Commit 673ca71c authored by Paul's avatar Paul
Browse files

Merge branch 'develop' into conv-add

parents 4bfe1662 91cc7242
name: Add items to GH project
on:
pull_request:
types:
- opened
issues:
types:
- opened
jobs:
add-to-project:
name: Add PRs and issues to MIGX project
runs-on: ubuntu-latest
steps:
- uses: actions/add-to-project@v0.4.0
with:
project-url: https://github.com/orgs/ROCmSoftwarePlatform/projects/20
github-token: ${{ secrets.TEST_PR_WORKFLOW }}
name: Onnxruntime main weekly sync
on:
schedule:
- cron: "05 17 * * 1"
jobs:
runs-on: ubuntu-latest
sync:
steps:
- uses: actions/checkout@v3
with:
ref: develop
path: ../
get_date:
steps:
- run: echo "::set-output name=date::$(date +'%Y-%m-%d')"
update_file:
needs: [sync get_date]
steps:
- run: git clone https://github.com/microsoft/onnxruntime.git && cd onnxruntime && git rev-parse HEAD >> ../test/onnx/.onnxrt-commit
Add_commit:
needs: update_file
steps:
- name: Add & Commit
uses: EndBug/add-and-commit@v9.1.1
with:
new_branch: onnxruntime-sync-${{ steps.date.outputs.date }}
add: ../test/onnx/.onnxrt-commit
message: Update Onnxruntime commit to latest release
default_author: github_actions
push: true
PR:
needs: Add_commit
steps:
- name: GitHub Action for creating Pull Requests
uses: devops-infra/action-pull-request@v0.5.3
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
title: Sync Onnxruntime main
reviewer: pfultz2, causten
assignee: TedThemistokleous
label: automatic, onnxruntime
target_branch: develop
......@@ -5,6 +5,10 @@ ARG PREFIX=/usr/local
# Support multiarch
RUN dpkg --add-architecture i386
# Install rocm key
RUN apt-get update && apt-get install -y gnupg2 --no-install-recommends curl && \
curl -sL http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
# Add rocm repository
RUN sh -c 'echo deb [arch=amd64 trusted=yes] http://repo.radeon.com/rocm/apt/5.3/ ubuntu main > /etc/apt/sources.list.d/rocm.list'
......@@ -32,10 +36,27 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-
libnuma-dev \
miopen-hip \
rocblas \
hipfft \
rocthrust \
rocrand \
hipsparse \
rccl \
rccl-dev \
rocm-smi-lib \
rocm-dev \
roctracer-dev \
hipcub \
hipblas \
hipify-clang \
half \
libssl-dev \
zlib1g-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# add this for roctracer dependancies
RUN pip3 install CppHeaderParser packaging==22.0
# Workaround broken rocm packages
RUN ln -s /opt/rocm-* /opt/rocm
RUN echo "/opt/rocm/lib" > /etc/ld.so.conf.d/rocm.conf
......@@ -72,18 +93,19 @@ RUN /download_models.sh && rm /download_models.sh
# Install latest ccache version
RUN cget -p $PREFIX install facebook/zstd@v1.4.5 -X subdir -DCMAKE_DIR=build/cmake
RUN cget -p $PREFIX install ccache@v4.1 -DENABLE_TESTING=OFF
RUN cget -p /opt/cmake install kitware/cmake@v3.24.3
# Install newer cmake for onnx runtime
ARG CMAKE_VERSION=3.24.2
RUN cget -p /opt/cmake install -X binary https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz
COPY ./test/onnx/.onnxrt-commit /
ARG ONNXRUNTIME_REPO=https://github.com/Microsoft/onnxruntime
ARG ONNXRUNTIME_BRANCH=main
ARG ONNXRUNTIME_COMMIT=24f1bd6156cf5968bbc76dfb0e801a9b9c56b9fc
ARG ONNXRUNTIME_COMMIT
RUN git clone --single-branch --branch ${ONNXRUNTIME_BRANCH} --recursive ${ONNXRUNTIME_REPO} onnxruntime && \
cd onnxruntime && \
git checkout ${ONNXRUNTIME_COMMIT} && \
/bin/sh dockerfiles/scripts/install_common_deps.sh
if [ -z "$ONNXRUNTIME_COMMIT" ] ; then git checkout $(cat /.onnxrt-commit) ; else git checkout ${ONNXRUNTIME_COMMIT} ; fi && \
/bin/sh /onnxruntime/dockerfiles/scripts/install_common_deps.sh
ADD tools/build_and_test_onnxrt.sh /onnxruntime/build_and_test_onnxrt.sh
......
......@@ -15,11 +15,13 @@ def rocmtestnode(Map conf) {
def compiler = bconf.get("compiler", "/opt/rocm/llvm/bin/clang++")
def flags = bconf.get("flags", "")
def gpu_debug = bconf.get("gpu_debug", "0")
def hiprtc_workarounds = bconf.get("hiprtc_workarounds", "0")
def cmd = """
ulimit -c unlimited
echo "leak:dnnl::impl::malloc" > suppressions.txt
export LSAN_OPTIONS="suppressions=\$(pwd)/suppressions.txt"
export MIGRAPHX_GPU_DEBUG=${gpu_debug}
export MIGRAPHX_ENABLE_HIPRTC_WORKAROUNDS=${hiprtc_workarounds}
export CXX=${compiler}
export CXXFLAGS='-Werror'
env
......@@ -110,6 +112,10 @@ rocmtest clang_debug: rocmnode('vega') { cmake_build ->
cmake_build(flags: "-DCMAKE_BUILD_TYPE=release")
stash includes: 'build/*.deb', name: 'migraphx-package'
}
}, hiprtc_gpu_debug: rocmnode('vega') { cmake_build ->
stage('HipRTC GPU Debug') {
cmake_build(flags: "-DCMAKE_BUILD_TYPE=release -DMIGRAPHX_USE_HIPRTC=On", gpu_debug: true, hiprtc_workarounds: true)
}
}, mlir_debug: rocmnode('vega') { cmake_build ->
stage('MLIR Debug') {
def sanitizers = "undefined"
......
......@@ -64,6 +64,7 @@ add_library(migraphx
normalize_ops.cpp
op_enums.cpp
operation.cpp
optimize_module.cpp
opt/memory_coloring.cpp
opt/memory_coloring_impl.cpp
pad_calc.cpp
......
......@@ -48,10 +48,11 @@ struct layernorm_matcher
auto layernorm_onnx() const
{
return f("div")(arg(0)(x_minus_mean()),
auto add_eps = f("add")(either_arg(0, 1)(variance(), is_constant().bind("eps")));
return f("div")(
arg(0)(x_minus_mean()),
arg(1)(skip_broadcasts(f("sqrt")(arg(0)(
f("add")(either_arg(0, 1)(variance(), is_constant().bind("eps"))))))));
arg(1)(skip_broadcasts(f("sqrt")(arg(0)(match::any_of(add_eps, variance()))))));
}
auto matcher() const { return layernorm_onnx(); }
......
......@@ -26,6 +26,7 @@
#include <array>
#include <migraphx/check_shapes.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
......@@ -61,13 +62,36 @@ struct gather
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(2);
auto lens = inputs[0].lens();
auto type = inputs[0].type();
check_shapes{inputs, *this, true}.has(2);
shape data = inputs[0];
shape indices = inputs[1];
auto type = data.type();
// If index_dims is dynamic, convert the data to dynamic too.
if(indices.dynamic())
{
data = data.to_dynamic();
}
if(data.dynamic())
{
auto dims = data.dyn_dims();
dims.erase(dims.begin() + axis);
if(not indices.scalar())
{
auto index_dims = indices.to_dynamic().dyn_dims();
dims.insert(dims.begin() + axis, index_dims.begin(), index_dims.end());
}
return {type, dims};
}
else
{
// Both data and indices are static. indices may be scalar
auto lens = data.lens();
lens.erase(lens.begin() + axis);
if(not inputs[1].scalar())
if(not indices.scalar())
{
auto ind_lens = inputs[1].lens();
auto ind_lens = indices.lens();
lens.insert(lens.begin() + axis, ind_lens.begin(), ind_lens.end());
}
......@@ -79,17 +103,18 @@ struct gather
return {type, lens};
}
}
argument compute(const shape& output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
argument result{dyn_out.computed_shape};
// negative axis means counting dimensions from back
auto lens = args[0].get_shape().lens();
std::size_t axis_dim_size = lens[axis];
// max dimension in axis
visit_all(result, args[0])([&](auto output, auto data) {
args[1].visit([&](auto indices) {
if(output_shape.scalar())
if(dyn_out.computed_shape.scalar())
{
auto in_index = indices.front();
in_index = (in_index < 0) ? in_index + axis_dim_size : in_index;
......
......@@ -59,19 +59,30 @@ struct pad
std::string name() const { return "pad"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
auto&& idims = inputs.front().lens();
check_shapes{inputs, *this, true}.has(1);
const auto& s0 = inputs.front();
if(s0.dynamic())
{
auto out_dyn_dims = s0.dyn_dims();
for(std::size_t i = 0; i < s0.ndim(); ++i)
{
out_dyn_dims[i] += pads[i] + pads[i + s0.ndim()];
}
return {s0.type(), out_dyn_dims};
}
else
{
auto&& idims = s0.lens();
std::vector<std::size_t> rdims(idims.begin(), idims.end());
std::size_t num_dims = rdims.size();
for(std::size_t i = 0; i < num_dims; i++)
{
rdims[i] += pads[i] + pads[i + num_dims];
}
shape s{inputs.front().type(), rdims};
shape s{s0.type(), rdims};
return s;
}
}
std::size_t pad_ndims() const
{
......
......@@ -28,6 +28,7 @@
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -46,14 +47,60 @@ struct reshape
value attributes() const { return {{"require_std_shape", true}}; }
std::string name() const { return "reshape"; }
shape compute_shape(std::vector<shape> inputs) const
shape dyn_compute_shape(shape s0) const
{
auto dyn_dims = s0.dyn_dims();
auto num_not_fixed = std::count_if(
dyn_dims.cbegin(), dyn_dims.cend(), [](auto dd) { return not dd.is_fixed(); });
if(num_not_fixed != 1)
{
MIGRAPHX_THROW("Reshape: Only supports one non-fixed dynamic_dimension");
}
// track number of fixed elements in input and output
std::size_t num_dims_ele = 1;
std::size_t num_dd_ele = 1;
for(std::size_t i = 0; i < dyn_dims.size(); ++i)
{
if(dyn_dims[i].is_fixed())
{
num_dims_ele *= dims[i];
num_dd_ele *= dyn_dims[i].min;
}
else
{
check_shapes{inputs, *this}.has(1).standard();
if(dims[i] != 0 and dims[i] != -1)
{
MIGRAPHX_THROW(
"Reshape: Non-fixed dynamic_dimension doesn't match with 0 or -1 "
"output dimension");
}
}
}
if(num_dims_ele != num_dd_ele)
{
MIGRAPHX_THROW("Reshape: Number of fixed elements must match. Input: " +
std::to_string(num_dd_ele) + " Output: " + std::to_string(num_dims_ele));
}
// construct output dynamic shape from dims attribute
std::vector<shape::dynamic_dimension> output_dyn_dims(dims.size());
std::transform(dims.cbegin(),
dims.cend(),
dyn_dims.cbegin(),
output_dyn_dims.begin(),
[](std::size_t dim, auto dyn_dim) {
if(not dyn_dim.is_fixed())
return dyn_dim;
return shape::dynamic_dimension{dim, dim};
});
return {s0.type(), output_dyn_dims};
}
shape static_compute_shape(std::vector<shape> inputs, std::size_t n_neg_dims) const
{
check_shapes{inputs, *this}.standard();
auto&& idims = inputs.front().lens();
std::vector<std::size_t> rdims(dims.begin(), dims.end());
auto n_neg_dims = std::count(dims.begin(), dims.end(), -1);
if(n_neg_dims > 1)
MIGRAPHX_THROW("Reshape: Dimensions for reshape can only have one -1 dim");
for(std::size_t i = 0; i < dims.size(); i++)
{
......@@ -86,9 +133,26 @@ struct reshape
return s;
}
argument compute(shape output_shape, std::vector<argument> args) const
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this, true}.has(1);
auto n_neg_dims = std::count(dims.begin(), dims.end(), -1);
if(n_neg_dims > 1)
MIGRAPHX_THROW("Reshape: Dimensions for reshape can only have one -1 dim");
auto s0 = inputs[0];
if(s0.dynamic())
{
return dyn_compute_shape(s0);
}
else
{
return static_compute_shape(inputs, n_neg_dims);
}
}
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
return args[0].reshape(output_shape);
return args[0].reshape(dyn_out.computed_shape);
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_OPTIMIZE_MODULE_HPP
#define MIGRAPHX_GUARD_RTGLIB_OPTIMIZE_MODULE_HPP
#include <string>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct module_pass_manager;
/**
* Runs several passes in a loop
*/
struct optimize_module
{
std::string name() const { return "optimize_module"; }
void apply(module_pass_manager& mpm) const;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -107,6 +107,13 @@ struct shape
friend bool operator==(const std::size_t& x, const dynamic_dimension& y);
friend bool operator!=(const dynamic_dimension& x, const std::size_t& y);
friend bool operator!=(const std::size_t& x, const dynamic_dimension& y);
// add and subtract fixed std::size_t dimension
dynamic_dimension& operator+=(const std::size_t& x);
dynamic_dimension& operator-=(const std::size_t& x);
friend dynamic_dimension operator+(const dynamic_dimension& x, const std::size_t& y);
friend dynamic_dimension operator+(const std::size_t& x, const dynamic_dimension& y);
friend dynamic_dimension operator-(const dynamic_dimension& x, const std::size_t& y);
};
static const std::vector<type_t>& types();
......
......@@ -822,7 +822,8 @@ static void print_make_op(std::ostream& os, const operation& op)
static void print_py_shape(std::ostream& os, const migraphx::shape& s)
{
os << "migraphx.shape(" << s.type_string() << ", lens=" << to_json_string(s.lens());
os << "migraphx.shape(type=" << to_json_string(s.type_string())
<< ", lens=" << to_json_string(s.lens());
if(not s.standard())
os << ", strides=" << to_json_string(s.strides());
os << ")";
......
......@@ -110,9 +110,19 @@ instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_r
{
if(args.size() == 3)
{
auto bias_bcast = mod->add_instruction(
instruction_ref bias_bcast;
// if curr_ins has a dynamic output shape use 2 input broadcast
if(curr_ins->get_shape().dynamic())
{
bias_bcast =
mod->add_instruction(make_op("broadcast", {{"axis", axis}}), args[2], curr_ins);
}
else
{
bias_bcast = mod->add_instruction(
make_op("broadcast", {{"axis", axis}, {"out_lens", curr_ins->get_shape().lens()}}),
args[2]);
}
return mod->add_instruction(make_op("add"), curr_ins, bias_bcast);
}
return curr_ins;
......
......@@ -39,10 +39,19 @@ struct parse_gemm : op_parser<parse_gemm>
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
auto a_arg = args[0];
auto b_arg = args[1];
if(a_arg->get_shape().ndim() != 2 or b_arg->get_shape().ndim() != 2)
{
MIGRAPHX_THROW("PARSE_GEMM: A and B should be rank 2, A is rank " +
std::to_string(a_arg->get_shape().ndim()) + ", B is rank " +
std::to_string(b_arg->get_shape().ndim()));
}
float alpha = 1.0f;
float beta = 1.0f;
bool transa = false;
bool transb = false;
bool trans_a = false;
bool trans_b = false;
if(contains(info.attributes, "alpha"))
{
alpha = parser.parse_value(info.attributes.at("alpha")).at<float>();
......@@ -53,65 +62,73 @@ struct parse_gemm : op_parser<parse_gemm>
}
if(contains(info.attributes, "transA"))
{
transa = parser.parse_value(info.attributes.at("transA")).at<bool>();
trans_a = parser.parse_value(info.attributes.at("transA")).at<bool>();
}
if(contains(info.attributes, "transB"))
{
transb = parser.parse_value(info.attributes.at("transB")).at<bool>();
trans_b = parser.parse_value(info.attributes.at("transB")).at<bool>();
}
std::vector<int64_t> perm(args[0]->get_shape().lens().size());
std::iota(perm.begin(), perm.end(), int64_t{0});
// swap the last two elements
std::swap(*perm.rbegin(), *(perm.rbegin() + 1));
auto l1 = args[0];
auto dot_type = l1->get_shape().type();
std::vector<int64_t> perm = {1, 0};
auto dot_type = a_arg->get_shape().type();
if(alpha != 1.0f)
{
auto alpha_literal = info.add_literal(alpha);
l1 = info.add_broadcastable_binary_op("mul", alpha_literal, l1);
if(l1->get_shape().type() != dot_type)
a_arg = info.add_broadcastable_binary_op("mul", alpha_literal, a_arg);
if(a_arg->get_shape().type() != dot_type)
{
l1 = info.add_instruction(make_op("convert", {{"target_type", dot_type}}), l1);
a_arg =
info.add_instruction(make_op("convert", {{"target_type", dot_type}}), a_arg);
}
}
l1 =
(transa) ? info.add_instruction(make_op("transpose", {{"permutation", perm}}), l1) : l1;
auto l2 = (transb)
a_arg = (trans_a)
? info.add_instruction(make_op("transpose", {{"permutation", perm}}), a_arg)
: a_arg;
b_arg = (trans_b)
? info.add_instruction(make_op("transpose", {{"permutation", perm}}), args[1])
: args[1];
auto ret = info.add_instruction(make_op("dot"), l1, l2);
auto dot_ins = info.add_instruction(make_op("dot"), a_arg, b_arg);
if(args.size() == 3)
{
if(not float_equal(beta, 0.0f) && args[2]->get_shape().elements() > 0)
if(not float_equal(beta, 0.0f))
{
auto out_lens = l1->get_shape().lens();
out_lens.back() = l2->get_shape().lens().back();
auto l3 = args[2];
auto l3_lens = l3->get_shape().lens();
if(not std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
auto c_arg = args[2];
if(dot_ins->get_shape().dynamic())
{
l3 = info.add_instruction(make_op("multibroadcast", {{"out_lens", out_lens}}),
args[2]);
c_arg = info.add_instruction(make_op("multibroadcast"), args[2], dot_ins);
}
auto beta_literal = info.add_literal(beta);
auto beta_l3 = info.add_broadcastable_binary_op("mul", l3, beta_literal);
if(beta_l3->get_shape().type() != dot_type)
else
{
beta_l3 = info.add_instruction(make_op("convert", {{"target_type", dot_type}}),
beta_l3);
auto out_lens = a_arg->get_shape().lens();
out_lens.back() = b_arg->get_shape().lens().back();
auto c_lens = c_arg->get_shape().lens();
if(not std::equal(
out_lens.begin(), out_lens.end(), c_lens.begin(), c_lens.end()))
{
c_arg = info.add_instruction(
make_op("multibroadcast", {{"out_lens", out_lens}}), args[2]);
}
}
return info.add_instruction(make_op("add"), ret, beta_l3);
if(not float_equal(beta, 1.0f))
{
auto beta_literal = info.add_literal(beta);
c_arg = info.add_broadcastable_binary_op("mul", c_arg, beta_literal);
if(c_arg->get_shape().type() != dot_type)
{
c_arg = info.add_instruction(
make_op("convert", {{"target_type", dot_type}}), c_arg);
}
}
return ret;
return info.add_instruction(make_op("add"), dot_ins, c_arg);
}
}
return dot_ins;
}
};
......
......@@ -43,55 +43,79 @@ struct parse_matmul : op_parser<parse_matmul>
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
auto l0 = args[0];
auto l1 = args[1];
auto l0_lens = l0->get_shape().lens();
auto l1_lens = l1->get_shape().lens();
auto a0 = args[0];
auto a1 = args[1];
auto s0 = a0->get_shape();
auto s1 = a1->get_shape();
// args[0] is a vector, prepend 1 to the shape
instruction_ref dot_res;
bool is_a_prepended = false;
if(l0_lens.size() == 1)
bool is_b_appended = false;
if(s0.ndim() == 1)
{
is_a_prepended = true;
l0_lens.insert(l0_lens.begin(), 1);
l0 = info.add_instruction(make_op("unsqueeze", {{"axes", {0}}}), args[0]);
a0 = info.add_instruction(make_op("unsqueeze", {{"axes", {0}}}), args[0]);
}
bool is_b_appended = false;
if(l1_lens.size() == 1)
if(s1.ndim() == 1)
{
is_b_appended = true;
l1_lens.push_back(1);
l1 = info.add_instruction(make_op("unsqueeze", {{"axes", {1}}}), args[1]);
a1 = info.add_instruction(make_op("unsqueeze", {{"axes", {1}}}), args[1]);
}
if(s0.dynamic() or s1.dynamic())
{
if(opd.op_name == "quant_dot")
{
MIGRAPHX_THROW("PARSE_MATMUL: dynamic MatMulInteger not supported");
}
auto s0_dds = a0->get_shape().to_dynamic().dyn_dims();
auto s1_dds = a1->get_shape().to_dynamic().dyn_dims();
instruction_ref bl0 = l0;
instruction_ref bl1 = l1;
// TODO: handling this case requires a new multibroadcast mode
if(not std::equal(
l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
s0_dds.rbegin() + 2, s0_dds.rend(), s1_dds.rbegin() + 2, s1_dds.rend()))
{
auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
MIGRAPHX_THROW("PARSE_MATMUL: dynamic shape broadcasting not supported");
}
dot_res = info.add_instruction(make_op(opd.op_name), a0, a1);
}
else
{
auto s0_lens = a0->get_shape().lens();
auto s1_lens = a1->get_shape().lens();
instruction_ref ba0 = a0;
instruction_ref ba1 = a1;
// try broadcasting if dimensions other than last two do not match
if(not std::equal(
s0_lens.rbegin() + 2, s0_lens.rend(), s1_lens.rbegin() + 2, s1_lens.rend()))
{
auto l0_it = s0_lens.begin() + s0_lens.size() - 2;
std::vector<std::size_t> l0_broadcasted_lens(s0_lens.begin(), l0_it);
auto l1_it = s1_lens.begin() + s1_lens.size() - 2;
std::vector<std::size_t> l1_broadcasted_lens(s1_lens.begin(), l1_it);
auto output_lens =
compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
l0_broadcasted_lens = output_lens;
l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, s0_lens.end());
l1_broadcasted_lens = output_lens;
l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
if(l0_lens != l0_broadcasted_lens)
l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, s1_lens.end());
if(s0_lens != l0_broadcasted_lens)
{
bl0 = info.add_instruction(
make_op("multibroadcast", {{"out_lens", l0_broadcasted_lens}}), l0);
ba0 = info.add_instruction(
make_op("multibroadcast", {{"out_lens", l0_broadcasted_lens}}), a0);
}
if(l1_lens != l1_broadcasted_lens)
if(s1_lens != l1_broadcasted_lens)
{
bl1 = info.add_instruction(
make_op("multibroadcast", {{"out_lens", l1_broadcasted_lens}}), l1);
ba1 = info.add_instruction(
make_op("multibroadcast", {{"out_lens", l1_broadcasted_lens}}), a1);
}
}
dot_res = info.add_instruction(make_op(opd.op_name), ba0, ba1);
}
instruction_ref dot_res = info.add_instruction(make_op(opd.op_name), bl0, bl1);
int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
// squeeze the appended or prepended dimensions
int64_t num_axis = dot_res->get_shape().ndim();
if(is_a_prepended)
{
dot_res = info.add_instruction(make_op("squeeze", {{"axes", {num_axis - 2}}}), dot_res);
......
......@@ -147,7 +147,13 @@ struct parse_pad : op_parser<parse_pad>
{
auto mode = info.attributes.at("mode").s();
if(mode == "reflect")
{
if(args.front()->get_shape().dynamic())
{
MIGRAPHX_THROW("PARSE_PAD: reflect padding with dynamic shape not supported");
}
return reflect_pad(info, pads, args.front());
}
if(mode != "constant")
{
MIGRAPHX_THROW(
......
......@@ -49,7 +49,7 @@ struct parse_reshape : op_parser<parse_reshape>
if(args.size() == 2)
{
auto s = args[1]->eval();
check_arg_empty(s, "Reshape: dynamic shape is not supported");
check_arg_empty(s, "Reshape: non-constant shape input is not supported");
s.visit([&](auto v) { copy(v, std::back_inserter(dims)); });
}
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
struct parse_trilu : op_parser<parse_trilu>
{
std::vector<op_desc> operators() const { return {{"Trilu"}}; }
instruction_ref parse(const op_desc&,
const onnx_parser&,
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
auto input_shape = args[0]->get_shape();
assert(input_shape.ndim() >= 2);
auto input_lens = input_shape.lens();
size_t num_rows = *(input_lens.rbegin() + 1);
size_t num_cols = input_lens.back();
int k = 0;
bool upper = true;
if(args.size() > 1)
{
auto arg_k = args[1]->eval();
check_arg_empty(arg_k, "PARSE_TRILU: dynamic k not supported");
k = arg_k.at<int>();
}
if(k < 0)
MIGRAPHX_THROW("PARSE_TRILU: negative k values not supported");
if(contains(info.attributes, "upper"))
{
upper = static_cast<bool>(info.attributes.at("upper").i());
}
shape::type_t output_type = args[0]->get_shape().type();
// when creating the mask, if upper == 1,
// the inner triangle will have values set to 0
std::vector<bool> mask_mat(num_rows * num_cols, upper);
for(size_t i = 0; i < num_rows; i++)
{
for(size_t j = 0; j < std::min(k, static_cast<int>(num_cols)); j++)
{
mask_mat[i * num_cols + j] = not upper;
}
k++;
}
auto mask = info.add_literal(
migraphx::literal{migraphx::shape{output_type, {num_rows, num_cols}}, mask_mat});
return info.add_broadcastable_binary_op("mul", mask, args[0]);
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/optimize_module.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/simplify_reshapes.hpp>
#include <migraphx/simplify_algebra.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/propagate_constant.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void optimize_module::apply(module_pass_manager& mpm) const
{
for(int i = 0; i < 2; i++)
{
mpm.run_pass(simplify_reshapes{});
mpm.run_pass(simplify_algebra{});
mpm.run_pass(eliminate_common_subexpression{});
mpm.run_pass(dead_code_elimination{});
mpm.run_pass(propagate_constant{});
mpm.run_pass(dead_code_elimination{});
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -504,6 +504,31 @@ bool shape::dynamic_dimension::is_fixed() const { return this->min == this->max;
bool shape::dynamic_dimension::has_optimal() const { return opt != 0; }
shape::dynamic_dimension& shape::dynamic_dimension::operator+=(const std::size_t& x)
{
this->min += x;
this->max += x;
if(this->opt != 0)
{
this->opt += x;
};
return *this;
}
shape::dynamic_dimension& shape::dynamic_dimension::operator-=(const std::size_t& x)
{
assert(this->min >= x);
assert(this->max >= x);
this->min -= x;
this->max -= x;
if(this->opt != 0)
{
assert(this->opt >= x);
this->opt -= x;
}
return *this;
}
bool operator==(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y)
{
// don't check opt if both are fixed
......@@ -529,6 +554,23 @@ bool operator==(const std::size_t& x, const shape::dynamic_dimension& y) { retur
bool operator!=(const shape::dynamic_dimension& x, const std::size_t& y) { return not(x == y); }
bool operator!=(const std::size_t& x, const shape::dynamic_dimension& y) { return not(x == y); }
shape::dynamic_dimension operator+(const shape::dynamic_dimension& x, const std::size_t& y)
{
auto dd = x;
return dd += y;
}
shape::dynamic_dimension operator+(const std::size_t& x, const shape::dynamic_dimension& y)
{
return y + x;
}
shape::dynamic_dimension operator-(const shape::dynamic_dimension& x, const std::size_t& y)
{
auto dd = x;
return dd -= y;
}
bool operator==(const shape& x, const shape& y)
{
if(x.dynamic() and y.dynamic())
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment