Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
6711780a
Commit
6711780a
authored
Oct 24, 2023
by
Artur Wojcik
Browse files
Merge branch 'develop' into uif2-initial
parents
c0563b9e
d1abf06f
Changes
167
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1029 additions
and
84 deletions
+1029
-84
src/onnx/parse_mean_variance_normalization.cpp
src/onnx/parse_mean_variance_normalization.cpp
+86
-0
src/onnx/parse_pad.cpp
src/onnx/parse_pad.cpp
+114
-33
src/onnx/parse_pooling.cpp
src/onnx/parse_pooling.cpp
+1
-1
src/onnx/parse_qlinearconv.cpp
src/onnx/parse_qlinearconv.cpp
+241
-0
src/onnx/parse_qlinearglavgpool.cpp
src/onnx/parse_qlinearglavgpool.cpp
+151
-0
src/onnx/parse_qlinearmatmul.cpp
src/onnx/parse_qlinearmatmul.cpp
+198
-0
src/onnx/parse_reshape.cpp
src/onnx/parse_reshape.cpp
+16
-6
src/onnx/parse_shrink.cpp
src/onnx/parse_shrink.cpp
+85
-0
src/onnx/parse_trilu.cpp
src/onnx/parse_trilu.cpp
+4
-4
src/program.cpp
src/program.cpp
+1
-1
src/rewrite_quantization.cpp
src/rewrite_quantization.cpp
+18
-3
src/simplify_algebra.cpp
src/simplify_algebra.cpp
+22
-1
src/simplify_reshapes.cpp
src/simplify_reshapes.cpp
+23
-7
src/targets/cpu/include/migraphx/cpu/fuse_ops.hpp
src/targets/cpu/include/migraphx/cpu/fuse_ops.hpp
+2
-4
src/targets/gpu/argmax.cpp
src/targets/gpu/argmax.cpp
+3
-2
src/targets/gpu/argmin.cpp
src/targets/gpu/argmin.cpp
+3
-2
src/targets/gpu/compile_hip_code_object.cpp
src/targets/gpu/compile_hip_code_object.cpp
+19
-7
src/targets/gpu/compile_ops.cpp
src/targets/gpu/compile_ops.cpp
+22
-7
src/targets/gpu/device/argmax.cpp
src/targets/gpu/device/argmax.cpp
+10
-3
src/targets/gpu/device/argmin.cpp
src/targets/gpu/device/argmin.cpp
+10
-3
No files found.
src/onnx/parse_mean_variance_normalization.cpp
0 → 100644
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
struct
parse_mean_variance_normalization
:
op_parser
<
parse_mean_variance_normalization
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"MeanVarianceNormalization"
}};
}
instruction_ref
parse
(
const
op_desc
&
/*opd*/
,
const
onnx_parser
&
/*parser*/
,
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
auto
&&
data
=
args
.
front
();
auto
data_rank
=
data
->
get_shape
().
ndim
();
std
::
vector
<
int64_t
>
axes
{
0
,
2
,
3
};
if
(
contains
(
info
.
attributes
,
"axes"
))
{
const
auto
&
axes_attr
=
info
.
attributes
[
"axes"
].
ints
();
axes
.
assign
(
axes_attr
.
begin
(),
axes_attr
.
end
());
}
else
if
(
data_rank
!=
4
)
{
MIGRAPHX_THROW
(
"Input tensor needs to be rank 4 when axes is not specified. Instead it is rank "
+
std
::
to_string
(
data_rank
));
}
if
(
axes
.
size
()
!=
data_rank
-
1
)
{
MIGRAPHX_THROW
(
"Length of axes array needs to be equal to input tensor rank - 1"
);
}
auto
data_mean
=
info
.
add_instruction
(
make_op
(
"reduce_mean"
,
{{
"axes"
,
axes
}}),
data
);
auto
data_mean_squared
=
info
.
add_common_op
(
"mul"
,
data_mean
,
data_mean
);
auto
data_squared
=
info
.
add_common_op
(
"mul"
,
data
,
data
);
auto
data_squared_mean
=
info
.
add_instruction
(
make_op
(
"reduce_mean"
,
{{
"axes"
,
axes
}}),
data_squared
);
auto
mean_sub
=
info
.
add_common_op
(
"sub"
,
data_squared_mean
,
data_mean_squared
);
auto
std
=
info
.
add_common_op
(
"sqrt"
,
mean_sub
);
auto
dividend
=
info
.
add_common_op
(
"sub"
,
data
,
data_mean
);
auto
epsilon
=
info
.
add_literal
({
data
->
get_shape
().
type
(),
{
data
->
get_shape
().
type
()
==
shape
::
half_type
?
1e-7
:
1e-9
}});
auto
divisor
=
info
.
add_common_op
(
"add"
,
std
,
epsilon
);
return
info
.
add_common_op
(
"div"
,
dividend
,
divisor
);
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_pad.cpp
View file @
6711780a
...
...
@@ -115,34 +115,9 @@ struct parse_pad : op_parser<parse_pad>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"Pad"
}};
}
instruction_ref
parse
(
const
op_desc
&
/*opd*/
,
const
onnx_parser
&
parser
,
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
std
::
string
parse_mode
(
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
std
::
vector
<
int64_t
>
pads
{};
if
(
args
.
size
()
>=
2
)
{
auto
pad_arg
=
args
.
at
(
1
)
->
eval
();
check_arg_empty
(
pad_arg
,
"PARSE_PAD: pad input must be constant"
);
pad_arg
.
visit
([
&
](
auto
v
)
{
pads
.
assign
(
v
.
begin
(),
v
.
end
());
});
}
else
if
(
contains
(
info
.
attributes
,
"pads"
))
{
auto
&&
pad_vals
=
info
.
attributes
[
"pads"
].
ints
();
pads
=
std
::
vector
<
int64_t
>
(
pad_vals
.
begin
(),
pad_vals
.
end
());
}
else
{
MIGRAPHX_THROW
(
"PARSE_PAD: pad must be available"
);
}
// check if padding is actually being done (at least one value is nonzero)
if
(
std
::
all_of
(
pads
.
begin
(),
pads
.
end
(),
[](
const
int
&
i
)
{
return
i
==
0
;
}))
{
return
info
.
add_instruction
(
make_op
(
"identity"
),
args
.
front
());
}
if
(
contains
(
info
.
attributes
,
"mode"
))
{
auto
mode
=
info
.
attributes
.
at
(
"mode"
).
s
();
...
...
@@ -152,28 +127,59 @@ struct parse_pad : op_parser<parse_pad>
{
MIGRAPHX_THROW
(
"PARSE_PAD: reflect padding with dynamic shape not supported"
);
}
return
reflect_pad
(
info
,
pads
,
args
.
front
());
}
if
(
mode
!=
"constant"
)
else
if
(
mode
!=
"constant"
)
{
MIGRAPHX_THROW
(
"PARSE_PAD: migraphx currently only supports constant and reflect padding"
);
}
return
mode
;
}
else
{
// default mode
return
"constant"
;
}
}
std
::
vector
<
int64_t
>
parse_pads
(
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
std
::
vector
<
int64_t
>
pads
{};
if
(
args
.
size
()
>=
2
)
{
auto
pad_arg
=
args
.
at
(
1
)
->
eval
();
check_arg_empty
(
pad_arg
,
"PARSE_PAD: `pads` input must be constant"
);
pad_arg
.
visit
([
&
](
auto
v
)
{
pads
.
assign
(
v
.
begin
(),
v
.
end
());
});
}
else
if
(
contains
(
info
.
attributes
,
"pads"
))
{
auto
&&
pad_vals
=
info
.
attributes
.
at
(
"pads"
).
ints
();
pads
=
std
::
vector
<
int64_t
>
(
pad_vals
.
begin
(),
pad_vals
.
end
());
}
else
{
MIGRAPHX_THROW
(
"PARSE_PAD: `pads` must be available"
);
}
return
pads
;
}
float
parse_constant_value
(
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
float
value
=
0.0
f
;
// third input is the value
if
(
args
.
size
()
==
3
)
if
(
args
.
size
()
>=
3
and
args
.
at
(
2
)
->
get_shape
().
scalar
())
{
auto
val_ins
=
args
.
at
(
2
);
if
(
not
val_ins
->
can_eval
())
{
MIGRAPHX_THROW
(
"PARSE_PAD: input value must be constant"
);
MIGRAPHX_THROW
(
"PARSE_PAD: input
`
value
`
must be constant"
);
}
auto
val_arg
=
val_ins
->
eval
();
if
(
val_arg
.
get_shape
().
elements
()
!=
1
)
{
MIGRAPHX_THROW
(
"PARSE_PAD: value should contain only one element"
);
MIGRAPHX_THROW
(
"PARSE_PAD:
`
value
`
should contain only one element"
);
}
value
=
val_arg
.
at
<
float
>
();
}
...
...
@@ -181,6 +187,81 @@ struct parse_pad : op_parser<parse_pad>
{
value
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"value"
)).
at
<
float
>
();
}
return
value
;
}
std
::
vector
<
int64_t
>
parse_axes
(
const
std
::
vector
<
instruction_ref
>&
args
,
bool
is_constant_mode
)
const
{
std
::
vector
<
int64_t
>
axes
{};
// axes is 3rd or 4th, depending on constant mode
auto
pos
=
is_constant_mode
?
4
:
3
;
if
(
args
.
size
()
>=
pos
)
{
auto
axes_arg
=
args
.
at
(
pos
-
1
)
->
eval
();
check_arg_empty
(
axes_arg
,
"PARSE_PAD: variable `axes` input not supported"
);
axes_arg
.
visit
([
&
](
auto
v
)
{
axes
.
assign
(
v
.
begin
(),
v
.
end
());
});
}
return
axes
;
}
std
::
vector
<
int64_t
>
calculate_pads_with_axes
(
const
std
::
vector
<
int64_t
>&
pads
,
const
std
::
vector
<
int64_t
>&
axes
,
size_t
input_rank
)
const
{
size_t
num_axes
=
axes
.
size
();
if
(
num_axes
*
2
!=
pads
.
size
())
{
MIGRAPHX_THROW
(
"PARSE_PAD: number of elements of pads should be equal to 2 * "
"number of elements of axes"
);
}
std
::
vector
<
int64_t
>
new_pads
(
input_rank
*
2
);
for
(
size_t
idx
{
0
};
idx
<
num_axes
;
++
idx
)
{
// axis can be negative
int64_t
axis
=
axes
[
idx
]
<
0
?
input_rank
+
axes
[
idx
]
:
axes
[
idx
];
// pad format is x1_begin, x2_begin, ... , x3_end, x4_end
new_pads
[
axis
]
=
pads
[
idx
];
new_pads
[
axis
+
input_rank
]
=
pads
[
idx
+
num_axes
];
}
return
new_pads
;
}
instruction_ref
parse
(
const
op_desc
&
/*opd*/
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
std
::
vector
<
int64_t
>
pads
=
parse_pads
(
info
,
args
);
// check if padding is actually being done (at least one value is nonzero)
if
(
std
::
all_of
(
pads
.
begin
(),
pads
.
end
(),
[](
const
int
&
i
)
{
return
i
==
0
;
}))
{
return
info
.
add_instruction
(
make_op
(
"identity"
),
args
.
front
());
}
std
::
string
mode
=
parse_mode
(
info
,
args
);
bool
is_constant_mode
=
mode
==
"constant"
;
float
value
=
is_constant_mode
?
parse_constant_value
(
parser
,
info
,
args
)
:
0.0
f
;
std
::
vector
<
int64_t
>
axes
=
parse_axes
(
args
,
is_constant_mode
);
size_t
input_rank
=
args
.
front
()
->
get_shape
().
ndim
();
if
(
not
axes
.
empty
())
{
pads
=
calculate_pads_with_axes
(
pads
,
axes
,
input_rank
);
}
if
(
pads
.
size
()
!=
input_rank
*
2
)
{
MIGRAPHX_THROW
(
"PARSE_PAD: number of elements of pads should be equal to 2 * "
"input rank"
);
}
if
(
mode
==
"reflect"
)
{
return
reflect_pad
(
info
,
pads
,
args
.
front
());
}
return
info
.
add_instruction
(
migraphx
::
make_op
(
"pad"
,
{{
"pads"
,
pads
},
{
"value"
,
value
}}),
args
.
front
());
...
...
src/onnx/parse_pooling.cpp
View file @
6711780a
...
...
@@ -97,7 +97,7 @@ struct parse_pooling : op_parser<parse_pooling>
values
[
"lp_order"
]
=
info
.
attributes
.
at
(
"p"
).
i
();
}
// ensure pads availabe only when auto_pad is "NOT_SET"
// ensure pads availab
l
e only when auto_pad is "NOT_SET"
check_padding_mode
(
info
,
"POOLING"
);
return
values
;
...
...
src/onnx/parse_qlinearconv.cpp
0 → 100644
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/onnx/conv.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/stringutils.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearConv in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearConv
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
ATTRIBUTES:
auto_pad : string
channels_last : int
dilations : list of ints
group : int
kernel_shape : list of ints
pads : list of ints
strides : list of ints
INPUTS (8 - 9):
x : T1
x_scale : tensor(float)
x_zero_point : T1
w : T2
w_scale : tensor(float)
w_zero_point : T2
y_scale : tensor(float)
y_zero_point : T3
B (optional) : T4
OUTPUTS:
y : T3
Type Constraints:
T1 : tensor(int8), tensor(uint8)
T2 : tensor(int8), tensor(uint8)
T3 : tensor(int8), tensor(uint8)
T4 : tensor(int32)
More details also at:
https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__QLinearConv.html
*/
struct
parse_qlinearconv
:
op_parser
<
parse_qlinearconv
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearConv"
}};
}
// basic type checking for QLinearConv Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
inp_arg
)
const
{
if
(
inp_arg
.
size
()
<
8
)
MIGRAPHX_THROW
(
"QLINEARCONV: missing inputs"
);
const
instruction_ref
&
in_x
=
inp_arg
[
0
];
const
instruction_ref
&
in_scale_x
=
inp_arg
[
1
];
const
instruction_ref
&
in_w
=
inp_arg
[
3
];
const
instruction_ref
&
in_scale_w
=
inp_arg
[
4
];
const
instruction_ref
&
in_scale_y
=
inp_arg
[
6
];
auto
sh_x
=
in_x
->
get_shape
();
auto
sh_w
=
in_w
->
get_shape
();
auto
type_x
=
sh_x
.
type
();
auto
type_w
=
sh_w
.
type
();
assert
(
in_x
->
get_shape
().
ndim
()
>
2
);
if
(
type_x
!=
shape
::
int8_type
and
type_x
!=
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARCONV: unsupported input type"
);
if
(
type_w
!=
shape
::
int8_type
and
type_w
!=
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARCONV: unsupported weight type"
);
if
(
in_scale_x
->
get_shape
().
type
()
!=
shape
::
float_type
)
MIGRAPHX_THROW
(
"QLINEARCONV x scale type should be float"
);
if
(
in_scale_w
->
get_shape
().
type
()
!=
shape
::
float_type
)
MIGRAPHX_THROW
(
"QLINEARCONV: wt scale type should be float"
);
if
(
in_scale_y
->
get_shape
().
type
()
!=
shape
::
float_type
)
MIGRAPHX_THROW
(
"QLINEARCONV: y scale type should be float"
);
if
(
inp_arg
.
size
()
>
8
and
inp_arg
[
8
]
->
get_shape
().
type
()
!=
shape
::
int32_type
)
MIGRAPHX_THROW
(
"QLINEARCONV y bias should be int32"
);
}
// process all attributes of QLinearConv Operator..
value
process_attributes
(
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
value
values
;
const
auto
&
in_x
=
args
[
0
];
const
auto
&
wt
=
args
[
3
];
size_t
kdims
=
in_x
->
get_shape
().
ndim
()
-
2
;
check_padding_mode
(
info
,
"QLINEARCONV"
);
values
[
"stride"
]
=
std
::
vector
<
int
>
(
kdims
,
1
);
values
[
"dilation"
]
=
std
::
vector
<
int
>
(
kdims
,
1
);
values
[
"padding"
]
=
std
::
vector
<
int
>
(
kdims
,
0
);
values
[
"group"
]
=
1
;
if
(
contains
(
info
.
attributes
,
"group"
))
values
[
"group"
]
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"group"
)).
template
at
<
int
>();
if
(
contains
(
info
.
attributes
,
"strides"
))
{
std
::
vector
<
int
>
st
;
copy
(
info
.
attributes
.
at
(
"strides"
).
ints
(),
std
::
back_inserter
(
st
));
check_attr_sizes
(
kdims
,
st
.
size
(),
"QLINEARCONV: inconsistent strides"
);
values
[
"stride"
]
=
st
;
}
if
(
contains
(
info
.
attributes
,
"dilations"
))
{
std
::
vector
<
int
>
dil
;
copy
(
info
.
attributes
.
at
(
"dilations"
).
ints
(),
std
::
back_inserter
(
dil
));
check_attr_sizes
(
kdims
,
dil
.
size
(),
"QLINEARCONV: inconsistent dilations"
);
values
[
"dilation"
]
=
dil
;
}
if
(
contains
(
info
.
attributes
,
"pads"
))
{
std
::
vector
<
int
>
pads
;
copy
(
info
.
attributes
.
at
(
"pads"
).
ints
(),
std
::
back_inserter
(
pads
));
check_attr_sizes
(
kdims
,
pads
.
size
()
/
2
,
"QLINEARCONV: inconsistent padding"
);
values
[
"padding"
]
=
pads
;
}
else
if
(
contains
(
info
.
attributes
,
"auto_pad"
))
{
auto
in_lens
=
in_x
->
get_shape
().
lens
();
auto
wt_lens
=
wt
->
get_shape
().
lens
();
std
::
vector
<
std
::
size_t
>
k_lens
(
wt_lens
.
begin
()
+
2
,
wt_lens
.
end
());
std
::
vector
<
int64_t
>
pads
=
values
[
"padding"
].
to_vector
<
std
::
int64_t
>
();
cal_auto_padding_size
(
info
,
values
,
k_lens
,
values
[
"dilation"
].
to_vector
<
std
::
size_t
>
(),
in_lens
,
pads
);
values
[
"padding"
]
=
pads
;
}
recalc_conv_attributes
(
values
,
kdims
);
return
values
;
}
instruction_ref
add_bias_to_conv
(
const
instruction_ref
bias_arg
,
const
instruction_ref
conv_instr
,
const
onnx_parser
::
node_info
&
info
)
const
{
auto
conv_sh
=
conv_instr
->
get_shape
();
auto
conv_lens
=
conv_sh
.
lens
();
auto
conv_type
=
conv_sh
.
type
();
auto
broadcast_bias
=
info
.
add_instruction
(
migraphx
::
make_op
(
"broadcast"
,
{{
"axis"
,
1
},
{
"out_lens"
,
conv_lens
}}),
bias_arg
);
auto
f_bias
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
conv_type
}}),
broadcast_bias
);
return
info
.
add_instruction
(
migraphx
::
make_op
(
"add"
),
conv_instr
,
f_bias
);
};
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
args
);
auto
values
=
process_attributes
(
parser
,
info
,
args
);
// input: quantized x, scale, zero_pt
const
instruction_ref
&
in_x
=
args
[
0
];
const
instruction_ref
&
in_scale_x
=
args
[
1
];
const
instruction_ref
&
in_zero_pt_x
=
args
[
2
];
// input: quantized weights, scale, zero_pt
const
instruction_ref
&
in_w
=
args
[
3
];
const
instruction_ref
&
in_scale_w
=
args
[
4
];
const
instruction_ref
&
in_zero_pt_w
=
args
[
5
];
// for the dequantized output y: scale & zero_pt
const
instruction_ref
&
in_scale_y
=
args
[
6
];
const
instruction_ref
&
in_zero_pt_y
=
args
[
7
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
in_scale_x
,
in_zero_pt_x
,
info
);
auto
dquant_w
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_w
,
in_scale_w
,
in_zero_pt_w
,
info
);
auto
conv_op
=
migraphx
::
make_op
(
"convolution"
,
values
);
auto
conv_x_w
=
info
.
add_instruction
(
conv_op
,
dquant_x
,
dquant_w
);
// Biases, if any.. : is an optional argument.
if
(
args
.
size
()
>
8
)
conv_x_w
=
add_bias_to_conv
(
args
[
8
],
conv_x_w
,
info
);
auto
quant_conv
=
bcast_qdq_instr
(
"quantizelinear"
,
conv_x_w
,
in_scale_y
,
in_zero_pt_y
,
info
);
return
quant_conv
;
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_qlinearglavgpool.cpp
0 → 100644
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearGlobalAveragePool in *
* github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
QLinearGlobalAveragePool consumes an input tensor X and applies
Average pooling across the values in the same channel. This is
equivalent to AveragePool with kernel size equal to the spatial
dimension of input tensor. Input is of type uint8_t or int8_t.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
channels_last : int
Inputs
X : T
Input data tensor from the previous operator; According to channels_last, dimensions for image case
are (N x C x H x W), or (N x H x W x C) where N is the batch size, C is the number of channels, and
H and W are the height and the width of the data. For non image case, the dimensions are in the form
of (N x C x D1 x D2 ... Dn), or (N x D1 X D2 ... Dn x C) where N is the batch size.
x_scale : tensor(float)
Scale of quantized input 'X'. It must be a scalar.
x_zero_point : T
Zero point tensor for input 'X'. It must be a scalar.
y_scale : tensor(float)
Scale of quantized output 'Y'. It must be a scalar.
y_zero_point : T
Zero point tensor for output 'Y'. It must be a scalar.
Outputs
Y : T
Output data tensor from pooling across the input tensor. The output tensor has the same rank as the
input. with the N and C value keep it value, while the other dimensions are all 1. Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to signed/unsigned int8 tensors.
*/
struct
parse_qlinearglobalaveragepool
:
op_parser
<
parse_qlinearglobalaveragepool
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearGlobalAveragePool"
}};
}
// basic type checking for QLinearGlobalAveragePool Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
if
(
args
.
size
()
<
5
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: missing inputs"
);
const
auto
&
in_x
=
args
[
0
];
const
auto
&
zero_pt_x
=
args
[
2
];
const
auto
&
zero_pt_y
=
args
[
4
];
if
(
in_x
->
get_shape
().
ndim
()
<=
2
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: input dimensions too small"
);
auto
type_x
=
in_x
->
get_shape
().
type
();
if
(
type_x
!=
migraphx
::
shape
::
int8_type
and
type_x
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: unsupported input type"
);
if
(
type_x
!=
zero_pt_x
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: input zero point"
);
if
(
type_x
!=
zero_pt_y
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: output zero point"
);
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
int
channels_last
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"channels_last"
)).
template
at
<
int
>();
if
(
channels_last
!=
0
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: channels_last (N x D1..Dn x C) is not supported"
);
check_inputs
(
args
);
// Input: X
const
auto
&
in_x
=
args
[
0
];
const
auto
&
scale_x
=
args
[
1
];
const
auto
&
zero_pt_x
=
args
[
2
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
scale_x
,
zero_pt_x
,
info
);
// Output Y = globalaveragepool(X)
auto
op
=
migraphx
::
op
::
pooling
{
migraphx
::
op
::
pooling_mode
::
average
};
auto
lens
=
in_x
->
get_shape
().
lens
();
std
::
vector
<
size_t
>
lengths
(
lens
.
begin
()
+
2
,
lens
.
end
());
op
.
lengths
=
lengths
;
op
.
padding
=
std
::
vector
<
size_t
>
(
lens
.
size
());
auto
out_y
=
info
.
add_instruction
(
op
,
dquant_x
);
const
auto
&
scale_y
=
args
[
3
];
const
auto
&
zero_pt_y
=
args
[
4
];
auto
out_quant_y
=
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
scale_y
,
zero_pt_y
,
info
);
return
out_quant_y
;
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_qlinearmatmul.cpp
0 → 100644
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearMatMul in *
* https://onnx.ai/onnx/operators/onnx__QLinearMatMul.html *
*********************************************************************************
Matrix product that behaves like numpy.matmul:
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html. It consumes two
quantized input tensors, their scales and zero points, scale and zero point of output, and computes
the quantized output. The quantization formula is y = saturate((x / y_scale) + y_zero_point). For (x
/ y_scale), it is rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding
for details. Scale and zero point must have same shape. They must be either scalar (per tensor) or
N-D tensor (per row for ‘a’ and per column for ‘b’). Scalar refers to per tensor quantization
whereas N-D refers to per row or per column quantization. If the input is 2D of shape [M, K] then
zero point and scale tensor may be an M element vector [v_1, v_2, …, v_M] for per row quantization
and K element vector of shape [v_1, v_2, …, v_K] for per column quantization. If the input is N-D
tensor with shape [D1, D2, M, K] then zero point and scale tensor may have shape [D1, D2, M, 1] for
per row quantization and shape [D1, D2, 1, K] for per column quantization. Production must never
overflow, and accumulation may overflow if and only if in 32 bits.
Inputs
a (heterogeneous) - T1: N-dimensional quantized matrix a
a_scale (heterogeneous) - tensor(float): scale of quantized input a
a_zero_point (heterogeneous) - T1: zero point of quantized input a
b (heterogeneous) - T2: N-dimensional quantized matrix b
b_scale (heterogeneous) - tensor(float): scale of quantized input b
b_zero_point (heterogeneous) - T2: zero point of quantized input b
y_scale (heterogeneous) - tensor(float): scale of quantized output y
y_zero_point (heterogeneous) - T3: zero point of quantized output y
Outputs
y (heterogeneous) - T3: Quantized matrix multiply results from a * b
Type Constraints
T1 in ( tensor(int8), tensor(uint8) ): Constrain input a and its zero point data type to 8-bit
integer tensor.
T2 in ( tensor(int8), tensor(uint8) ): Constrain input b and its zero point data type to 8-bit
integer tensor.
T3 in ( tensor(int8), tensor(uint8) ): Constrain output y and its zero point data type to 8-bit
integer tensor.
*/
struct
parse_qlinearmatmul
:
op_parser
<
parse_qlinearmatmul
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearMatMul"
}};
}
// basic type checking for QLinearMatMul Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
if
(
args
.
size
()
<
8
)
MIGRAPHX_THROW
(
"QLINEARMATMUL: missing inputs"
);
const
auto
&
in_a
=
args
[
0
];
const
auto
&
in_b
=
args
[
3
];
auto
sh_a
=
in_a
->
get_shape
();
auto
sh_b
=
in_b
->
get_shape
();
auto
type_a
=
sh_a
.
type
();
auto
type_b
=
sh_b
.
type
();
if
(
type_a
!=
migraphx
::
shape
::
int8_type
and
type_a
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARMATMUL: unsupported input type"
);
if
(
type_b
!=
migraphx
::
shape
::
int8_type
and
type_b
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARMATMUL: unsupported input type"
);
auto
lens_a
=
sh_a
.
lens
();
auto
lens_b
=
sh_b
.
lens
();
size_t
dim_a
=
lens_a
.
size
();
size_t
dim_b
=
lens_b
.
size
();
if
(
dim_a
==
0
or
dim_b
==
0
)
MIGRAPHX_THROW
(
"QLINEARMATMUL: empty input"
);
// broadcast supported if either is 1-D -- the other can be a 2-D tensor.
// if it is 1-D, just prepend/append that lens and check further constraints..
if
(
dim_a
==
1
)
{
lens_a
.
insert
(
lens_a
.
begin
(),
1
);
dim_a
++
;
}
if
(
dim_b
==
1
)
{
lens_b
.
push_back
(
1
);
dim_b
++
;
}
// 2-D or higher-order mat mul
if
(
dim_a
!=
dim_b
or
*
lens_a
.
rbegin
()
!=
*
(
lens_b
.
rbegin
()
+
1
)
or
not
std
::
equal
(
lens_a
.
rbegin
()
+
2
,
lens_a
.
rend
(),
lens_b
.
rbegin
()
+
2
,
lens_b
.
rend
()))
MIGRAPHX_THROW
(
"QLINEARMATMUL: mismatched input dimensions"
);
if
(
migraphx
::
any_of
({
args
[
1
],
args
[
2
],
args
[
4
],
args
[
5
]},
[](
auto
arg
)
{
return
not
arg
->
get_shape
().
scalar
();
}))
MIGRAPHX_THROW
(
"QLINEARMATMUL: unsupported row/column quantization"
);
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
const
onnx_parser
&
/*parser*/
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
args
);
// A
const
auto
&
in_a
=
args
[
0
];
const
auto
&
in_scale_a
=
args
[
1
];
const
auto
&
in_zero_pt_a
=
args
[
2
];
auto
dquant_a
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_a
,
in_scale_a
,
in_zero_pt_a
,
info
);
// B
const
auto
&
in_b
=
args
[
3
];
const
auto
&
in_scale_b
=
args
[
4
];
const
auto
&
in_zero_pt_b
=
args
[
5
];
auto
dquant_b
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_b
,
in_scale_b
,
in_zero_pt_b
,
info
);
bool
is_a_prepended
=
false
;
bool
is_b_appended
=
false
;
// un-squeeze either tensor if 1-D.
if
(
in_a
->
get_shape
().
ndim
()
==
1
)
{
is_a_prepended
=
true
;
dquant_a
=
info
.
add_instruction
(
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
0
}}}),
dquant_a
);
}
if
(
in_b
->
get_shape
().
ndim
()
==
1
)
{
is_b_appended
=
true
;
dquant_b
=
info
.
add_instruction
(
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
}}}),
dquant_b
);
}
// Y = A * B
auto
out_y
=
info
.
add_instruction
(
migraphx
::
make_op
(
"dot"
),
dquant_a
,
dquant_b
);
// squeeze just once if necessary.. not twice.
if
(
is_a_prepended
)
out_y
=
info
.
add_instruction
(
make_op
(
"squeeze"
,
{{
"axes"
,
{
0
}}}),
out_y
);
else
if
(
is_b_appended
)
out_y
=
info
.
add_instruction
(
make_op
(
"squeeze"
,
{{
"axes"
,
{
1
}}}),
out_y
);
const
auto
&
scale_y
=
args
[
6
];
const
auto
&
zero_pt_y
=
args
[
7
];
return
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
scale_y
,
zero_pt_y
,
info
);
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_reshape.cpp
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -45,15 +45,25 @@ struct parse_reshape : op_parser<parse_reshape>
{
literal
s
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"shape"
));
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
dims
));
});
return
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
dims
}}),
args
[
0
]);
}
if
(
args
.
size
()
==
2
)
else
{
// 2 inputs
auto
s
=
args
[
1
]
->
eval
();
check_arg_empty
(
s
,
"Reshape: non-constant shape input is not supported"
);
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
dims
));
});
if
(
s
.
empty
())
{
// arg[1] not eval-able
auto
alloc_ins
=
info
.
add_instruction
(
make_op
(
"allocate"
,
{{
"buf_type"
,
args
[
0
]
->
get_shape
().
type
()}}),
args
[
1
]);
return
info
.
add_instruction
(
make_op
(
"reshape"
),
args
[
0
],
alloc_ins
);
}
else
{
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
dims
));
});
return
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
dims
}}),
args
[
0
]);
}
}
return
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
dims
}}),
args
[
0
]);
}
};
...
...
src/onnx/parse_shrink.cpp
0 → 100644
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
struct
parse_shrink
:
op_parser
<
parse_shrink
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"Shrink"
}};
}
instruction_ref
parse
(
const
op_desc
&
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
float
bias
=
0.0
;
if
(
contains
(
info
.
attributes
,
"bias"
))
{
bias
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"bias"
)).
at
<
float
>
();
}
float
lambd
=
0.5
;
if
(
contains
(
info
.
attributes
,
"lambd"
))
{
lambd
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"lambd"
)).
at
<
float
>
();
}
auto
x
=
args
[
0
];
auto
x_shape
=
x
->
get_shape
();
auto
x_type
=
x_shape
.
type
();
auto
lit_bias
=
info
.
add_literal
(
bias
);
auto
lit_neg_lambd
=
info
.
add_literal
(
-
lambd
);
auto
lit_lambd
=
info
.
add_literal
(
lambd
);
auto
x_plus_bias
=
info
.
add_common_op
(
"add"
,
x
,
lit_bias
);
auto
x_min_bias
=
info
.
add_common_op
(
"sub"
,
x
,
lit_bias
);
auto
cond1
=
info
.
add_common_op
(
"less"
,
x
,
lit_neg_lambd
);
auto
cond2_a
=
info
.
add_common_op
(
"not"
,
cond1
);
auto
cond2_b
=
info
.
add_common_op
(
"greater"
,
x
,
lit_lambd
);
auto
cond2
=
info
.
add_common_op
(
"logical_and"
,
cond2_a
,
cond2_b
);
auto
mul1
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
x_type
}}),
cond1
);
auto
mul2
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
x_type
}}),
cond2
);
auto
first
=
info
.
add_common_op
(
"mul"
,
mul1
,
x_plus_bias
);
auto
second
=
info
.
add_common_op
(
"mul"
,
mul2
,
x_min_bias
);
auto
ret
=
info
.
add_common_op
(
"add"
,
first
,
second
);
if
(
ret
->
get_shape
().
type
()
!=
x_type
)
{
ret
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
x_type
}}),
ret
);
}
return
ret
;
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_trilu.cpp
View file @
6711780a
...
...
@@ -56,9 +56,6 @@ struct parse_trilu : op_parser<parse_trilu>
k
=
arg_k
.
at
<
int
>
();
}
if
(
k
<
0
)
MIGRAPHX_THROW
(
"PARSE_TRILU: negative k values not supported"
);
if
(
contains
(
info
.
attributes
,
"upper"
))
{
upper
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"upper"
).
i
());
...
...
@@ -69,9 +66,12 @@ struct parse_trilu : op_parser<parse_trilu>
// when creating the mask, if upper == 1,
// the inner triangle will have values set to 0
std
::
vector
<
bool
>
mask_mat
(
num_rows
*
num_cols
,
upper
);
// if upper == 0, kth diagonal must also be masked
if
(
not
upper
)
k
++
;
for
(
size_t
i
=
0
;
i
<
num_rows
;
i
++
)
{
for
(
size_
t
j
=
0
;
j
<
std
::
min
(
k
,
static_cast
<
int
>
(
num_cols
));
j
++
)
for
(
in
t
j
=
0
;
j
<
std
::
min
(
k
,
static_cast
<
int
>
(
num_cols
));
j
++
)
{
mask_mat
[
i
*
num_cols
+
j
]
=
not
upper
;
}
...
...
src/program.cpp
View file @
6711780a
...
...
@@ -936,7 +936,7 @@ void program::perf_report(std::ostream& os,
os
<<
std
::
endl
;
os
<<
"Batch size: "
<<
batch
<<
std
::
endl
;
os
<<
"Rate: "
<<
rate
*
batch
<<
"/sec"
<<
std
::
endl
;
os
<<
"Rate: "
<<
rate
*
batch
<<
"
inferences
/sec"
<<
std
::
endl
;
os
<<
"Total time: "
<<
total_time
<<
"ms"
<<
std
::
endl
;
os
<<
"Total instructions time: "
<<
total_instruction_time
<<
"ms"
<<
std
::
endl
;
os
<<
"Overhead time: "
<<
overhead_time
<<
"ms"
...
...
src/rewrite_quantization.cpp
View file @
6711780a
...
...
@@ -33,6 +33,8 @@
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_ENABLE_CK_WORKAROUNDS
);
void
apply_quantizelinear
(
module
&
m
,
instruction_ref
ins
)
{
assert
(
ins
->
name
()
==
"quantizelinear"
);
...
...
@@ -62,9 +64,22 @@ void apply_quantizelinear(module& m, instruction_ref ins)
max_quant
=
qt
.
max
();
min_quant
=
qt
.
min
();
});
auto
s
=
add_zero_point
->
get_shape
();
auto
min_arg
=
m
.
add_literal
(
literal
{
shape
{
s
.
type
()},
{
min_quant
}});
auto
max_arg
=
m
.
add_literal
(
literal
{
shape
{
s
.
type
()},
{
max_quant
}});
auto
s
=
add_zero_point
->
get_shape
();
instruction_ref
min_arg
;
instruction_ref
max_arg
;
if
(
enabled
(
MIGRAPHX_ENABLE_CK_WORKAROUNDS
{}))
{
std
::
vector
<
int
>
min_data
(
s
.
elements
(),
min_quant
);
std
::
vector
<
int
>
max_data
(
s
.
elements
(),
max_quant
);
min_arg
=
m
.
add_literal
(
literal
(
s
,
min_data
));
max_arg
=
m
.
add_literal
(
literal
(
s
,
max_data
));
}
else
{
min_arg
=
m
.
add_literal
(
literal
{
shape
{
s
.
type
()},
{
min_quant
}});
max_arg
=
m
.
add_literal
(
literal
{
shape
{
s
.
type
()},
{
max_quant
}});
}
auto
saturate
=
insert_common_op
(
m
,
ins
,
make_op
(
"clip"
),
{
add_zero_point
,
min_arg
,
max_arg
});
m
.
replace_instruction
(
ins
,
make_op
(
"convert"
,
{{
"target_type"
,
ins
->
get_shape
().
type
()}}),
saturate
);
...
...
src/simplify_algebra.cpp
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -521,6 +521,27 @@ struct find_inner_broadcast
})
<
(
lens
.
size
()
-
1
);
}))
return
;
if
(
broadcasts
.
size
()
>
1
)
{
auto
bcast_strides
=
broadcasts
.
front
()
->
get_shape
().
strides
().
size
();
std
::
vector
<
size_t
>
common_axis
(
bcast_strides
,
0
);
// go through the strides of each broadcast,
// keep track of values that are equal to 0 in a dimension
for
(
auto
i
=
0
;
i
<
bcast_strides
;
i
++
)
{
for
(
const
auto
&
broadcast
:
broadcasts
)
{
if
(
broadcast
->
get_shape
().
strides
()[
i
]
==
0
)
common_axis
[
i
]
++
;
}
}
// if no common broadcast axis, transformation is not useful
if
(
std
::
find_if
(
common_axis
.
begin
(),
common_axis
.
end
(),
[](
auto
num_common
)
{
return
num_common
>
1
;
})
==
common_axis
.
end
())
return
;
}
std
::
vector
<
instruction_ref
>
inputs
;
std
::
transform
(
broadcasts
.
begin
(),
broadcasts
.
end
(),
...
...
src/simplify_reshapes.cpp
View file @
6711780a
...
...
@@ -632,6 +632,9 @@ struct find_transpose_contiguous_reshaper_unary
}
};
// simplifies broadcast->transpose to transpose->broadcast
// in the case of a scalar, simply rewrite to broadcast
// this can allow for further optimizations with find_inner_broadcast() in simplify_algebra.cpp
struct
find_broadcast_transpose
{
auto
matcher
()
const
...
...
@@ -642,17 +645,30 @@ struct find_broadcast_transpose
void
apply
(
module
&
m
,
const
match
::
matcher_result
&
r
)
const
{
auto
ins
=
r
.
result
;
auto
ins
_lens
=
ins
->
get_shape
().
lens
();
auto
transpose
=
r
.
result
;
auto
transpose
_lens
=
transpose
->
get_shape
().
lens
();
auto
bcast_ins
=
r
.
instructions
[
"bcast_ins"
];
auto
input
=
bcast_ins
->
inputs
().
front
();
//
for now, focusing on
scalar transformation
// scalar transformation
does not need extra transpose
if
(
not
input
->
get_shape
().
scalar
())
return
;
{
// find common shape
auto
in_lens
=
input
->
get_shape
().
lens
();
int
lens_diff
=
transpose_lens
.
size
()
-
in_lens
.
size
();
// insert unsqueeze if input lens < transpose lens
if
(
lens_diff
>
0
)
{
std
::
vector
<
size_t
>
unsqueeze_axes
(
lens_diff
);
std
::
iota
(
unsqueeze_axes
.
begin
(),
unsqueeze_axes
.
end
(),
0
);
input
=
m
.
insert_instruction
(
bcast_ins
,
make_op
(
"unsqueeze"
,
{{
"axes"
,
unsqueeze_axes
}}),
input
);
}
// apply transpose before the multibroadcast
input
=
m
.
insert_instruction
(
bcast_ins
,
transpose
->
get_operator
(),
input
);
}
auto
new_mbcast
=
m
.
insert_instruction
(
bcast_ins
,
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
ins
_lens
}}),
input
);
m
.
replace_instruction
(
ins
,
new_mbcast
);
bcast_ins
,
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
transpose
_lens
}}),
input
);
m
.
replace_instruction
(
transpose
,
new_mbcast
);
}
};
...
...
src/targets/cpu/include/migraphx/cpu/fuse_ops.hpp
View file @
6711780a
...
...
@@ -24,7 +24,7 @@
#ifndef MIGRAPHX_GUARD_CPU_FUSE_OPS_HPP
#define MIGRAPHX_GUARD_CPU_FUSE_OPS_HPP
#include <migraphx/c
onfig
.hpp>
#include <migraphx/c
pu/context
.hpp>
#include <string>
namespace
migraphx
{
...
...
@@ -34,9 +34,7 @@ struct module;
namespace
cpu
{
struct
context
;
struct
fuse_ops
struct
MIGRAPHX_CPU_EXPORT
fuse_ops
{
context
*
ctx
=
nullptr
;
std
::
string
name
()
const
{
return
"cpu::fuse_ops"
;
}
...
...
src/targets/gpu/argmax.cpp
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -40,7 +40,8 @@ argument hip_argmax::compute(context& ctx, const shape&, const std::vector<argum
{
auto
n_dim
=
args
.
front
().
get_shape
().
lens
().
size
();
int64_t
tuned_axis
=
tune_axis
(
n_dim
,
op
.
axis
,
op
.
name
());
device
::
argmax
(
ctx
.
get_stream
().
get
(),
args
.
back
(),
args
.
front
(),
tuned_axis
);
device
::
argmax
(
ctx
.
get_stream
().
get
(),
args
.
back
(),
args
.
front
(),
tuned_axis
,
op
.
select_last_index
);
return
args
.
back
();
}
...
...
src/targets/gpu/argmin.cpp
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -40,7 +40,8 @@ argument hip_argmin::compute(context& ctx, const shape&, const std::vector<argum
{
auto
n_dim
=
args
.
front
().
get_shape
().
lens
().
size
();
int64_t
tuned_axis
=
tune_axis
(
n_dim
,
op
.
axis
,
op
.
name
());
device
::
argmin
(
ctx
.
get_stream
().
get
(),
args
.
back
(),
args
.
front
(),
tuned_axis
);
device
::
argmin
(
ctx
.
get_stream
().
get
(),
args
.
back
(),
args
.
front
(),
tuned_axis
,
op
.
select_last_index
);
return
args
.
back
();
}
...
...
src/targets/gpu/compile_hip_code_object.cpp
View file @
6711780a
...
...
@@ -139,6 +139,12 @@ void hip_compile_options::set_launch_params(
global
=
compute_global
(
local
);
}
static
bool
hip_accept_non_uniform_wg
()
{
static
bool
non_uniform_wg
=
hip_has_flags
({
"-fno-offload-uniform-block"
});
return
non_uniform_wg
;
}
std
::
function
<
std
::
size_t
(
std
::
size_t
local
)
>
compute_global_for
(
context
&
ctx
,
std
::
size_t
n
,
std
::
size_t
over
)
{
...
...
@@ -146,13 +152,14 @@ compute_global_for(context& ctx, std::size_t n, std::size_t over)
std
::
size_t
max_global
=
ctx
.
get_current_device
().
get_cu_count
()
*
ctx
.
get_current_device
().
get_max_workitems_per_cu
();
return
[
n
,
over
,
max_global
](
std
::
size_t
local
)
{
// hip require global workitems multiple of local workitems. It may degrade performance.
// [TODO]: consider adding "fno-hip-uniform-block" flag when it becomes available.
// https://reviews.llvm.org/D155213
std
::
size_t
num_elements
=
((
n
+
local
-
1
)
/
local
)
*
local
;
std
::
size_t
groups
=
(
num_elements
+
local
-
1
)
/
local
;
std
::
size_t
max_blocks
=
max_global
/
local
;
std
::
size_t
nglobal
=
std
::
min
(
max_blocks
*
over
,
groups
)
*
local
;
std
::
size_t
num_elements
=
n
;
if
(
not
hip_accept_non_uniform_wg
())
{
num_elements
=
(
1
+
(
n
-
1
)
/
local
)
*
local
;
}
std
::
size_t
groups
=
1
+
(
num_elements
-
1
)
/
local
;
std
::
size_t
max_blocks
=
max_global
/
local
;
std
::
size_t
nglobal
=
std
::
min
(
max_blocks
*
over
,
groups
)
*
local
;
return
std
::
min
(
nglobal
,
num_elements
);
};
}
...
...
@@ -183,6 +190,11 @@ operation compile_hip_code_object(const std::string& content, hip_compile_option
generate_args_hpp
(
options
.
virtual_inputs
.
empty
()
?
options
.
inputs
:
options
.
virtual_inputs
);
srcs
.
emplace_back
(
"args.hpp"
,
args_hpp
);
if
(
options
.
global
%
options
.
local
!=
0
and
hip_accept_non_uniform_wg
())
options
.
params
+=
" -fno-offload-uniform-block"
;
else
assert
(
options
.
global
%
options
.
local
==
0
);
options
.
params
+=
" -DMIGRAPHX_NGLOBAL="
+
std
::
to_string
(
options
.
global
);
options
.
params
+=
" -DMIGRAPHX_NLOCAL="
+
std
::
to_string
(
options
.
local
);
options
.
params
+=
" "
+
join_strings
(
compiler_warnings
(),
" "
);
...
...
src/targets/gpu/compile_ops.cpp
View file @
6711780a
...
...
@@ -37,6 +37,7 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace
gpu
{
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_GPU_COMPILE_PARALLEL
);
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_TRACE_BENCHMARKING
);
struct
precompile_op
{
...
...
@@ -179,15 +180,29 @@ struct compile_plan
MIGRAPHX_THROW
(
"Multiple kernels without config"
);
std
::
cout
<<
"Benchmarking "
<<
preop
.
name
()
<<
": "
<<
results
.
size
()
<<
" configs"
<<
std
::
endl
;
if
(
enabled
(
MIGRAPHX_TRACE_BENCHMARKING
{}))
std
::
cout
<<
"Problem: "
<<
config
->
problem
<<
std
::
endl
;
std
::
vector
<
double
>
times
;
times
.
reserve
(
results
.
size
());
std
::
transform
(
results
.
begin
(),
results
.
end
(),
std
::
back_inserter
(
times
),
[
&
](
const
auto
&
cr
)
{
if
(
not
cr
.
has_value
())
return
std
::
numeric_limits
<
double
>::
max
();
return
time_op
(
*
ctx
,
cr
->
replace
.
code_object
,
to_shapes
(
cr
->
ins
->
inputs
()),
20
)
.
first
;
});
std
::
transform
(
results
.
begin
(),
results
.
end
(),
config
->
solutions
.
begin
(),
std
::
back_inserter
(
times
),
[
&
](
const
auto
&
cr
,
const
auto
&
solution
)
{
if
(
enabled
(
MIGRAPHX_TRACE_BENCHMARKING
{}))
std
::
cout
<<
"Benchmarking solution: "
<<
solution
<<
std
::
endl
;
if
(
not
cr
.
has_value
())
{
if
(
enabled
(
MIGRAPHX_TRACE_BENCHMARKING
{}))
std
::
cout
<<
"No binary"
<<
std
::
endl
;
return
std
::
numeric_limits
<
double
>::
max
();
}
auto
t
=
time_op
(
*
ctx
,
cr
->
replace
.
code_object
,
to_shapes
(
cr
->
ins
->
inputs
()),
20
);
if
(
enabled
(
MIGRAPHX_TRACE_BENCHMARKING
{}))
std
::
cout
<<
t
<<
"ms"
<<
std
::
endl
;
return
t
;
});
auto
i
=
std
::
distance
(
times
.
begin
(),
std
::
min_element
(
times
.
begin
(),
times
.
end
()));
std
::
cout
<<
"Fastest solution: "
<<
config
->
solutions
.
at
(
i
)
<<
std
::
endl
;
pc
.
insert
(
preop
.
name
(),
config
->
problem
,
config
->
solutions
.
at
(
i
));
...
...
src/targets/gpu/device/argmax.cpp
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -34,9 +34,16 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace
gpu
{
namespace
device
{
void
argmax
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int64_t
axis
)
void
argmax
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int64_t
axis
,
bool
select_last_index
)
{
arg_op
(
argmax_op
{},
stream
,
result
,
arg
,
axis
);
if
(
select_last_index
)
arg_op
(
argmax_op_last_index
{},
stream
,
result
,
arg
,
axis
);
else
arg_op
(
argmax_op_first_index
{},
stream
,
result
,
arg
,
axis
);
}
}
// namespace device
...
...
src/targets/gpu/device/argmin.cpp
View file @
6711780a
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -34,9 +34,16 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace
gpu
{
namespace
device
{
void
argmin
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int64_t
axis
)
void
argmin
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int64_t
axis
,
bool
select_last_index
)
{
arg_op
(
argmin_op
{},
stream
,
result
,
arg
,
axis
);
if
(
select_last_index
)
arg_op
(
argmin_op_last_index
{},
stream
,
result
,
arg
,
axis
);
else
arg_op
(
argmin_op_first_index
{},
stream
,
result
,
arg
,
axis
);
}
}
// namespace device
...
...
Prev
1
2
3
4
5
6
…
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment