"src/lib/vscode:/vscode.git/clone" did not exist on "162643a4b17edc24426980e4eddcdcfd7c3f7970"
Unverified Commit 664b2f7c authored by Chris Austen's avatar Chris Austen Committed by GitHub
Browse files

Merge branch 'develop' into navi-reduce

parents 20cdddac 9c46821c
...@@ -95,7 +95,7 @@ shape ...@@ -95,7 +95,7 @@ shape
:rtype: bool :rtype: bool
dynamic_dimension dynamic_dimension
-------- -----------------
.. py:class:: dynamic_dimension(min, max, optimals) .. py:class:: dynamic_dimension(min, max, optimals)
......
...@@ -6,4 +6,5 @@ This directory contains examples of common use cases for MIGraphX. ...@@ -6,4 +6,5 @@ This directory contains examples of common use cases for MIGraphX.
## Examples: ## Examples:
- [MIGraphX usage and utilities](./migraphx) - [MIGraphX usage and utilities](./migraphx)
- [Vision inference examples](./vision) - [Vision inference examples](./vision)
- [Natural language inference examples](./nlp) - [Natural language inference examples](./nlp)
\ No newline at end of file - [Diffusion inference examples](./diffusion)
# Diffusion Inference Examples
- [Python Stable Diffusion 2.1](./python_stable_diffusion_21)
# Stable Diffusion 2.1
This version was tested with [rocm 5.7](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/tree/rocm-5.7.0) revision.
## Jupyter notebook
There is a dedicated step-by-step notebook. See [sd21.ipynb](./sd21.ipynb)
## Console application
To run the console application, follow these steps below.
Setup python environment
```bash
# this will require the python venv to installed (e.g. apt install python3.8-venv)
python3 -m venv sd_venv
. sd_venv/bin/activate
```
Install dependencies
```bash
pip install -r requirements.txt
```
Use MIGraphX Python Module
```bash
export PYTHONPATH=/opt/rocm/lib:$PYTHONPATH
```
Get models with optimum
```bash
optimum-cli export onnx --model stabilityai/stable-diffusion-2-1 models/sd21-onnx
```
*Note: `models/sd21-onnx` will be used in the scripts.*
Run the text-to-image script with the following example prompt and seed:
```bash
python txt2img.py --prompt "a photograph of an astronaut riding a horse" --seed 13 --output astro_horse.jpg
```
*Note: The first run will compile the models and cache them to make subsequent runs faster.*
The result should look like this:
![example_output.jpg](./example_output.jpg)
## Gradio application
Note: requires `Console application` to work
Install gradio dependencies
```bash
pip install -r gradio_requirements.txt
```
Usage
```bash
python gradio_app.py
```
This will load the models (which can take several minutes), and when the setup is ready, starts a server on `http://127.0.0.1:7860`.
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
from txt2img import StableDiffusionMGX
import gradio as gr
def main():
# Note: This will load the models, which can take several minutes
sd = StableDiffusionMGX()
def gr_wrapper(prompt, negative_prompt, steps, seed, scale):
result = sd.run(str(prompt), str(negative_prompt), int(steps),
int(seed), float(scale))
return StableDiffusionMGX.convert_to_rgb_image(result)
demo = gr.Interface(
gr_wrapper,
[
gr.Textbox(value="a photograph of an astronaut riding a horse",
label="Prompt"),
gr.Textbox(value="", label="Negative prompt (Optional)"),
gr.Slider(1, 100, step=1, value=20, label="Number of steps"),
gr.Textbox(value=13, label="Random seed"),
gr.Slider(1, 20, step=0.1, value=7.0, label="Guidance scale"),
],
"image",
)
demo.launch()
if __name__ == "__main__":
main()
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
-f requirements.txt
gradio
\ No newline at end of file
...@@ -21,5 +21,7 @@ ...@@ -21,5 +21,7 @@
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE. # THE SOFTWARE.
##################################################################################### #####################################################################################
accelerate
numpy==1.21.6 diffusers
optimum[onnxruntime]
transformers
\ No newline at end of file
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# The MIT License (MIT)\n",
"#\n",
"# Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.\n",
"#\n",
"# Permission is hereby granted, free of charge, to any person obtaining a copy\n",
"# of this software and associated documentation files (the 'Software'), to deal\n",
"# in the Software without restriction, including without limitation the rights\n",
"# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n",
"# copies of the Software, and to permit persons to whom the Software is\n",
"# furnished to do so, subject to the following conditions:\n",
"#\n",
"# The above copyright notice and this permission notice shall be included in\n",
"# all copies or substantial portions of the Software.\n",
"#\n",
"# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n",
"# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n",
"# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n",
"# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n",
"# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n",
"# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n",
"# THE SOFTWARE."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Stable Diffusion 2.1\n",
"\n",
"The following example will show how to run `Stable Diffusion 2.1` with `MIGraphX`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the required dependencies."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install dependencies\n",
"!pip install optimum[onnxruntime] transformers diffusers accelerate"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will use optimum to generate the onnx files."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# export models\n",
"!optimum-cli export onnx --model stabilityai/stable-diffusion-2-1 models/sd21-onnx"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now it is time to load these models with python.\n",
"\n",
"First, we make sure that MIGraphX module is found in the python path."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"mgx_lib_path = \"/opt/rocm/lib/\" # or \"/code/AMDMIGraphX/build/lib/\"\n",
"if mgx_lib_path not in sys.path:\n",
" sys.path.append(mgx_lib_path)\n",
"import migraphx as mgx"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, a helper method to load and cache the models.\n",
"\n",
"This will use the `models/sd21-onnx` path. If you changed it, make sure to update here as well."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"# helper for model loading\n",
"def load_mgx_model(name, shapes):\n",
" file = f\"models/sd21-onnx/{name}/model\"\n",
" print(f\"Loading {name} model from {file}\")\n",
" if os.path.isfile(f\"{file}.mxr\"):\n",
" print(f\"Found mxr, loading it...\")\n",
" model = mgx.load(f\"{file}.mxr\", format=\"msgpack\")\n",
" elif os.path.isfile(f\"{file}.onnx\"):\n",
" print(f\"Parsing from onnx file...\")\n",
" model = mgx.parse_onnx(f\"{file}.onnx\", map_input_dims=shapes)\n",
" model.compile(mgx.get_target(\"gpu\"))\n",
" print(f\"Saving {name} model to mxr file...\")\n",
" mgx.save(model, f\"{file}.mxr\", format=\"msgpack\")\n",
" else:\n",
" print(f\"No {name} model found. Please verify the path is correct and re-try, or re-download model.\")\n",
" os.exit(1)\n",
" return model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With that, we can load the models. This could take several minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text_encoder = load_mgx_model(\"text_encoder\", {\"input_ids\": [1, 77]})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"unet = load_mgx_model(\n",
" \"unet\", {\n",
" \"sample\": [1, 4, 64, 64],\n",
" \"encoder_hidden_states\": [1, 77, 1024],\n",
" \"timestep\": [1],\n",
" })"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vae = load_mgx_model(\"vae_decoder\", {\"latent_sample\": [1, 4, 64, 64]})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Import the remaining packages."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from diffusers import EulerDiscreteScheduler\n",
"from transformers import CLIPTokenizer\n",
"import torch\n",
"import numpy as np\n",
"from tqdm.auto import tqdm\n",
"from PIL import Image"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Time to load the scheduler and tokenizer from the original source."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_id = \"stabilityai/stable-diffusion-2-1\"\n",
"scheduler = EulerDiscreteScheduler.from_pretrained(model_id,\n",
" subfolder=\"scheduler\")\n",
"tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder=\"tokenizer\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we will define all the steps one by one, to make the last step short and simple.\n",
"\n",
"The first step will be to tokenize the user prompt. It will make a `(1, 77)` shaped `input_ids`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def tokenize(input):\n",
" return tokenizer([input],\n",
" padding=\"max_length\",\n",
" max_length=tokenizer.model_max_length,\n",
" truncation=True,\n",
" return_tensors=\"np\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Optional\n",
"test_tk = tokenize(\"test tokenizer to see the tokens\")\n",
"test_tk.input_ids.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We run the tokenized prompt through the `Text Encoder` model. It expects the `(1, 77)` data as `int32`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Optional\n",
"text_encoder.get_parameter_shapes()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_embeddings(input):\n",
" return np.array(\n",
" text_encoder.run({\"input_ids\": input.input_ids.astype(np.int32)\n",
" })[0]).astype(np.float32)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Optional\n",
"test_emb = get_embeddings(tokenize(\"test tokenizer to see the tokens\"))\n",
"test_emb.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The other input of the model is latent representation (pure noise). It will be transformed into a 512x512 image later.\n",
"The last input will be the timestep."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def generate_latents(seed):\n",
" return torch.randn(\n",
" (1, 4, 64, 64),\n",
" generator=torch.manual_seed(seed),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Optional\n",
"test_latents = generate_latents(42)\n",
"latents.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we add two helpers to access and convert from torch to numpy with the proper datatype."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_scaled_sample(latents, t):\n",
" return scheduler.scale_model_input(latents, t).numpy().astype(np.float32)\n",
"\n",
"\n",
"def get_timestep(t):\n",
" return np.atleast_1d(t.numpy().astype(np.int64)) # convert 0D -> 1D"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The UNet model will be run in a loop. It will predict the noise residual."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Optional\n",
"unet.get_parameter_shapes()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def denoise(sample, embeddings, timestep):\n",
" return np.array(\n",
" unet.run({\n",
" \"sample\": sample,\n",
" \"encoder_hidden_states\": embeddings,\n",
" \"timestep\": timestep\n",
" })[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Helpers to do the classifier-free guidance and computing the previous noisy sample."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def perform_guidance(noise_pred_uncond, noise_pred_text, scale):\n",
" return noise_pred_uncond + scale * (noise_pred_text - noise_pred_uncond)\n",
"\n",
"def compute_previous(noise_pred, t, latents):\n",
" # compute the previous noisy sample x_t -> x_t-1\n",
" return scheduler.step(noise_pred, t, latents).prev_sample\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Scale and decode the image latents with VAE."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def scale_denoised(latents):\n",
" return 1 / 0.18215 * latents\n",
"\n",
"\n",
"def decode(latents):\n",
" return np.array(\n",
" vae.run({\"latent_sample\": latents.numpy().astype(np.float32)})[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And lastly, we need to convert it to an image to display or save."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def convert_to_rgb_image(image):\n",
" image = np.clip(image / 2 + 0.5, 0, 1)\n",
" image = np.transpose(image, (0, 2, 3, 1))\n",
" images = (image * 255).round().astype(\"uint8\")\n",
" return Image.fromarray(images[0])\n",
"\n",
"def save_image(pil_image, filename=\"output.png\"):\n",
" pil_image.save(filename, format=\"png\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Feel free to play around with these params."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"prompt = \"a photograph of an astronaut riding a horse\"\n",
"negative_prompt = \"\"\n",
"steps = 20\n",
"seed = 13\n",
"scale = 7.0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And now, to put everything together and run the whole pipeline:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"scheduler.set_timesteps(steps)\n",
"\n",
"text_input, uncond_input = tokenize(prompt), tokenize(negative_prompt)\n",
"text_embeddings, uncond_embeddings = get_embeddings(\n",
" text_input), get_embeddings(uncond_input)\n",
"latents = generate_latents(seed) * scheduler.init_noise_sigma\n",
"\n",
"for t in tqdm(scheduler.timesteps):\n",
" sample = get_scaled_sample(latents, t)\n",
" timestep = get_timestep(t)\n",
"\n",
" noise_pred_uncond = denoise(sample, uncond_embeddings, timestep)\n",
" noise_pred_text = denoise(sample, text_embeddings, timestep)\n",
"\n",
" noise_pred = perform_guidance(noise_pred_uncond, noise_pred_text, scale)\n",
" latents = compute_previous(torch.from_numpy(noise_pred), t, latents)\n",
"\n",
"latents = scale_denoised(latents)\n",
"result = decode(latents)\n",
"image = convert_to_rgb_image(result)\n",
"\n",
"# show the image\n",
"image"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you like the generated image, save it with the following:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"save_image(image, \"output.png\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "sd_venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
# The MIT License (MIT)
#
# Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the 'Software'), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
from argparse import ArgumentParser
from diffusers import EulerDiscreteScheduler
from transformers import CLIPTokenizer
from PIL import Image
import migraphx as mgx
import numpy as np
import os
import torch
import time
from functools import wraps
# measurement helper
def measure(fn):
@wraps(fn)
def measure_ms(*args, **kwargs):
start_time = time.perf_counter_ns()
result = fn(*args, **kwargs)
end_time = time.perf_counter_ns()
print(f"Elapsed time: {(end_time - start_time) * 1e-6:.4f} ms\n")
return result
return measure_ms
def get_args():
parser = ArgumentParser()
parser.add_argument(
"-s",
"--seed",
type=int,
default=42,
help="Random seed",
)
parser.add_argument(
"-t",
"--steps",
type=int,
default=20,
help="Number of steps",
)
parser.add_argument(
"-p",
"--prompt",
type=str,
required=True,
help="Prompt",
)
parser.add_argument(
"-n",
"--negative-prompt",
type=str,
default="",
help="Negative prompt",
)
parser.add_argument(
"--scale",
type=float,
default=7.0,
help="Guidance scale",
)
parser.add_argument(
"-o",
"--output",
type=str,
default=None,
help="Output name",
)
return parser.parse_args()
class StableDiffusionMGX():
def __init__(self):
model_id = "stabilityai/stable-diffusion-2-1"
print(f"Using {model_id}")
print("Creating EulerDiscreteScheduler scheduler")
self.scheduler = EulerDiscreteScheduler.from_pretrained(
model_id, subfolder="scheduler")
print("Creating CLIPTokenizer tokenizer...")
self.tokenizer = CLIPTokenizer.from_pretrained(model_id,
subfolder="tokenizer")
print("Load models...")
self.vae = StableDiffusionMGX.load_mgx_model(
"vae_decoder", {"latent_sample": [1, 4, 64, 64]})
self.text_encoder = StableDiffusionMGX.load_mgx_model(
"text_encoder", {"input_ids": [1, 77]})
self.unet = StableDiffusionMGX.load_mgx_model(
"unet", {
"sample": [1, 4, 64, 64],
"encoder_hidden_states": [1, 77, 1024],
"timestep": [1],
})
def run(self, prompt, negative_prompt, steps, seed, scale):
# need to set this for each run
self.scheduler.set_timesteps(steps)
print("Tokenizing prompt...")
text_input = self.tokenize(prompt)
print("Creating text embeddings for prompt...")
text_embeddings = self.get_embeddings(text_input)
print("Tokenizing negative prompt...")
uncond_input = self.tokenize(negative_prompt)
print("Creating text embeddings for negative prompt...")
uncond_embeddings = self.get_embeddings(uncond_input)
print(
f"Creating random input data ({1}x{4}x{64}x{64}) (latents) with seed={seed}..."
)
latents = torch.randn((1, 4, 64, 64),
generator=torch.manual_seed(seed))
print("Apply initial noise sigma\n")
latents = latents * self.scheduler.init_noise_sigma
print("Running denoising loop...")
for step, t in enumerate(self.scheduler.timesteps):
print(f"#{step}/{len(self.scheduler.timesteps)} step")
latents = self.denoise_step(text_embeddings, uncond_embeddings,
latents, t, scale)
print("Scale denoised result...")
latents = 1 / 0.18215 * latents
print("Decode denoised result...")
image = self.decode(latents)
return image
@staticmethod
@measure
def load_mgx_model(name, shapes):
file = f"models/sd21-onnx/{name}/model"
print(f"Loading {name} model from {file}")
if os.path.isfile(f"{file}.mxr"):
print("Found mxr, loading it...")
model = mgx.load(f"{file}.mxr", format="msgpack")
elif os.path.isfile(f"{file}.onnx"):
print("Parsing from onnx file...")
model = mgx.parse_onnx(f"{file}.onnx", map_input_dims=shapes)
model.compile(mgx.get_target("gpu"))
print(f"Saving {name} model to mxr file...")
mgx.save(model, f"{file}.mxr", format="msgpack")
else:
print(f"No {name} model found. Please download it and re-try.")
os.exit(1)
return model
@measure
def tokenize(self, input):
return self.tokenizer([input],
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np")
@measure
def get_embeddings(self, input):
return np.array(
self.text_encoder.run(
{"input_ids":
input.input_ids.astype(np.int32)})[0]).astype(np.float32)
@staticmethod
def convert_to_rgb_image(image):
image = np.clip(image / 2 + 0.5, 0, 1)
image = np.transpose(image, (0, 2, 3, 1))
images = (image * 255).round().astype("uint8")
return Image.fromarray(images[0])
@staticmethod
def save_image(pil_image, filename="output.png"):
pil_image.save(filename)
@measure
def denoise_step(self, text_embeddings, uncond_embeddings, latents, t,
scale):
sample = self.scheduler.scale_model_input(latents,
t).numpy().astype(np.float32)
timestep = np.atleast_1d(t.numpy().astype(
np.int64)) # convert 0D -> 1D
noise_pred_uncond = np.array(
self.unet.run({
"sample": sample,
"encoder_hidden_states": uncond_embeddings,
"timestep": timestep
})[0])
noise_pred_text = np.array(
self.unet.run({
"sample": sample,
"encoder_hidden_states": text_embeddings,
"timestep": timestep
})[0])
# perform guidance
noise_pred = noise_pred_uncond + scale * (noise_pred_text -
noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
return self.scheduler.step(torch.from_numpy(noise_pred), t,
latents).prev_sample
@measure
def decode(self, latents):
return np.array(
self.vae.run({"latent_sample":
latents.numpy().astype(np.float32)})[0])
if __name__ == "__main__":
args = get_args()
sd = StableDiffusionMGX()
result = sd.run(args.prompt, args.negative_prompt, args.steps, args.seed,
args.scale)
print("Convert result to rgb image...")
image = StableDiffusionMGX.convert_to_rgb_image(result)
filename = args.output if args.output else f"output_s{args.seed}_t{args.steps}.png"
StableDiffusionMGX.save_image(image, args.output)
print(f"Image saved to {filename}")
...@@ -29,4 +29,4 @@ pybind/pybind11@d159a563383d10c821ba7b2a71905d1207db6de4 --build ...@@ -29,4 +29,4 @@ pybind/pybind11@d159a563383d10c821ba7b2a71905d1207db6de4 --build
msgpack/msgpack-c@cpp-3.3.0 -DMSGPACK_BUILD_TESTS=Off msgpack/msgpack-c@cpp-3.3.0 -DMSGPACK_BUILD_TESTS=Off
sqlite3@3.43.2 -DCMAKE_POSITION_INDEPENDENT_CODE=On sqlite3@3.43.2 -DCMAKE_POSITION_INDEPENDENT_CODE=On
ROCmSoftwarePlatform/composable_kernel@70eefcf4f263aa5c25f3c9ff0db8f6f199ef0fb9 -DCK_BUILD_JIT_LIB=On -DCMAKE_POSITION_INDEPENDENT_CODE=On ROCmSoftwarePlatform/composable_kernel@70eefcf4f263aa5c25f3c9ff0db8f6f199ef0fb9 -DCK_BUILD_JIT_LIB=On -DCMAKE_POSITION_INDEPENDENT_CODE=On
ROCmSoftwarePlatform/rocMLIR@13f6c2a69cfe80a575c6b241ec7353d1e953cb12 -DBUILD_FAT_LIBROCKCOMPILER=On ROCmSoftwarePlatform/rocMLIR@9e66e8050209f03349a41b6b497f0da2b285a53b -DBUILD_FAT_LIBROCKCOMPILER=On
...@@ -28,9 +28,9 @@ include(ROCMInstallTargets) ...@@ -28,9 +28,9 @@ include(ROCMInstallTargets)
include(ROCMPackageConfigHelpers) include(ROCMPackageConfigHelpers)
include(RegisterOp) include(RegisterOp)
include(CheckCXXLinkerFlag) include(CheckCXXLinkerFlag)
include(CheckCXXSourceCompiles)
add_library(migraphx add_library(migraphx
adjust_allocation.cpp adjust_allocation.cpp
analyze_streams.cpp analyze_streams.cpp
apply_alpha_beta.cpp apply_alpha_beta.cpp
...@@ -104,6 +104,12 @@ add_library(migraphx ...@@ -104,6 +104,12 @@ add_library(migraphx
value.cpp value.cpp
verify_args.cpp verify_args.cpp
) )
if(WIN32)
# Due to compilation crashing, we need to use type-erased matchers on Windows.
target_compile_definitions(migraphx PUBLIC MIGRAPHX_USE_TYPE_ERASED_MATCHERS=1)
endif()
configure_file(version.h.in include/migraphx/version.h) configure_file(version.h.in include/migraphx/version.h)
rocm_set_soversion(migraphx ${MIGRAPHX_SO_VERSION}) rocm_set_soversion(migraphx ${MIGRAPHX_SO_VERSION})
function(register_migraphx_ops) function(register_migraphx_ops)
...@@ -175,6 +181,7 @@ register_migraphx_ops( ...@@ -175,6 +181,7 @@ register_migraphx_ops(
mul mul
multibroadcast multibroadcast
multinomial multinomial
nearbyint
neg neg
nonmaxsuppression nonmaxsuppression
nonzero nonzero
...@@ -205,7 +212,6 @@ register_migraphx_ops( ...@@ -205,7 +212,6 @@ register_migraphx_ops(
rnn_last_hs_output rnn_last_hs_output
rnn_var_sl_last_output rnn_var_sl_last_output
roialign roialign
round
rsqrt rsqrt
run_on_target run_on_target
scalar scalar
...@@ -215,6 +221,8 @@ register_migraphx_ops( ...@@ -215,6 +221,8 @@ register_migraphx_ops(
scatternd_add scatternd_add
scatternd_mul scatternd_mul
scatternd_none scatternd_none
scatternd_max
scatternd_min
select_module select_module
sigmoid sigmoid
sign sign
...@@ -233,6 +241,7 @@ register_migraphx_ops( ...@@ -233,6 +241,7 @@ register_migraphx_ops(
transpose transpose
unary_not unary_not
undefined undefined
unique
unknown unknown
unsqueeze unsqueeze
where where
...@@ -247,17 +256,62 @@ rocm_install_targets( ...@@ -247,17 +256,62 @@ rocm_install_targets(
${CMAKE_CURRENT_BINARY_DIR}/include ${CMAKE_CURRENT_BINARY_DIR}/include
) )
if(NOT WIN32)
check_cxx_linker_flag(-lstdc++fs HAS_LIB_STD_FILESYSTEM) check_cxx_linker_flag(-lstdc++fs HAS_LIB_STD_FILESYSTEM)
if(HAS_LIB_STD_FILESYSTEM) if(HAS_LIB_STD_FILESYSTEM)
target_link_libraries(migraphx PRIVATE -lstdc++fs) target_link_libraries(migraphx PRIVATE -lstdc++fs)
endif()
target_link_libraries(migraphx PRIVATE -ldl)
endif() endif()
target_link_libraries(migraphx PRIVATE -ldl)
target_include_directories(migraphx SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>) target_include_directories(migraphx SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_link_libraries(migraphx PUBLIC Threads::Threads) target_link_libraries(migraphx PUBLIC Threads::Threads)
function(check_execution_par RESULT)
set(CMAKE_REQUIRED_LIBRARIES ${ARGN})
set(CMAKE_REQUIRED_FLAGS)
if(NOT MSVC)
set(CMAKE_REQUIRED_FLAGS "-std=c++17")
endif()
string(MD5 _flags_hash "${CMAKE_REQUIRED_FLAGS} ${CMAKE_REQUIRED_LIBRARIES}")
set(_source "
#include <execution>
int main() {
int* i = nullptr;
std::sort(std::execution::par, i, i);
}
")
check_cxx_source_compiles("${_source}" _has_execution_${_flags_hash})
set(${RESULT} ${_has_execution_${_flags_hash}} PARENT_SCOPE)
endfunction()
set(MIGRAPHX_HAS_EXECUTORS_DEFAULT Off)
find_package(TBB QUIET)
if(TBB_FOUND)
check_execution_par(TBB_HAS_EXECUTION_PAR TBB::tbb)
if(TBB_HAS_EXECUTION_PAR)
list(APPEND PACKAGE_DEPENDS PACKAGE TBB)
target_link_libraries(migraphx PUBLIC TBB::tbb)
set(MIGRAPHX_HAS_EXECUTORS_DEFAULT On)
message(STATUS "Using TBB for parallel execution")
endif()
else()
check_execution_par(HAS_EXECUTION_PAR)
if(HAS_EXECUTION_PAR)
set(MIGRAPHX_HAS_EXECUTORS_DEFAULT On)
endif()
endif()
option(MIGRAPHX_HAS_EXECUTORS "C++ supports parallel executors" ${MIGRAPHX_HAS_EXECUTORS_DEFAULT})
if(MIGRAPHX_HAS_EXECUTORS)
message("Parallel STL enabled")
target_compile_definitions(migraphx PUBLIC MIGRAPHX_HAS_EXECUTORS=1)
else()
message("Parallel STL disabled")
target_compile_definitions(migraphx PUBLIC MIGRAPHX_HAS_EXECUTORS=0)
endif()
find_package(nlohmann_json 3.8.0 REQUIRED) find_package(nlohmann_json 3.8.0 REQUIRED)
target_link_libraries(migraphx PRIVATE nlohmann_json::nlohmann_json) target_link_libraries(migraphx PRIVATE nlohmann_json::nlohmann_json)
migraphx_generate_export_header(migraphx) migraphx_generate_export_header(migraphx)
...@@ -275,8 +329,6 @@ target_link_libraries(migraphx INTERFACE $<BUILD_INTERFACE:msgpackc-cxx>) ...@@ -275,8 +329,6 @@ target_link_libraries(migraphx INTERFACE $<BUILD_INTERFACE:msgpackc-cxx>)
add_library(migraphx_all_targets INTERFACE) add_library(migraphx_all_targets INTERFACE)
set(PACKAGE_DEPENDS)
add_subdirectory(api) add_subdirectory(api)
add_subdirectory(driver) add_subdirectory(driver)
add_subdirectory(onnx) add_subdirectory(onnx)
......
...@@ -44,7 +44,8 @@ ...@@ -44,7 +44,8 @@
m(int32_type, int32_t) \ m(int32_type, int32_t) \
m(int64_type, int64_t) \ m(int64_type, int64_t) \
m(uint32_type, uint32_t) \ m(uint32_type, uint32_t) \
m(uint64_type, uint64_t) m(uint64_type, uint64_t) \
m(fp8e4m3fnuz_type, migraphx::fp8::fp8e4m3fnuz)
// clang-format on // clang-format on
#ifdef __cplusplus #ifdef __cplusplus
......
...@@ -105,6 +105,8 @@ inline std::ostream& operator<<(std::ostream& os, const color& c) ...@@ -105,6 +105,8 @@ inline std::ostream& operator<<(std::ostream& os, const color& c)
static const bool use_color = isatty(STDOUT_FILENO) != 0; static const bool use_color = isatty(STDOUT_FILENO) != 0;
if(use_color) if(use_color)
return os << "\033[" << static_cast<std::size_t>(c) << "m"; return os << "\033[" << static_cast<std::size_t>(c) << "m";
#else
(void)c;
#endif #endif
return os; return os;
} }
......
...@@ -59,6 +59,13 @@ namespace migraphx { ...@@ -59,6 +59,13 @@ namespace migraphx {
namespace driver { namespace driver {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
inline std::string get_version()
{
return "MIGraphX Version: " + std::to_string(MIGRAPHX_VERSION_MAJOR) + "." +
std::to_string(MIGRAPHX_VERSION_MINOR) + "." + std::to_string(MIGRAPHX_VERSION_PATCH) +
"." MIGRAPHX_VERSION_TWEAK;
}
struct loader struct loader
{ {
std::string model; std::string model;
...@@ -597,16 +604,6 @@ struct verify : command<verify> ...@@ -597,16 +604,6 @@ struct verify : command<verify>
} }
}; };
struct version : command<version>
{
void parse(const argument_parser&) {}
void run() const
{
std::cout << "MIGraphX Version: " << MIGRAPHX_VERSION_MAJOR << "." << MIGRAPHX_VERSION_MINOR
<< "." << MIGRAPHX_VERSION_PATCH << "." MIGRAPHX_VERSION_TWEAK << std::endl;
}
};
struct compile : command<compile> struct compile : command<compile>
{ {
compiler c; compiler c;
...@@ -759,16 +756,14 @@ struct main_command ...@@ -759,16 +756,14 @@ struct main_command
} }
void parse(argument_parser& ap) void parse(argument_parser& ap)
{ {
std::string version_str = "MIGraphX Version: " + std::to_string(MIGRAPHX_VERSION_MAJOR) + std::string version_str = get_version();
"." + std::to_string(MIGRAPHX_VERSION_MINOR) + "." +
std::to_string(MIGRAPHX_VERSION_PATCH) +
"." MIGRAPHX_VERSION_TWEAK;
ap(wrong_commands, {}, ap.metavar("<command>"), ap.append()); ap(wrong_commands, {}, ap.metavar("<command>"), ap.append());
ap(nullptr, {"-h", "--help"}, ap.help("Show help"), ap.show_help(get_command_help())); ap(nullptr, {"-h", "--help"}, ap.help("Show help"), ap.show_help(get_command_help()));
ap(nullptr, ap(nullptr,
{"-v", "--version"}, {"-v", "--version"},
ap.help("Show MIGraphX version"), ap.help("Show MIGraphX version"),
ap.show_help(version_str)); ap.show_help(version_str));
ap(nullptr, {"--ort-sha"}, ap.help("Show MIGraphX onnx runtime SHA"));
// Trim command off of exe name // Trim command off of exe name
ap.set_exe_name(ap.get_exe_name().substr(0, ap.get_exe_name().size() - 5)); ap.set_exe_name(ap.get_exe_name().substr(0, ap.get_exe_name().size() - 5));
...@@ -811,7 +806,6 @@ using namespace migraphx::driver; // NOLINT ...@@ -811,7 +806,6 @@ using namespace migraphx::driver; // NOLINT
int main(int argc, const char* argv[]) int main(int argc, const char* argv[])
{ {
std::vector<std::string> args(argv + 1, argv + argc); std::vector<std::string> args(argv + 1, argv + argc);
// no argument, print the help infomration by default // no argument, print the help infomration by default
if(args.empty()) if(args.empty())
{ {
...@@ -821,15 +815,27 @@ int main(int argc, const char* argv[]) ...@@ -821,15 +815,27 @@ int main(int argc, const char* argv[])
auto&& m = get_commands(); auto&& m = get_commands();
auto cmd = args.front(); auto cmd = args.front();
if(cmd == "ort-sha") if(cmd == "--ort-sha")
{ {
std::cout << MIGRAPHX_ORT_SHA1 << std::endl; std::cout << MIGRAPHX_ORT_SHA1 << std::endl;
return 0; return 0;
} }
if(cmd == "-v" or cmd == "--version")
{
std::cout << get_version() << std::endl;
return 0;
}
if(m.count(cmd) > 0) if(m.count(cmd) > 0)
{ {
m.at(cmd)(argv[0], {args.begin() + 1, args.end()}); std::string driver_invocation =
std::string(argv[0]) + " " + migraphx::to_string_range(args, " ");
std::cout << "Running [ " << get_version() << " ]: " << driver_invocation << std::endl;
m.at(cmd)(argv[0],
{args.begin() + 1, args.end()}); // run driver command found in commands map
std::cout << "[ " << get_version() << " ] Complete: " << driver_invocation << std::endl;
} }
else else
{ {
......
...@@ -119,6 +119,7 @@ void verify_program(const std::string& name, ...@@ -119,6 +119,7 @@ void verify_program(const std::string& name,
auto target_outs = run_target(p, t, options, quantize, inputs); auto target_outs = run_target(p, t, options, quantize, inputs);
std::size_t output_num = ref_outs.size(); std::size_t output_num = ref_outs.size();
bool passed = true;
for(std::size_t i = 0; i < output_num; ++i) for(std::size_t i = 0; i < output_num; ++i)
{ {
if(ref_outs[i].get_shape().type() != target_outs[i].get_shape().type() or if(ref_outs[i].get_shape().type() != target_outs[i].get_shape().type() or
...@@ -130,9 +131,11 @@ void verify_program(const std::string& name, ...@@ -130,9 +131,11 @@ void verify_program(const std::string& name,
} }
else else
{ {
verify_args(name, target_outs[i], verify::expected{ref_outs[i]}, tols); passed &= verify_args(name, target_outs[i], verify::expected{ref_outs[i]}, tols);
} }
} }
if(passed)
std::cout << "MIGraphX verification passed successfully." << std::endl;
} }
void verify_instructions(const program& prog, void verify_instructions(const program& prog,
......
...@@ -130,6 +130,30 @@ struct dynamic_loader_impl ...@@ -130,6 +130,30 @@ struct dynamic_loader_impl
tmp_dir temp; tmp_dir temp;
}; };
fs::path dynamic_loader::path(void* address)
{
HMODULE module = nullptr;
if(GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT,
static_cast<LPCSTR>(address),
&module) == 0)
{
auto err = GetLastError();
MIGRAPHX_THROW("Unable to obtain module handle, error = " + std::to_string(err));
}
TCHAR buffer[MAX_PATH];
if(GetModuleFileName(module, buffer, sizeof(buffer)) == 0)
{
auto err = GetLastError();
MIGRAPHX_THROW("Unable to read module file path, error = " + std::to_string(err));
}
if(GetLastError() == ERROR_INSUFFICIENT_BUFFER)
{
MIGRAPHX_THROW("Buffer too small (" + std::to_string(MAX_PATH) + ") to hold the path");
}
return {buffer};
}
#endif #endif
optional<dynamic_loader> dynamic_loader::try_load(const fs::path& p) optional<dynamic_loader> dynamic_loader::try_load(const fs::path& p)
......
...@@ -219,9 +219,8 @@ struct find_pointwise_reshape_pointwise ...@@ -219,9 +219,8 @@ struct find_pointwise_reshape_pointwise
auto reshape_input = [&](const auto& ins_to_insert) { auto reshape_input = [&](const auto& ins_to_insert) {
return [&](auto input) { return [&](auto input) {
auto c = m.insert_instruction(ins_to_insert, make_op("contiguous"), input);
return m.insert_instruction( return m.insert_instruction(
ins_to_insert, make_op("reshape", {{"dims", cd.dims}}), c); ins_to_insert, make_op("reshape", {{"dims", cd.dims}}), input);
}; };
}; };
auto x_inputs = x_ins->inputs(); auto x_inputs = x_ins->inputs();
......
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_RTGLIB_BITCAST_HPP
#define MIGRAPHX_GUARD_RTGLIB_BITCAST_HPP
#include <type_traits>
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
#include <migraphx/requires.hpp>
#include <migraphx/config.hpp>
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define MIGRAPHX_CONST_FOLD(x) (__builtin_constant_p(x) ? (x) : (x))
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <typename To,
typename From,
MIGRAPHX_REQUIRES(std::is_trivially_copyable<To>{} and
std::is_trivially_copyable<From>{})>
inline constexpr To bit_cast(From fr) noexcept
{
static_assert(sizeof(To) == sizeof(From));
#if defined(__GNUC__) and !defined(__clang__)
return MIGRAPHX_CONST_FOLD(*reinterpret_cast<To*>(&fr));
#else
return __builtin_bit_cast(To, fr);
#endif
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif
#endif // MIGRAPHX_GUARD_RTGLIB_BITCAST_HPP
...@@ -38,15 +38,12 @@ struct dynamic_loader_impl; ...@@ -38,15 +38,12 @@ struct dynamic_loader_impl;
struct MIGRAPHX_EXPORT dynamic_loader struct MIGRAPHX_EXPORT dynamic_loader
{ {
#ifndef _WIN32
template <class T> template <class T>
static fs::path path(T* address) static fs::path path(T* address)
{ {
return path(reinterpret_cast<void*>(address)); return path(reinterpret_cast<void*>(address));
} }
static fs::path path(void* address); static fs::path path(void* address);
#endif
static optional<dynamic_loader> try_load(const fs::path& p); static optional<dynamic_loader> try_load(const fs::path& p);
dynamic_loader() = default; dynamic_loader() = default;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment