Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
66483df6
Unverified
Commit
66483df6
authored
Sep 27, 2022
by
Chris Austen
Committed by
GitHub
Sep 27, 2022
Browse files
Merge branch 'develop' into simplify_1_mul_div_ops
parents
9310bff0
40118191
Changes
232
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
434 additions
and
188 deletions
+434
-188
src/targets/gpu/prefuse_ops.cpp
src/targets/gpu/prefuse_ops.cpp
+11
-2
src/targets/gpu/quant_convolution.cpp
src/targets/gpu/quant_convolution.cpp
+0
-1
src/targets/gpu/softmax.cpp
src/targets/gpu/softmax.cpp
+0
-49
src/tf/tf_parser.cpp
src/tf/tf_parser.cpp
+1
-1
test/fuse_pointwise.cpp
test/fuse_pointwise.cpp
+1
-1
test/gpu/adjust_allocation.cpp
test/gpu/adjust_allocation.cpp
+5
-1
test/gpu/jit.cpp
test/gpu/jit.cpp
+2
-0
test/gpu/make_precompile_op.hpp
test/gpu/make_precompile_op.hpp
+66
-0
test/gpu/mlir.cpp
test/gpu/mlir.cpp
+2
-2
test/gpu/pack_int8_args.cpp
test/gpu/pack_int8_args.cpp
+35
-29
test/memory_coloring_test.cpp
test/memory_coloring_test.cpp
+1
-1
test/onnx/batch_norm_1d_test.onnx
test/onnx/batch_norm_1d_test.onnx
+35
-0
test/onnx/batch_norm_2d_test.onnx
test/onnx/batch_norm_2d_test.onnx
+35
-0
test/onnx/batch_norm_3d_test.onnx
test/onnx/batch_norm_3d_test.onnx
+44
-0
test/onnx/batch_norm_flat_test.onnx
test/onnx/batch_norm_flat_test.onnx
+34
-0
test/onnx/batch_norm_invalid_bias_rank_test.onnx
test/onnx/batch_norm_invalid_bias_rank_test.onnx
+35
-0
test/onnx/batch_norm_invalid_rank_test.onnx
test/onnx/batch_norm_invalid_rank_test.onnx
+31
-0
test/onnx/batchnorm_1d_test.onnx
test/onnx/batchnorm_1d_test.onnx
+0
-35
test/onnx/batchnorm_3d_test.onnx
test/onnx/batchnorm_3d_test.onnx
+0
-39
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+96
-27
No files found.
src/targets/gpu/prefuse_ops.cpp
View file @
66483df6
...
...
@@ -35,6 +35,12 @@ namespace {
template
<
class
Derived
,
std
::
size_t
N
>
struct
layernorm_base
{
float
epsilon
=
1e-12
f
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
epsilon
,
"epsilon"
));
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
,
std
::
vector
<
module_ref
>
mods
)
const
{
std
::
size_t
nargs
=
1
;
...
...
@@ -62,6 +68,7 @@ struct layernorm_base
struct
layernorm
:
layernorm_base
<
layernorm
,
0
>
{
std
::
string
name
()
const
{
return
"gpu::prelayernorm"
;
}
};
MIGRAPHX_REGISTER_OP
(
layernorm
);
...
...
@@ -80,8 +87,9 @@ struct find_layernorm
{
auto
ins
=
r
.
result
;
auto
x_ins
=
r
.
instructions
[
"x"
];
auto
eps
=
r
.
instructions
[
"eps"
]
->
eval
().
at
<
float
>
();
m
.
replace_instruction
(
ins
,
layernorm
{},
x_ins
);
m
.
replace_instruction
(
ins
,
layernorm
{
eps
},
x_ins
);
}
};
...
...
@@ -96,8 +104,9 @@ struct find_add_layernorm
{
auto
ins
=
r
.
result
;
auto
add_ins
=
r
.
instructions
[
"add"
];
auto
eps
=
r
.
instructions
[
"eps"
]
->
eval
().
at
<
float
>
();
m
.
replace_instruction
(
ins
,
add_layernorm
{},
add_ins
->
inputs
());
m
.
replace_instruction
(
ins
,
add_layernorm
{
eps
},
add_ins
->
inputs
());
}
};
}
// namespace
...
...
src/targets/gpu/quant_convolution.cpp
View file @
66483df6
...
...
@@ -22,7 +22,6 @@
* THE SOFTWARE.
*/
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/device/convert.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/generate.hpp>
...
...
src/targets/gpu/softmax.cpp
deleted
100644 → 0
View file @
9310bff0
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/softmax.hpp>
#include <migraphx/gpu/device/softmax.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/tune_axis.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
shape
hip_softmax
::
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
standard
();
return
op
.
normalize_compute_shape
({
inputs
.
at
(
0
)});
}
argument
hip_softmax
::
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
auto
n_dim
=
args
.
front
().
get_shape
().
lens
().
size
();
auto
tuned_axis
=
tune_axis
(
n_dim
,
op
.
axis
,
op
.
name
());
device
::
softmax
(
ctx
.
get_stream
().
get
(),
args
.
back
(),
args
.
front
(),
tuned_axis
);
return
args
.
back
();
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/tf/tf_parser.cpp
View file @
66483df6
...
...
@@ -347,7 +347,7 @@ void tf_parser::parse_node(const std::string& name)
// input was from a node with multiple outputs
if
(
contains
(
input_name
,
':'
))
{
input_name
=
input_name
.
substr
(
0
,
input
.
find
(
':'
));
input_name
.
resize
(
input
.
find
(
':'
));
}
else
{
...
...
test/fuse_pointwise.cpp
View file @
66483df6
...
...
@@ -21,7 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include
"
migraphx/dead_code_elimination.hpp
"
#include
<
migraphx/dead_code_elimination.hpp
>
#include <migraphx/fuse_pointwise.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pass_manager.hpp>
...
...
test/gpu/adjust_allocation.cpp
View file @
66483df6
...
...
@@ -40,6 +40,10 @@
#include <migraphx/make_op.hpp>
#include <basic_ops.hpp>
#include <test.hpp>
#include "make_precompile_op.hpp"
// Treat some operators as compilable to enable lowering
MIGRAPHX_GPU_TEST_PRECOMPILE
(
"add"
,
"mul"
,
"convert"
)
void
run_lowering
(
migraphx
::
program
&
p
,
bool
offload_copy
=
false
)
{
...
...
@@ -118,7 +122,7 @@ TEST_CASE(no_copy_dead_param)
auto
xb
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
to_value
(
s
)}}));
auto
gx
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"hip::copy_to_gpu"
),
x
,
xb
);
auto
ab
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
to_value
(
s
)}}));
auto
sum
=
mm
->
add_instruction
(
m
igraphx
::
mak
e_op
(
"
gpu::
add"
),
gx
,
gx
,
ab
);
auto
sum
=
mm
->
add_instruction
(
m
ake_precompil
e_op
(
"add"
),
gx
,
gx
,
ab
);
auto
r
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"hip::copy_from_gpu"
),
sum
);
mm
->
add_return
({
r
});
...
...
test/gpu/jit.cpp
View file @
66483df6
...
...
@@ -307,12 +307,14 @@ TEST_CASE(compile_math)
"erf(x)"
,
"exp(x)"
,
"floor(x)"
,
"fmod(x, x)"
,
"isnan(x)"
,
"log(x)"
,
"max(x, x)"
,
"min(x, x)"
,
"pow(x, 0)"
,
"pow(x, x)"
,
"remainder(x,x)"
,
"round(x)"
,
"rsqrt(x)"
,
"sin(x)"
,
...
...
src/targets/gpu/device/gelu.c
pp
→
test/gpu/make_precompile_op.h
pp
View file @
66483df6
...
...
@@ -21,63 +21,46 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/device/gelu.hpp>
#include <migraphx/gpu/device/nary.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <cmath>
#ifndef MIGRAPHX_GUARD_TEST_GPU_MAKE_PRECOMPILE_OP_HPP
#define MIGRAPHX_GUARD_TEST_GPU_MAKE_PRECOMPILE_OP_HPP
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
#include <migraphx/operation.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
// x * 0.5 * (1.0 + erf(x / sqrt(2.0)))
template
<
class
T
>
auto
gelu_fn
(
T
x
)
__device__
{
return
x
*
0.5
*
(
1
+
::
erf
(
x
*
M_SQRT1_2
));
}
// NOLINTNEXTLINE
#define MIGRAPHX_GPU_TEST_PRECOMPILE(...) \
struct test_compiler : migraphx::gpu::compiler<test_compiler> \
{ \
std::vector<std::string> names() const { return {__VA_ARGS__}; } \
\
template <class... Ts> \
migraphx::operation compile_op(Ts&&...) const \
{ \
MIGRAPHX_THROW("Not compilable"); \
} \
\
template <class... Ts> \
migraphx::gpu::compiler_replace compile(Ts&&...) const \
{ \
MIGRAPHX_THROW("Not compilable"); \
} \
};
// 0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * pow(x, 3))))
template
<
class
T
>
auto
gelu_fn_new
(
T
x
)
__device__
inline
migraphx
::
operation
make_precompile_op
(
migraphx
::
rank
<
0
>
,
const
migraphx
::
operation
&
op
)
{
return
0.5
*
x
*
(
1
+
tanh
(
sqrt
(
M_2_PI
)
*
(
x
+
0.044715
*
x
*
x
*
x
))
);
return
migraphx
::
make_op
(
"gpu::precompile_op"
,
{{
"op"
,
migraphx
::
to_value
(
op
)}}
);
}
void
gelu
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
)
inline
migraphx
::
operation
make_precompile_op
(
migraphx
::
rank
<
1
>
,
const
std
::
string
&
name
)
{
nary
(
stream
,
result
,
arg
)([](
auto
x
)
__device__
{
return
gelu_fn
(
to_hip_type
(
x
));
}
);
return
make_precompile_op
(
migraphx
::
rank
<
0
>
{},
migraphx
::
make_op
(
name
)
);
}
void
gelu_new
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
)
{
nary
(
stream
,
result
,
arg
)([](
auto
x
)
__device__
{
return
gelu_fn_new
(
to_hip_type
(
x
));
});
}
void
add_gelu
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg1
,
const
argument
&
arg2
)
{
nary
(
stream
,
result
,
arg1
,
arg2
)([](
auto
x
,
auto
y
)
__device__
{
auto
sum
=
to_hip_type
(
x
+
y
);
return
gelu_fn
(
sum
);
});
}
void
add_gelu_new
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg1
,
const
argument
&
arg2
)
template
<
class
T
>
auto
make_precompile_op
(
const
T
&
x
)
{
nary
(
stream
,
result
,
arg1
,
arg2
)([](
auto
x
,
auto
y
)
__device__
{
auto
sum
=
to_hip_type
(
x
+
y
);
return
gelu_fn
(
sum
);
});
return
make_precompile_op
(
migraphx
::
rank
<
1
>
{},
x
);
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif // MIGRAPHX_GUARD_TEST_GPU_MAKE_PRECOMPILE_OP_HPP
test/gpu/mlir.cpp
View file @
66483df6
...
...
@@ -144,7 +144,7 @@ TEST_CASE(conv)
{
const
std
::
string
mlir_output
=
R"__migraphx__(
module {
func @main(%arg0: tensor<2x8x3x3xf32>, %arg1: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} {
func
.func
@main(%arg0: tensor<2x8x3x3xf32>, %arg1: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} {
%0 = migraphx.convolution(%arg1, %arg0) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1], use_dynamic_same_auto_pad = 0 : i64} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
return %0 : tensor<1x2x2x2xf32>
}
...
...
@@ -167,7 +167,7 @@ TEST_CASE(conv_add_relu)
{
const
std
::
string
mlir_output
=
R"__migraphx__(
module {
func @main(%arg0: tensor<1x2x2x2xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} {
func
.func
@main(%arg0: tensor<1x2x2x2xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} {
%0 = migraphx.convolution(%arg2, %arg1) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1], use_dynamic_same_auto_pad = 0 : i64} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
%1 = migraphx.add(%0, %arg0) : (tensor<1x2x2x2xf32>, tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
%2 = migraphx.relu(%1) : (tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
...
...
test/gpu/pack_int8_args.cpp
View file @
66483df6
...
...
@@ -21,7 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include
"
migraphx/instruction_ref.hpp
"
#include
<
migraphx/instruction_ref.hpp
>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/gpu/target.hpp>
...
...
@@ -38,6 +38,10 @@
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <test.hpp>
#include "make_precompile_op.hpp"
// Treat some operators as compilable to enable lowering
MIGRAPHX_GPU_TEST_PRECOMPILE
(
"add"
,
"mul"
,
"convert"
)
void
run_passes
(
migraphx
::
module
&
m
)
{
...
...
@@ -116,9 +120,8 @@ TEST_CASE(quant_dot)
m
.
add_instruction
(
migraphx
::
make_op
(
"gpu::contiguous"
),
beta_broadcast
,
beta_alloc
);
auto
mul_alloc
=
m
.
add_instruction
(
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
migraphx
::
to_value
(
m3_shape
)}}));
auto
m3_beta
=
m
.
add_instruction
(
migraphx
::
make_op
(
"gpu::mul"
),
l3
,
beta_contiguous
,
mul_alloc
);
auto
gemm_add
=
m
.
add_instruction
(
migraphx
::
make_op
(
"gpu::add"
),
gemm
,
m3_beta
,
output
);
auto
m3_beta
=
m
.
add_instruction
(
make_precompile_op
(
"mul"
),
l3
,
beta_contiguous
,
mul_alloc
);
auto
gemm_add
=
m
.
add_instruction
(
make_precompile_op
(
"add"
),
gemm
,
m3_beta
,
output
);
m
.
add_return
({
gemm_add
});
return
m
;
...
...
@@ -187,21 +190,23 @@ TEST_CASE(quant_dot_trans)
// back result to int8
auto
tl1_convert_alloc
=
m
.
add_instruction
(
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
migraphx
::
to_value
(
alpha_contiguous
->
get_shape
())}}));
auto
tl1_convert
=
m
.
add_instruction
(
migraphx
::
make_op
(
"gpu::convert"
,
{{
"target_type"
,
alpha
->
get_shape
().
type
()}}),
conta
,
tl1_convert_alloc
);
auto
mul_alloc
=
m
.
add_instruction
(
migraphx
::
make_op
(
auto
tl1_convert
=
m
.
add_instruction
(
make_precompile_op
(
migraphx
::
make_op
(
"convert"
,
{{
"target_type"
,
alpha
->
get_shape
().
type
()}})),
conta
,
tl1_convert_alloc
);
auto
mul_alloc
=
m
.
add_instruction
(
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
migraphx
::
to_value
(
tl1_convert
->
get_shape
())}}));
auto
tl1_alpha_int32
=
m
.
add_instruction
(
m
igraphx
::
make_op
(
"gpu::
mul"
),
alpha_contiguous
,
tl1_convert
,
mul_alloc
);
auto
tl1_alpha_int32
=
m
.
add_instruction
(
make_precompile_op
(
"
mul"
),
alpha_contiguous
,
tl1_convert
,
mul_alloc
);
// convert mul_res to int8
auto
tl1_alpha_int8_alloc
=
m
.
add_instruction
(
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
migraphx
::
to_value
(
conta
->
get_shape
())}}));
auto
tl1_alpha_int8
=
m
.
add_instruction
(
migraphx
::
make_op
(
"gpu::convert"
,
{{
"target_type"
,
conta
->
get_shape
().
type
()}}),
tl1_alpha_int32
,
tl1_alpha_int8_alloc
);
auto
tl1_alpha_int8
=
m
.
add_instruction
(
make_precompile_op
(
migraphx
::
make_op
(
"convert"
,
{{
"target_type"
,
conta
->
get_shape
().
type
()}})),
tl1_alpha_int32
,
tl1_alpha_int8_alloc
);
auto
packb
=
contb
;
if
(
int8_x4
)
...
...
@@ -306,9 +311,8 @@ TEST_CASE(quant_dot_pad)
m
.
add_instruction
(
migraphx
::
make_op
(
"gpu::contiguous"
),
beta_broadcast
,
beta_alloc
);
auto
mul_alloc
=
m
.
add_instruction
(
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
migraphx
::
to_value
(
s3
)}}));
auto
m3_beta
=
m
.
add_instruction
(
migraphx
::
make_op
(
"gpu::mul"
),
l3
,
beta_contiguous
,
mul_alloc
);
auto
gemm_add
=
m
.
add_instruction
(
migraphx
::
make_op
(
"gpu::add"
),
gemm
,
m3_beta
,
output
);
auto
m3_beta
=
m
.
add_instruction
(
make_precompile_op
(
"mul"
),
l3
,
beta_contiguous
,
mul_alloc
);
auto
gemm_add
=
m
.
add_instruction
(
make_precompile_op
(
"add"
),
gemm
,
m3_beta
,
output
);
m
.
add_return
({
gemm_add
});
return
m
;
};
...
...
@@ -396,14 +400,15 @@ TEST_CASE(quant_dot_trans_pad)
// back result to int8
auto
tl1_convert_alloc
=
m
.
add_instruction
(
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
migraphx
::
to_value
(
alpha_contiguous
->
get_shape
())}}));
auto
tl1_convert
=
m
.
add_instruction
(
migraphx
::
make_op
(
"gpu::convert"
,
{{
"target_type"
,
alpha
->
get_shape
().
type
()}}),
conta
,
tl1_convert_alloc
);
auto
mul_alloc
=
m
.
add_instruction
(
migraphx
::
make_op
(
auto
tl1_convert
=
m
.
add_instruction
(
make_precompile_op
(
migraphx
::
make_op
(
"convert"
,
{{
"target_type"
,
alpha
->
get_shape
().
type
()}})),
conta
,
tl1_convert_alloc
);
auto
mul_alloc
=
m
.
add_instruction
(
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
migraphx
::
to_value
(
tl1_convert
->
get_shape
())}}));
auto
tl1_alpha_int32
=
m
.
add_instruction
(
m
igraphx
::
make_op
(
"gpu::
mul"
),
alpha_contiguous
,
tl1_convert
,
mul_alloc
);
auto
tl1_alpha_int32
=
m
.
add_instruction
(
make_precompile_op
(
"
mul"
),
alpha_contiguous
,
tl1_convert
,
mul_alloc
);
// convert mul_res to int8
auto
tl1_alpha_int8_alloc
=
m
.
add_instruction
(
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
migraphx
::
to_value
(
conta
->
get_shape
())}}));
...
...
@@ -415,10 +420,11 @@ TEST_CASE(quant_dot_trans_pad)
migraphx
::
make_op
(
"hip::allocate"
,
{{
"shape"
,
migraphx
::
to_value
(
ps1
)}}));
}
auto
tl1_alpha_int8
=
m
.
add_instruction
(
migraphx
::
make_op
(
"gpu::convert"
,
{{
"target_type"
,
conta
->
get_shape
().
type
()}}),
tl1_alpha_int32
,
tl1_alpha_int8_alloc
);
auto
tl1_alpha_int8
=
m
.
add_instruction
(
make_precompile_op
(
migraphx
::
make_op
(
"convert"
,
{{
"target_type"
,
conta
->
get_shape
().
type
()}})),
tl1_alpha_int32
,
tl1_alpha_int8_alloc
);
auto
pa
=
tl1_alpha_int8
;
if
(
int8_x4
)
...
...
test/memory_coloring_test.cpp
View file @
66483df6
...
...
@@ -724,7 +724,7 @@ TEST_CASE(test39)
auto
sub_modules
=
p
.
get_modules
();
std
::
reverse
(
sub_modules
.
begin
(),
sub_modules
.
end
());
for
(
auto
&
smod
:
sub_modules
)
for
(
const
auto
&
smod
:
sub_modules
)
{
run_pass
(
*
smod
);
}
...
...
test/onnx/batch_norm_1d_test.onnx
0 → 100644
View file @
66483df6
batch_norm_1d_test:
7
x
scale
bias
mean
variancey"BatchNormalizationbatch_norm_1d_testZ
x
Z
scale
Z
bias
Z
mean
Z
variance
b
y
B
\ No newline at end of file
test/onnx/batch_norm_2d_test.onnx
0 → 100644
View file @
66483df6
batch_norm_2d_test:
7
x
scale
bias
mean
variancey"BatchNormalizationbatch_norm_2d_testZ
x
Z
scale
Z
bias
Z
mean
Z
variance
b
y
B
\ No newline at end of file
test/onnx/batch_norm_3d_test.onnx
0 → 100644
View file @
66483df6
batch_norm_3d_test:
J
x
scale
bias
mean
variancey"BatchNormalization*
epsilon75batch_norm_3d_testZ
x
Z
scale
Z
bias
Z
mean
Z
variance
b
y
B
\ No newline at end of file
test/onnx/batch_norm_flat_test.onnx
0 → 100644
View file @
66483df6
batch_norm_flat_test:
J
x
scale
bias
mean
variancey"BatchNormalization*
epsilon75batch_norm_flat_testZ
x
Z
scale
Z
bias
Z
mean
Z
variance
b
y
B
\ No newline at end of file
test/onnx/batch_norm_invalid_bias_rank_test.onnx
0 → 100644
View file @
66483df6
!batch_norm_invalid_bias_rank_test:
7
x
scale
bias
mean
variancey"BatchNormalization!batch_norm_invalid_bias_rank_testZ
x
Z
scale
Z
bias
Z
mean
Z
variance
b
y
B
\ No newline at end of file
test/onnx/batch_norm_invalid_rank_test.onnx
0 → 100644
View file @
66483df6
batch_norm_invalid_rank_test:
7
x
scale
bias
mean
variancey"BatchNormalizationbatch_norm_invalid_rank_testZ
x
Z
scale
Z
bias
Z
mean
Z
variance
b
y
B
\ No newline at end of file
test/onnx/batchnorm_1d_test.onnx
deleted
100644 → 0
View file @
9310bff0
batchnorm_1d_test:
M
0
1
2
3
45"BatchNormalization*
epsilon75*
momentumfff?batchnorm_1d_testZ
0
Z
1
Z
2
Z
3
Z
4
b
5
B
\ No newline at end of file
test/onnx/batchnorm_3d_test.onnx
deleted
100644 → 0
View file @
9310bff0
batchnorm_3d_test:
M
0
1
2
3
45"BatchNormalization*
epsilon75*
momentumfff?batchnorm_3d_testZ
0
Z
1
Z
2
Z
3
Z
4
b
5
B
\ No newline at end of file
test/onnx/gen_onnx.py
View file @
66483df6
...
...
@@ -314,38 +314,107 @@ def averagepool_same_upper_test():
@
onnx_test
def
batchnorm_
1d
_test
():
x
=
helper
.
make_tensor_value_info
(
'
0
'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
5
])
scale
=
helper
.
make_tensor_value_info
(
'
1
'
,
TensorProto
.
FLOAT
,
[
3
])
bias
=
helper
.
make_tensor_value_info
(
'
2
'
,
TensorProto
.
FLOAT
,
[
3
])
mean
=
helper
.
make_tensor_value_info
(
'
3
'
,
TensorProto
.
FLOAT
,
[
3
])
var
=
helper
.
make_tensor_value_info
(
'
4
'
,
TensorProto
.
FLOAT
,
[
3
])
out
=
helper
.
make_tensor_value_info
(
'
5
'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
5
])
node
=
onnx
.
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
[
'0'
,
'1'
,
'2'
,
'3'
,
'4'
]
,
outputs
=
[
'5
'
],
epsilon
=
1e-6
,
momentum
=
0.9
)
def
batch
_
norm_
flat
_test
():
x
=
helper
.
make_tensor_value_info
(
'
x
'
,
TensorProto
.
FLOAT
,
[
1
0
])
scale
=
helper
.
make_tensor_value_info
(
'
scale
'
,
TensorProto
.
FLOAT
,
[
1
])
bias
=
helper
.
make_tensor_value_info
(
'
bias
'
,
TensorProto
.
FLOAT
,
[
1
])
mean
=
helper
.
make_tensor_value_info
(
'
mean
'
,
TensorProto
.
FLOAT
,
[
1
])
var
=
helper
.
make_tensor_value_info
(
'
variance
'
,
TensorProto
.
FLOAT
,
[
1
])
out
=
helper
.
make_tensor_value_info
(
'
y
'
,
TensorProto
.
FLOAT
,
[
1
0
])
node
=
onnx
.
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance
'
],
outputs
=
[
'y'
]
,
epsilon
=
1e-6
)
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
@
onnx_test
def
batchnorm_3d_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
5
,
5
,
5
])
scale
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
])
bias
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
3
])
mean
=
helper
.
make_tensor_value_info
(
'3'
,
TensorProto
.
FLOAT
,
[
3
])
var
=
helper
.
make_tensor_value_info
(
'4'
,
TensorProto
.
FLOAT
,
[
3
])
out
=
helper
.
make_tensor_value_info
(
'5'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
5
,
5
,
5
])
node
=
onnx
.
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
[
'0'
,
'1'
,
'2'
,
'3'
,
'4'
],
outputs
=
[
'5'
],
epsilon
=
1e-6
,
momentum
=
0.9
)
def
batch_norm_1d_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT16
,
[
2
,
3
,
4
])
scale
=
helper
.
make_tensor_value_info
(
'scale'
,
TensorProto
.
FLOAT
,
[
3
])
bias
=
helper
.
make_tensor_value_info
(
'bias'
,
TensorProto
.
FLOAT
,
[
3
])
mean
=
helper
.
make_tensor_value_info
(
'mean'
,
TensorProto
.
FLOAT
,
[
3
])
var
=
helper
.
make_tensor_value_info
(
'variance'
,
TensorProto
.
FLOAT
,
[
3
])
out
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT16
,
[
2
,
3
,
4
])
node
=
onnx
.
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
],
outputs
=
[
'y'
])
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
@
onnx_test
def
batch_norm_2d_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
4
])
scale
=
helper
.
make_tensor_value_info
(
'scale'
,
TensorProto
.
FLOAT
,
[
3
])
bias
=
helper
.
make_tensor_value_info
(
'bias'
,
TensorProto
.
FLOAT
,
[
3
])
mean
=
helper
.
make_tensor_value_info
(
'mean'
,
TensorProto
.
FLOAT
,
[
3
])
var
=
helper
.
make_tensor_value_info
(
'variance'
,
TensorProto
.
FLOAT
,
[
3
])
out
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
4
])
node
=
onnx
.
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
],
outputs
=
[
'y'
])
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
@
onnx_test
def
batch_norm_3d_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT16
,
[
2
,
2
,
2
,
2
,
2
])
scale
=
helper
.
make_tensor_value_info
(
'scale'
,
TensorProto
.
FLOAT16
,
[
2
])
bias
=
helper
.
make_tensor_value_info
(
'bias'
,
TensorProto
.
FLOAT16
,
[
2
])
mean
=
helper
.
make_tensor_value_info
(
'mean'
,
TensorProto
.
FLOAT16
,
[
2
])
var
=
helper
.
make_tensor_value_info
(
'variance'
,
TensorProto
.
FLOAT16
,
[
2
])
out
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT16
,
[
2
,
2
,
2
,
2
,
2
])
node
=
onnx
.
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
],
outputs
=
[
'y'
],
epsilon
=
1e-6
)
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
@
onnx_test
def
batch_norm_invalid_rank_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
8
,
8
])
scale
=
helper
.
make_tensor_value_info
(
'scale'
,
TensorProto
.
FLOAT
,
[
8
])
bias
=
helper
.
make_tensor_value_info
(
'bias'
,
TensorProto
.
FLOAT
,
[
8
])
mean
=
helper
.
make_tensor_value_info
(
'mean'
,
TensorProto
.
FLOAT
,
[
8
])
var
=
helper
.
make_tensor_value_info
(
'variance'
,
TensorProto
.
FLOAT
,
[
8
])
out
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
8
,
8
])
node
=
onnx
.
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
],
outputs
=
[
'y'
])
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
@
onnx_test
def
batch_norm_invalid_bias_rank_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
4
])
scale
=
helper
.
make_tensor_value_info
(
'scale'
,
TensorProto
.
FLOAT
,
[
3
])
bias
=
helper
.
make_tensor_value_info
(
'bias'
,
TensorProto
.
FLOAT
,
[
3
,
1
])
mean
=
helper
.
make_tensor_value_info
(
'mean'
,
TensorProto
.
FLOAT
,
[
3
])
var
=
helper
.
make_tensor_value_info
(
'variance'
,
TensorProto
.
FLOAT
,
[
3
])
out
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
4
])
node
=
onnx
.
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
],
outputs
=
[
'y'
])
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
...
...
Prev
1
…
7
8
9
10
11
12
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment