_of
(
op
.
stride
.
begin
(),
op
.
stride
.
end
(),
[](
auto
i
)
{
return
i
==
1
;
}))
continue
;
auto
lens
=
s
.
lens
();
if
(
not
std
::
equal
(
lens
.
begin
()
+
2
,
lens
.
end
(),
op
.
lengths
.
begin
(),
op
.
lengths
.
end
()))
continue
;
std
::
vector
<
std
::
int64_t
>
axes
(
lens
.
size
()
-
2
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
2
);
// average pooling
if
(
op
.
mode
==
op
::
pooling_mode
::
average
)
auto
&&
s
=
ins
->
inputs
().
front
()
->
get_shape
();
auto
&&
op
=
any_cast
<
op
::
pooling
>
(
ins
->
get_operator
());
bool
same_kernel_as_shape
=
std
::
equal
(
s
.
lens
().
cbegin
()
+
2
,
s
.
lens
().
cend
(),
op
.
lengths
.
cbegin
(),
op
.
lengths
.
cend
());
bool
default_strides
=
std
::
all_of
(
op
.
stride
.
cbegin
(),
op
.
stride
.
cend
(),
[](
auto
i
)
{
return
i
==
1
;
});
bool
default_padding
=
std
::
all_of
(
op
.
padding
.
cbegin
(),
op
.
padding
.
cend
(),
[](
auto
i
)
{
return
i
==
0
;
});
bool
default_dilations
=
std
::
all_of
(
op
.
dilations
.
cbegin
(),
op
.
dilations
.
cend
(),
[](
auto
i
)
{
return
i
==
1
;
});
if
(
same_kernel_as_shape
and
default_strides
and
default_padding
and
default_dilations
)
{
m
.
replace_
instruction
(
ins
,
make_op
(
"reduce_mean"
,
{{
"axes"
,
axes
}}),
ins
->
inputs
()
);
replace_
with_reduce
(
m
,
ins
);
}
// max pooling
else
else
if
(
not
default_dilations
)
{
m
.
replace_instruction
(
ins
,
make_op
(
"reduce_max"
,
{{
"axes"
,
axes
}}),
ins
->
inputs
());
// Dilated AvgPool with padding is not supported
if
(
not
default_padding
and
op
.
mode
==
op
::
pooling_mode
::
average
)
{
continue
;
}
auto
size
=
std
::
accumulate
(
s
.
lens
().
cbegin
(),
s
.
lens
().
cend
(),
1
,
std
::
multiplies
<
size_t
>
());
// Can't handle too much size because of literal size
if
(
size
>
100000
)
{
continue
;
}
replace_dilations_with_gather_pooling
(
m
,
ins
);
}
}
}
...
...
src/schedule.cpp
View file @
6f768035
...
...
@@ -27,7 +27,7 @@
#include <migraphx/iterator_for.hpp>
#include <migraphx/iterator.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/
simple_
par_for.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/dom_info.hpp>
...
...
@@ -461,7 +461,7 @@ struct stream_info
std
::
back_inserter
(
index_to_ins
),
[](
auto
&&
it
)
{
return
it
.
first
;
});
par_for
(
concur_ins
.
size
(),
[
&
](
auto
ins_index
,
auto
tid
)
{
simple_
par_for
(
concur_ins
.
size
(),
[
&
](
auto
ins_index
,
auto
tid
)
{
auto
merge_first
=
index_to_ins
[
ins_index
];
assert
(
concur_ins
.
count
(
merge_first
)
>
0
);
auto
&
merge_second
=
concur_ins
.
at
(
merge_first
);
...
...
src/simplify_dyn_ops.cpp
View file @
6f768035
...
...
@@ -22,6 +22,7 @@
* THE SOFTWARE.
*/
#include <migraphx/simplify_dyn_ops.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/literal.hpp>
...
...
@@ -65,8 +66,65 @@ struct find_static_2in_broadcasts
};
/**
* Simplify slice with variable `starts` and `ends` to the constant version if
* the `input_starts` and `input_ends` inputs are constant.
* Simplify slice with 2 inputs to the 1 input version if inputs[1] is constant.
* From:
* slice(data, constant_input); two attributes set
* To:
* slice(data); slice.starts, slice.ends. slice.axes set
*/
struct
find_const_2in_slice
{
auto
matcher
()
const
{
return
match
::
name
(
"slice"
)(
match
::
nargs
(
2
),
match
::
arg
(
1
)(
match
::
is_constant
()));
}
void
apply
(
module
&
m
,
const
match
::
matcher_result
&
mr
)
const
{
auto
ins
=
mr
.
result
;
auto
inputs
=
ins
->
inputs
();
auto
slice_op
=
any_cast
<
op
::
slice
>
(
ins
->
get_operator
());
auto
set_attrs
=
slice_op
.
get_set_attributes
();
std
::
vector
<
int64_t
>
starts_vec
;
std
::
vector
<
int64_t
>
ends_vec
;
std
::
vector
<
int64_t
>
axes_vec
;
if
(
set_attrs
==
op
::
slice
::
ends_axes
)
{
// slice(data, starts)
inputs
.
at
(
1
)
->
eval
().
visit
(
[
&
](
auto
output
)
{
starts_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
ends_vec
=
slice_op
.
ends
;
axes_vec
=
slice_op
.
axes
;
}
else
if
(
set_attrs
==
op
::
slice
::
starts_axes
)
{
// slice(data, ends)
inputs
.
at
(
1
)
->
eval
().
visit
(
[
&
](
auto
output
)
{
ends_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
starts_vec
=
slice_op
.
starts
;
axes_vec
=
slice_op
.
axes
;
}
else
{
// slice(data, axes)
inputs
.
at
(
1
)
->
eval
().
visit
(
[
&
](
auto
output
)
{
axes_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
starts_vec
=
slice_op
.
starts
;
ends_vec
=
slice_op
.
ends
;
}
m
.
replace_instruction
(
ins
,
make_op
(
"slice"
,
{{
"starts"
,
starts_vec
},
{
"ends"
,
ends_vec
},
{
"axes"
,
axes_vec
}}),
inputs
.
at
(
0
));
}
};
/**
* Simplify slice with 3 inputs to the 1 input version if inputs[1:2] are constant.
* From:
* slice(data, constant_input1, constant_input2); one attribute set
* To:
* slice(data); slice.starts, slice.ends. slice.axes set
*/
struct
find_const_3in_slice
{
...
...
@@ -81,27 +139,51 @@ struct find_const_3in_slice
{
auto
ins
=
mr
.
result
;
auto
inputs
=
ins
->
inputs
();
argument
starts_arg
=
inputs
.
at
(
1
)
->
eval
();
argument
ends_arg
=
inputs
.
at
(
2
)
->
eval
();
if
(
not
starts_arg
.
empty
()
and
not
ends_arg
.
empty
())
auto
slice_op
=
any_cast
<
op
::
slice
>
(
ins
->
get_operator
());
auto
set_attrs
=
slice_op
.
get_set_attributes
();
std
::
vector
<
int64_t
>
starts_vec
;
std
::
vector
<
int64_t
>
ends_vec
;
std
::
vector
<
int64_t
>
axes_vec
;
if
(
set_attrs
==
op
::
slice
::
axes_only
)
{
std
::
vector
<
int64_t
>
starts_vec
;
std
::
vector
<
int64_t
>
ends_vec
;
starts_arg
.
visit
([
&
](
auto
output
)
{
starts_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
ends_arg
.
visit
([
&
](
auto
output
)
{
ends_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
auto
slice_val
=
ins
->
get_operator
().
to_value
();
auto
axes_vec
=
slice_val
.
at
(
"axes"
).
to_vector
<
int64_t
>
();
m
.
replace_instruction
(
ins
,
make_op
(
"slice"
,
{{
"starts"
,
starts_vec
},
{
"ends"
,
ends_vec
},
{
"axes"
,
axes_vec
}}),
inputs
.
at
(
0
));
// slice(data, starts, ends)
inputs
.
at
(
1
)
->
eval
().
visit
(
[
&
](
auto
output
)
{
starts_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
inputs
.
at
(
2
)
->
eval
().
visit
(
[
&
](
auto
output
)
{
ends_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
axes_vec
=
slice_op
.
axes
;
}
else
if
(
set_attrs
==
op
::
slice
::
ends_only
)
{
// slice(data, starts, axes)
inputs
.
at
(
1
)
->
eval
().
visit
(
[
&
](
auto
output
)
{
starts_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
inputs
.
at
(
2
)
->
eval
().
visit
(
[
&
](
auto
output
)
{
axes_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
ends_vec
=
slice_op
.
ends
;
}
else
{
// slice(data, ends, axes)
inputs
.
at
(
1
)
->
eval
().
visit
(
[
&
](
auto
output
)
{
ends_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
inputs
.
at
(
2
)
->
eval
().
visit
(
[
&
](
auto
output
)
{
axes_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
starts_vec
=
slice_op
.
starts
;
}
m
.
replace_instruction
(
ins
,
make_op
(
"slice"
,
{{
"starts"
,
starts_vec
},
{
"ends"
,
ends_vec
},
{
"axes"
,
axes_vec
}}),
inputs
.
at
(
0
));
}
};
/**
* Simplify slice with variable `starts`, `ends`, and `input_axes` to the constant version if
* the `input_starts`, `input_ends`, and `input_axes` inputs are constant.
* Simplify slice with 4 inputs to the 1 input version if inputs[1:3] are constant.
* From:
* slice(data, constant_starts, constant_ends, constant_axes)
* To:
* slice(data); slice.starts, slice.ends. slice.axes set
*/
struct
find_const_4in_slice
{
...
...
@@ -117,9 +199,9 @@ struct find_const_4in_slice
{
auto
ins
=
mr
.
result
;
auto
inputs
=
ins
->
inputs
();
argument
starts_arg
=
inputs
.
at
(
1
)
->
eval
();
argument
ends_arg
=
inputs
.
at
(
2
)
->
eval
();
argument
axes_arg
=
inputs
.
at
(
3
)
->
eval
();
argument
starts_arg
=
inputs
.
at
(
1
)
->
eval
(
false
);
argument
ends_arg
=
inputs
.
at
(
2
)
->
eval
(
false
);
argument
axes_arg
=
inputs
.
at
(
3
)
->
eval
(
false
);
if
(
not
starts_arg
.
empty
()
and
not
ends_arg
.
empty
()
and
not
axes_arg
.
empty
())
{
std
::
vector
<
int64_t
>
starts_vec
;
...
...
@@ -179,6 +261,7 @@ struct find_static_dimensions_of
/**
* Simplify allocate into 2 argument reshape that has constant output dimensions into a static 1
* argument reshape. Intended to simplify what ONNX parse_reshape creates for dynamic reshapes.
* This matcher can be generalized to matching reshape(data, static_shape_output_tensor).
* From:
* x = allocate(constant_output_dims) -> reshape(data, x)
* To:
...
...
@@ -207,14 +290,44 @@ struct find_const_alloc_reshapes
}
};
/**
* Simplify allocate into fill operator that has constant output dimensions and constant value.
* The allocate into fill instructions is what is produced when parsing the ONNX
* ConstantOfShape operator. This replacement could be handled with propagate_constant, but
* would rather have the simplification happen earlier during compiling.
* This matcher can be generalized to matching fill(constant_value, static_shape_output_tensor).
* From:
* x = allocate(constant_ouptut_dims) -> fill(constant_value, x)
* To:
* literal
*/
struct
find_const_alloc_fill
{
auto
matcher
()
const
{
return
match
::
name
(
"fill"
)(
match
::
arg
(
0
)(
match
::
is_constant
()),
match
::
arg
(
1
)(
match
::
name
(
"allocate"
)(
match
::
is_constant
())));
}
void
apply
(
module
&
m
,
const
match
::
matcher_result
&
mr
)
const
{
auto
fill_ins
=
mr
.
result
;
auto
fill_arg
=
fill_ins
->
eval
(
false
);
auto
l
=
m
.
add_literal
(
fill_arg
.
get_shape
(),
fill_arg
.
data
());
m
.
replace_instruction
(
fill_ins
,
l
);
}
};
void
simplify_dyn_ops
::
apply
(
module
&
m
)
const
{
match
::
find_matches
(
m
,
find_static_dimensions_of
{},
find_const_alloc_reshapes
{},
find_static_2in_broadcasts
{},
find_const_2in_slice
{},
find_const_3in_slice
{},
find_const_4in_slice
{});
find_const_4in_slice
{},
find_const_alloc_fill
{});
}
}
// namespace MIGRAPHX_INLINE_NS
...
...
src/targets/cpu/dnnl.cpp
View file @
6f768035
...
...
@@ -67,8 +67,8 @@ dnnl::memory::data_type to_dnnl_memory_data_type(shape::type_t t)
case
st
::
float_type
:
return
dt
::
f32
;
case
st
::
int32_type
:
return
dt
::
s32
;
case
st
::
int8_type
:
return
dt
::
s8
;
case
st
::
uint8_type
:
case
st
::
fp8e4m3fnuz_type
:
return
dt
::
u8
;
case
st
::
uint8_type
:
return
dt
::
u8
;
case
st
::
fp8e4m3fnuz_type
:
MIGRAPHX_THROW
(
"fp8e4m3fnuz unsupported in DNNL"
)
;
default:
MIGRAPHX_THROW
(
"Unsupported data type"
);
}
}
...
...
src/targets/cpu/lowering.cpp
View file @
6f768035
...
...
@@ -340,7 +340,6 @@ struct cpu_apply
{
"reduce_min"
,
"reduction_min"
},
{
"reduce_sum"
,
"reduction_sum"
},
});
extend_op
(
"concat"
,
"dnnl::concat"
);
extend_op
(
"contiguous"
,
"dnnl::reorder"
);
extend_op
(
"convolution"
,
"dnnl::convolution"
);
...
...
@@ -376,6 +375,12 @@ struct cpu_apply
// Apply these operators first so the inputs can be const folded
for
(
auto
it
:
iterator_for
(
*
modl
))
{
// skip lowering if input has fp8 as one of the inputs since oneDNN doesn't have fp8
// supported yet.
if
(
std
::
any_of
(
it
->
inputs
().
begin
(),
it
->
inputs
().
end
(),
[](
const
auto
&
i
)
{
return
i
->
get_shape
().
type
()
==
migraphx
::
shape
::
fp8e4m3fnuz_type
;
}))
continue
;
if
(
it
->
name
()
==
"pow"
)
{
apply_pow
(
it
);
...
...
@@ -383,6 +388,12 @@ struct cpu_apply
}
for
(
auto
it
:
iterator_for
(
*
modl
))
{
// skip lowering if input has fp8 as one of the inputs since oneDNN doesn't have fp8
// supported yet.
if
(
std
::
any_of
(
it
->
inputs
().
begin
(),
it
->
inputs
().
end
(),
[](
const
auto
&
i
)
{
return
i
->
get_shape
().
type
()
==
migraphx
::
shape
::
fp8e4m3fnuz_type
;
}))
continue
;
if
(
it
->
name
()
==
"pooling"
)
{
apply_pooling
(
it
);
...
...
src/targets/cpu/pooling.cpp
View file @
6f768035
...
...
@@ -34,23 +34,32 @@ namespace migraphx {
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
cpu
{
struct
dnnl_pooling
:
dnnl_extend_op
<
dnnl_pooling
,
dnnl
::
pooling_forward
,
op
::
pooling
>
struct
dnnl_pooling
:
dnnl_extend_op
<
dnnl_pooling
,
dnnl
::
pooling_
v2_
forward
,
op
::
pooling
>
{
std
::
vector
<
int
>
arg_map
(
int
)
const
{
return
{
MIGRAPHX_DNNL_PREFIX
(
ARG_SRC
)};
}
dnnl
::
pooling_forward
::
desc
get_desc
(
const
std
::
unordered_map
<
int
,
dnnl
::
memory
::
desc
>&
m
)
const
dnnl
::
pooling_v2_forward
::
desc
get_desc
(
const
std
::
unordered_map
<
int
,
dnnl
::
memory
::
desc
>&
m
)
const
{
auto
algo
=
op
.
mode
==
op
::
pooling_mode
::
max
?
dnnl
::
algorithm
::
pooling_max
:
dnnl
::
algorithm
::
pooling_avg
;
auto
algo
=
op
.
mode
==
op
::
pooling_mode
::
max
?
dnnl
::
algorithm
::
pooling_max
:
dnnl
::
algorithm
::
pooling_avg
;
auto
kdims
=
op
.
kdims
();
std
::
vector
<
size_t
>
padding_l
(
op
.
padding
.
begin
(),
op
.
padding
.
begin
()
+
kdims
);
std
::
vector
<
size_t
>
padding_r
(
op
.
padding
.
begin
()
+
kdims
,
op
.
padding
.
end
());
// Note: It is not documented, but the default dilation seems to be 0 instead of 1.
// We need to offset dilations with -1.
std
::
vector
<
size_t
>
dilations
;
std
::
transform
(
op
.
dilations
.
cbegin
(),
op
.
dilations
.
cend
(),
std
::
back_inserter
(
dilations
),
[](
size_t
d
)
{
return
d
-
1
;
});
return
{
dnnl
::
prop_kind
::
forward_inference
,
algo
,
m
.
at
(
MIGRAPHX_DNNL_PREFIX
(
ARG_SRC
)),
m
.
at
(
MIGRAPHX_DNNL_PREFIX
(
ARG_DST
)),
to_dnnl_dims
(
op
.
stride
),
to_dnnl_dims
(
op
.
lengths
),
to_dnnl_dims
(
dilations
),
to_dnnl_dims
(
padding_l
),
to_dnnl_dims
(
padding_r
)};
}
...
...
src/targets/gpu/CMakeLists.txt
View file @
6f768035
...
...
@@ -126,7 +126,6 @@ add_library(migraphx_gpu
fuse_ck.cpp
fuse_mlir.cpp
fuse_ops.cpp
gather.cpp
gemm_impl.cpp
hip.cpp
kernel.cpp
...
...
@@ -140,7 +139,6 @@ add_library(migraphx_gpu
nonzero.cpp
pack_args.cpp
prefuse_ops.cpp
pad.cpp
perfdb.cpp
pooling.cpp
reverse.cpp
...
...
@@ -168,12 +166,10 @@ endfunction()
register_migraphx_gpu_ops
(
hip_
argmax
argmin
gather
logsoftmax
loop
multinomial
nonzero
pad
prefix_scan_sum
reverse
scatter
...
...
src/targets/gpu/compile_hip.cpp
View file @
6f768035
...
...
@@ -194,7 +194,7 @@ struct hiprtc_program
};
std
::
vector
<
std
::
vector
<
char
>>
compile_hip_src_with_hiprtc
(
std
::
vector
<
hiprtc_src_file
>
srcs
,
std
::
string
params
,
const
std
::
string
&
params
,
const
std
::
string
&
arch
)
{
hiprtc_program
prog
(
std
::
move
(
srcs
));
...
...
@@ -238,8 +238,9 @@ bool hip_has_flags(const std::vector<std::string>& flags)
}
}
std
::
vector
<
std
::
vector
<
char
>>
compile_hip_src
(
const
std
::
vector
<
src_file
>&
srcs
,
std
::
string
params
,
const
std
::
string
&
arch
)
std
::
vector
<
std
::
vector
<
char
>>
compile_hip_src
(
const
std
::
vector
<
src_file
>&
srcs
,
const
std
::
string
&
params
,
const
std
::
string
&
arch
)
{
std
::
vector
<
hiprtc_src_file
>
hsrcs
{
srcs
.
begin
(),
srcs
.
end
()};
if
(
enabled
(
MIGRAPHX_GPU_DUMP_SRC
{}))
...
...
@@ -281,13 +282,13 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
if
(
fs
::
exists
(
out
))
return
{
read_buffer
(
out
.
string
())};
}
return
compile_hip_src_with_hiprtc
(
std
::
move
(
hsrcs
),
std
::
move
(
params
)
,
arch
);
return
compile_hip_src_with_hiprtc
(
std
::
move
(
hsrcs
),
params
,
arch
);
}
#else // MIGRAPHX_USE_HIPRTC
std
::
vector
<
std
::
vector
<
char
>>
compile_hip_src_with_hiprtc
(
std
::
vector
<
hiprtc_src_file
>
,
// NOLINT
std
::
string
,
// NOLINT
const
std
::
string
&
,
// NOLINT
const
std
::
string
&
)
{
MIGRAPHX_THROW
(
"Not using hiprtc"
);
...
...
@@ -316,29 +317,15 @@ src_compiler assemble(src_compiler compiler)
return
compiler
;
}
std
::
vector
<
std
::
vector
<
char
>>
compile_hip_src
(
const
std
::
vector
<
src_file
>&
srcs
,
std
::
string
params
,
const
std
::
string
&
arch
)
std
::
vector
<
std
::
vector
<
char
>>
compile_hip_src
(
const
std
::
vector
<
src_file
>&
srcs
,
const
std
::
string
&
params
,
const
std
::
string
&
arch
)
{
assert
(
not
srcs
.
empty
());
if
(
not
is_hip_clang_compiler
())
MIGRAPHX_THROW
(
"Unknown hip compiler: "
MIGRAPHX_HIP_COMPILER
);
if
(
params
.
find
(
"-std="
)
==
std
::
string
::
npos
)
params
+=
" --std=c++17"
;
params
+=
" -fno-gpu-rdc"
;
if
(
enabled
(
MIGRAPHX_GPU_DEBUG_SYM
{}))
params
+=
" -g"
;
params
+=
" -c"
;
params
+=
" --offload-arch="
+
arch
;
params
+=
" --cuda-device-only"
;
params
+=
" -O"
+
string_value_of
(
MIGRAPHX_GPU_OPTIMIZE
{},
"3"
)
+
" "
;
if
(
enabled
(
MIGRAPHX_GPU_DEBUG
{}))
params
+=
" -DMIGRAPHX_DEBUG"
;
params
+=
" -Wno-unused-command-line-argument -Wno-cuda-compat "
;
params
+=
MIGRAPHX_HIP_COMPILER_FLAGS
;
src_compiler
compiler
;
compiler
.
flags
=
params
;
compiler
.
compiler
=
MIGRAPHX_HIP_COMPILER
;
...
...
@@ -346,6 +333,23 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
if
(
has_compiler_launcher
())
compiler
.
launcher
=
MIGRAPHX_HIP_COMPILER_LAUNCHER
;
#endif
if
(
params
.
find
(
"-std="
)
==
std
::
string
::
npos
)
compiler
.
flags
+=
" --std=c++17"
;
compiler
.
flags
+=
" -fno-gpu-rdc"
;
if
(
enabled
(
MIGRAPHX_GPU_DEBUG_SYM
{}))
compiler
.
flags
+=
" -g"
;
compiler
.
flags
+=
" -c"
;
compiler
.
flags
+=
" --offload-arch="
+
arch
;
compiler
.
flags
+=
" --cuda-device-only"
;
compiler
.
flags
+=
" -O"
+
string_value_of
(
MIGRAPHX_GPU_OPTIMIZE
{},
"3"
)
+
" "
;
if
(
enabled
(
MIGRAPHX_GPU_DEBUG
{}))
compiler
.
flags
+=
" -DMIGRAPHX_DEBUG"
;
compiler
.
flags
+=
" -Wno-unused-command-line-argument -Wno-cuda-compat "
;
compiler
.
flags
+=
MIGRAPHX_HIP_COMPILER_FLAGS
;
if
(
enabled
(
MIGRAPHX_GPU_DUMP_SRC
{}))
{
for
(
const
auto
&
src
:
srcs
)
...
...
src/targets/gpu/compile_hip_code_object.cpp
View file @
6f768035
...
...
@@ -200,7 +200,7 @@ operation compile_hip_code_object(const std::string& content, hip_compile_option
options
.
params
+=
" "
+
join_strings
(
compiler_warnings
(),
" "
);
options
.
params
+=
" -ftemplate-backtrace-limit=0"
;
options
.
params
+=
" -Werror"
;
auto
cos
=
compile_hip_src
(
srcs
,
std
::
move
(
options
.
params
)
,
get_device_name
());
auto
cos
=
compile_hip_src
(
srcs
,
options
.
params
,
get_device_name
());
if
(
cos
.
size
()
!=
1
)
MIGRAPHX_THROW
(
"No code object"
);
return
code_object_op
{
value
::
binary
{
cos
.
front
()},
...
...
src/targets/gpu/device/include/migraphx/gpu/device/scan.hpp
View file @
6f768035
...
...
@@ -43,24 +43,32 @@ template <index_int N,
__device__
void
block_scan
(
index
idx
,
Op
op
,
T
init
,
ForStride
fs
,
Input
input
,
Output
output
)
{
using
type
=
decltype
(
input
(
deduce_for_stride
(
fs
)));
MIGRAPHX_DEVICE_SHARED
type
buffer
[
N
];
MIGRAPHX_DEVICE_SHARED
type
buffer
[
2
][
N
];
type
x
=
init
;
fs
([
&
](
auto
i
)
{
index_int
iout
=
0
;
index_int
iin
=
1
;
if
(
idx
.
local
==
0
)
buffer
[
idx
.
local
]
=
op
(
input
(
i
),
x
);
buffer
[
iout
][
idx
.
local
]
=
op
(
input
(
i
),
x
);
else
buffer
[
idx
.
local
]
=
input
(
i
);
buffer
[
iout
][
idx
.
local
]
=
input
(
i
);
__syncthreads
();
for
(
index_int
s
=
1
;
s
<
idx
.
nlocal
();
s
*=
2
)
{
if
(
idx
.
local
+
s
<
idx
.
nlocal
())
iout
=
1
-
iout
;
iin
=
1
-
iin
;
if
(
idx
.
local
>=
s
)
{
buffer
[
idx
.
local
+
s
]
=
op
(
buffer
[
idx
.
local
],
buffer
[
idx
.
local
+
s
]);
buffer
[
iout
][
idx
.
local
]
=
op
(
buffer
[
iin
][
idx
.
local
],
buffer
[
iin
][
idx
.
local
-
s
]);
}
else
{
buffer
[
iout
][
idx
.
local
]
=
buffer
[
iin
][
idx
.
local
];
}
__syncthreads
();
}
x
=
buffer
[
idx
.
nlocal
()
-
1
];
output
(
i
,
buffer
[
idx
.
local
]);
x
=
buffer
[
iout
][
idx
.
nlocal
()
-
1
];
output
(
i
,
buffer
[
iout
][
idx
.
local
]);
});
}
...
...
Prev
1
2
3
4
5
6
7
…
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment