Commit 68d5b22b authored by Khalique's avatar Khalique
Browse files

add expanddims plus tests

parent 15eb1987
......@@ -37,7 +37,7 @@ struct tf_parser
std::unordered_map<std::string, op_func> ops;
std::vector<size_t> parse_axes(const attribute_map& attributes, const std::string& s) const
std::vector<size_t> parse_axes(const attribute_map& attributes, const std::string& s, const size_t& num_dims) const
{
auto attrs = attributes.at(s).list().i();
std::vector<size_t> axes;
......@@ -45,14 +45,14 @@ struct tf_parser
if(is_nhwc)
{
std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
return parse_axis(axis);
return parse_axis(axis, num_dims);
});
}
return axes;
}
template <class T>
std::vector<T> parse_axes(std::vector<T> axes) const
std::vector<T> parse_axes(std::vector<T> axes, const size_t& num_dims) const
{
if(is_nhwc)
{
......@@ -60,7 +60,7 @@ struct tf_parser
std::transform(axes.begin(),
axes.end(),
std::back_inserter(new_axes),
[&](size_t axis) { return parse_axis(axis); });
[&](size_t axis) { return parse_axis(axis, num_dims); });
return new_axes;
}
return axes;
......@@ -75,17 +75,17 @@ struct tf_parser
std::vector<T> new_data(prev_data.size());
for(size_t i = 0; i < new_data.size(); i++)
{
auto new_idx = parse_axis(i);
auto new_idx = parse_axis(i, new_data.size());
new_data.at(new_idx) = prev_data.at(i);
}
prev_data = new_data;
}
template <class T>
T parse_axis(const T& dim) const
T parse_axis(const T& dim, const size_t& num_dims) const
{
T new_dim = dim;
if(is_nhwc)
if(is_nhwc and num_dims >= 4)
{
switch(dim)
{
......@@ -121,6 +121,7 @@ struct tf_parser
add_mem_op("Const", &tf_parser::parse_constant);
add_mem_op("Conv2D", &tf_parser::parse_conv);
add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
add_mem_op("ExpandDims", &tf_parser::parse_expanddims);
add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
add_mem_op("MatMul", &tf_parser::parse_matmul);
add_mem_op("MaxPool", &tf_parser::parse_pooling);
......@@ -251,7 +252,7 @@ struct tf_parser
{
// get index for axis within args
size_t axis_idx = attributes.at("N").i();
size_t axis = parse_axis(args[axis_idx]->eval().at<int64_t>());
size_t axis = parse_axis(args[axis_idx]->eval().at<int64_t>(), args[0]->get_shape().lens().size());
op::concat op{axis};
// return only first N arguments (assuming last index is the axis value)
return prog.add_instruction(
......@@ -470,6 +471,24 @@ struct tf_parser
return prog.add_instruction(op, {l0, new_weights});
}
instruction_ref parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
{
std::vector<size_t> input_dims = args[0]->get_shape().lens();
std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
size_t num_dims = input_dims.size();
int32_t dim = parse_axis(args[1]->eval().at<int32_t>(), num_dims);
if (dim < 0)
{
new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
}
else
{
new_dims.insert(new_dims.begin() + dim, 1);
}
return prog.add_instruction(op::reshape{new_dims}, args[0]);
}
instruction_ref
parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{
......@@ -499,11 +518,12 @@ struct tf_parser
instruction_ref
parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{
auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector());
bool keep_dims = attributes.at("keep_dims").b();
std::vector<int32_t> hw_axes{2, 3};
// check if conditions for GlobalAvgPool are met
auto lens = args[0]->get_shape().lens();
auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector(), lens.size());
if(axes == hw_axes and lens.size() == 4)
{
op::pooling op{"average"};
......@@ -534,8 +554,7 @@ struct tf_parser
" must be smaller than input size " + to_string(input_size));
}
// check if input arg needs axis to be converted to NCHW
if(input_size >= 4)
axis = parse_axis(axis);
axis = parse_axis(axis, input_size);
std::transform(
args.begin(),
......@@ -676,14 +695,15 @@ struct tf_parser
std::vector<instruction_ref> args)
{
op::squeeze op;
auto axes = parse_axes(attributes, "squeeze_dims");
auto input_dims = args[0]->get_shape().lens();
auto axes = parse_axes(attributes, "squeeze_dims", input_dims.size());
copy(axes, std::back_inserter(op.axes));
auto args0_dims = args[0]->get_shape().lens();
if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
{
for(size_t i = 0; i < args0_dims.size(); i++)
for(size_t i = 0; i < input_dims.size(); i++)
{
if(args0_dims.at(i) == 1)
if(input_dims.at(i) == 1)
{
op.axes.push_back(i);
}
......@@ -723,10 +743,7 @@ struct tf_parser
if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
squeeze_axes.push_back(i);
}
if(num_axes >= 4)
{
squeeze_axes = parse_axes(squeeze_axes);
}
squeeze_axes = parse_axes(squeeze_axes, num_axes);
auto l0 = prog.add_instruction(op, args[0]);
return prog.add_instruction(op::squeeze{squeeze_axes}, l0);
......
......@@ -146,6 +146,20 @@ TEST_CASE(depthwiseconv_test)
EXPECT(p == prog);
}
TEST_CASE(expanddims_test)
{
migraphx::program p;
auto l0 = p.add_parameter("0", migraphx::shape{migraphx::shape::float_type, {2,3,4}});
p.add_literal(-1);
p.add_literal(0);
p.add_instruction(migraphx::op::reshape{{2,3,4,1}}, l0);
p.add_instruction(migraphx::op::reshape{{1,2,3,4}}, l0);
auto prog = migraphx::parse_tf("expanddims_test.pb", true);
EXPECT(p == prog);
}
TEST_CASE(identity_test)
{
migraphx::program p;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment