Commit 606ed5e8 authored by Brian Pickrell's avatar Brian Pickrell
Browse files

Merge branch 'rand_uniform' into multinomial_parse_merge_random

parents c27d3b62 476ed17c
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_RANDOM_SEED_HPP
#define MIGRAPHX_GUARD_OPERATORS_RANDOM_SEED_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <random>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Generates a random seed for the use of random number generators. Generating the seed
* at runtime guarantees there will be a different random sequence on every execution.
* This operation has no inputs or attributes, and outputs an unsigned integer tensor with
* a single value.
*/
struct random_seed
{
shape::type_t dtype = shape::type_t::uint64_type;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.dtype, "dtype"));
}
std::string name() const { return "random_seed"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(0);
return shape{dtype};
}
argument compute(const shape& output_shape, const std::vector<argument>&) const
{
argument result(output_shape);
result.visit([&](auto output) { output.front() = std::random_device{}(); });
return result;
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/**
* Random Uniform distribution operator. Given a shape, populate it with random
* values. Calls to random_uniform using the same randomization seed will
* always generate the same pseudo-random sequence. Seed can
* be given as a runtime argument containing a single value, or a compile-time
* attribute.
*
* Inputs: (1) randomization seed (any type is allowed)
* (2) the shape of the set to be populated.
*
*
* Attributes: none
*
* Output: Same shape.
*
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_RANDOM_UNIFORM_HPP
#define MIGRAPHX_GUARD_OPERATORS_RANDOM_UNIFORM_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <random>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* random_uniform populates the passed shape with random numbers, in a uniform
* distribution. Range for floating-point data types is (0, 1);
* for integer types it is [0, <max value for the type>]
*
* Input 1: seed
* Input 2: output shape
*/
struct random_uniform
{
// The random_uniform operation needs the random number generator seed
// to be passed as a runtime input.
std::string name() const { return "random_uniform"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this, true}.has(2);
return inputs.at(1);
}
argument compute(const shape&, std::vector<argument> args) const
{
// Output goes into the passed buffer, not the shape output.
auto result = args[1];
uint64_t local_seed = args[0].at<uint64_t>(0);
std::mt19937 gen(local_seed);
result.visit([&](auto output) {
using type = typename decltype(output)::value_type;
if constexpr(std::is_integral<type>{})
{
// default range for all integer types is (0,
// std::uniform_int_distribution<type>::max()).
// Todo: enable different ranges
std::uniform_int_distribution<type> dis;
std::generate(output.begin(), output.end(), [&] { return dis(gen); });
}
else
{
// default real distribution type is double with range (0, 1);
std::uniform_real_distribution<> dis;
std::generate(output.begin(), output.end(), [&] { return dis(gen); });
}
});
return result;
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 1; }
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -27,19 +27,34 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/normalize_attributes.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Slice operator that accepts variable axes, starts and ends.
*
* Attributes:
* axes: constant axes to slice over (optional)
* starts: constant slice starting indices (optional)
* ends: constant slice ending indices (optional)
*
* Parameters:
* data: the input tensor to slice (dynamic or static shape)
* input_starts: starting indicies of slice (optional, static shape)
* input_ends: ending indicies of slice (optional, static shape)
* input_axes: axes to slice over (optional, static shape)
*/
struct slice
{
std::vector<int64_t> axes;
std::vector<int64_t> starts;
std::vector<int64_t> ends;
std::vector<int64_t> axes{};
std::vector<int64_t> starts{};
std::vector<int64_t> ends{};
template <class Self, class F>
static auto reflect(Self& self, F f)
......@@ -48,8 +63,8 @@ struct slice
}
/**
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are in
* limits.
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are
* within limits.
*/
value attributes() const
{
......@@ -70,6 +85,90 @@ struct slice
std::string name() const { return "slice"; }
/**
* Computes the slice output shape dimensions for given starts, ends,and axes.
* Templated to also handle tensor views.
* Possibily different type between [in_starts, in_ends] and [in_axes] if in_axes is this
* object's axes attribute. Assumes in_starts and in_ends are normalized; in_axes are valid.
*/
template <class A, class B>
std::vector<std::size_t>
lens_calc(const std::vector<std::size_t>& lengths, A in_starts, A in_ends, B in_axes) const
{
auto new_lens = lengths;
for(std::size_t i = 0; i < in_axes.size(); ++i)
{
auto axis = in_axes[i];
new_lens[axis] = in_ends[i] - in_starts[i];
}
return new_lens;
}
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this, true}.has(1, 3, 4);
auto input_shape = inputs[0];
if(inputs.size() == 1)
{
auto t = input_shape.type();
if(input_shape.dynamic() and std::any_of(axes.begin(), axes.end(), [&](auto axis) {
return not input_shape.dyn_dims()[axis].is_fixed();
}))
{
MIGRAPHX_THROW("SLICE: slicing is not allowed on non-fixed dynamic input axis ");
}
if(input_shape.dynamic())
{
return shape{t,
lens_calc(input_shape.min_lens(), starts, ends, axes),
lens_calc(input_shape.max_lens(), starts, ends, axes),
{}};
}
else
{
return shape{
t, lens_calc(input_shape.lens(), starts, ends, axes), input_shape.strides()};
}
}
else
{
// check that starts, ends, and optionally input_axes are all 1D, have the same
// dimension, and are static
check_shapes{inputs.begin() + 1,
inputs.end(),
std::string("SLICE: inputs (starts, ends, and input_axes)"),
false}
.only_dims(1)
.same_dims();
auto dds = input_shape.to_dynamic().dyn_dims();
if(inputs.size() == 3)
{
if(inputs[1].lens().at(0) != axes.size())
{
MIGRAPHX_THROW("SLICE: inputs starts and ends do not have the same dimension "
"as the axes attribute");
}
std::for_each(axes.cbegin(), axes.cend(), [&](const auto& axis) {
dds.at(axis) = {0, dds.at(axis).max};
});
}
else
{
// if axes is an input, then all the output dimensions could be 0 to the max value
std::transform(dds.begin(), dds.end(), dds.begin(), [](auto dd) {
return shape::dynamic_dimension{0, dd.max};
});
}
return shape{input_shape.type(), dds};
}
}
/**
* Calculates the starting offset for the sliced tensor.
* Used in compute when only data input and all other information are in the attributes.
*
* \param s static input shape
*/
auto compute_offset(const shape& s) const
{
const std::vector<std::size_t>& lens = s.lens();
......@@ -90,80 +189,131 @@ struct slice
offset += starts[axis] * strides[axis];
}
}
return offset;
return offset * s.type_size();
}
shape normalize_compute_shape(std::vector<shape> inputs) const
/**
* Calculates the starting offset for the sliced tensor (for aliasing).
* Used when the starts and/or the axes are inputs.
*
* \param s static input shape
* \param input_starts starting indices of slice
* \param ax_vec axes to slice on
*/
template <class IndView, class Axes>
auto compute_offset(const shape& s, const IndView& input_starts, const Axes& ax_vec) const
{
check_shapes{inputs, *this, true}.has(1);
auto input_shape = inputs[0];
auto t = input_shape.type();
// TODO: When support for dynamic shapes is added to normalize_attributes,
// remove this restriction.
if(input_shape.dynamic() and std::any_of(axes.begin(), axes.end(), [&](auto axis) {
return not input_shape.dyn_dims()[axis].is_fixed();
}))
auto ret = 0;
for(std::size_t i = 0; i < ax_vec.size(); ++i)
{
MIGRAPHX_THROW("SLICE: slicing is not allowed on non-fixed dynamic input axis ");
auto axis = ax_vec[i];
ret += input_starts[i] * s.strides().at(axis);
}
return ret * s.type_size();
}
std::unordered_map<std::string, std::vector<int64_t>>
normalize_inputs(const shape& input_shape,
const std::vector<int64_t>& input_starts,
const std::vector<int64_t>& input_ends) const
{
auto attrs = this->attributes().at("normalize_axes");
return {{"input_starts",
normalize_indices(input_starts,
this->axes,
input_shape,
attrs.at("starts"),
"Slice variable input_starts")},
{"input_ends",
normalize_indices(input_ends,
this->axes,
input_shape,
attrs.at("ends"),
"Slice variable input_ends")}};
}
/**
* Three input version of the normalize_inputs.
* This one also checks that the input_axes are valid.
*/
std::unordered_map<std::string, std::vector<int64_t>>
normalize_inputs(shape input_shape,
const std::vector<int64_t>& input_starts,
const std::vector<int64_t>& input_ends,
const std::vector<int64_t>& input_axes) const
{
auto attrs = this->attributes().at("normalize_axes");
auto norm_axes =
normalize_axes(input_axes, input_shape, attrs.at("axes"), "Slice variable input_axes");
return {{"input_starts",
normalize_indices(input_starts,
norm_axes,
input_shape,
attrs.at("starts"),
"Slice variable input_starts")},
{"input_ends",
normalize_indices(input_ends,
norm_axes,
input_shape,
attrs.at("ends"),
"Slice variable input ends")},
{"input_axes", norm_axes}};
}
// For a static shape, old_lens will be adjusted to a new size
// for those axes that are sliced.
// For dynamic shape, the adjusted old_lens become the new max values,
// while updating the old mins and optimals if possible.
std::vector<std::size_t> new_mins;
std::vector<std::size_t> old_lens;
std::vector<std::size_t> old_strides;
// Doesn't handle optimals
if(input_shape.dynamic())
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
auto input = args[0];
auto input_shape = input.get_shape();
switch(args.size())
{
old_lens = input_shape.max_lens();
new_mins = input_shape.min_lens();
case 1: {
std::size_t offset = compute_offset(input_shape);
return {dyn_out.computed_shape, [=] { return input.data() + offset; }};
}
else
{
old_lens = input_shape.lens();
// For static shape (including during eval step after a dynamic input) the strides are
// indexed into the pre-slice array, so they are larger than the apparent size of the
// resulting shape.
old_strides = input_shape.strides();
case 3: {
shape calc_shape;
std::size_t offset = 0;
visit_all(args[1], args[2])([&](auto input_starts, auto input_ends) {
auto norm_inputs = normalize_inputs(input_shape,
input_starts.template to_vector<int64_t>(),
input_ends.template to_vector<int64_t>());
offset = compute_offset(input_shape, norm_inputs.at("input_starts"), this->axes);
calc_shape = {input_shape.type(),
lens_calc(input_shape.lens(),
norm_inputs.at("input_starts"),
norm_inputs.at("input_ends"),
this->axes),
input_shape.strides()};
});
return {calc_shape, [=] { return input.data() + offset; }};
}
std::vector<std::size_t> new_lens = old_lens;
for(std::size_t i = 0; i < axes.size(); i++)
{
auto axis = axes[i];
size_t sliced_length = ends[i] - starts[i];
// A Numpy indexing convention: a slice size larger than the actual dimension
// is legal and the "ends" value is clipped to the axis size
new_lens[axis] = std::min(new_lens[axis], sliced_length);
if(input_shape.dynamic())
{
// TODO: when non-fixed shape slicing is allowed, this will be different than
// sliced_length, making use of TBD start/end values.
std::size_t sliced_min_length = ends[i] - starts[i];
// if the slice size is smaller than maxes but larger than mins
new_mins[axis] = std::min(sliced_min_length, new_mins[axis]);
}
case 4: {
shape calc_shape;
std::size_t offset = 0;
visit_all(args[1], args[2], args[3])(
[&](auto input_starts, auto input_ends, auto input_axes) {
auto norm_inputs = normalize_inputs(input_shape,
input_starts.template to_vector<int64_t>(),
input_ends.template to_vector<int64_t>(),
input_axes.template to_vector<int64_t>());
offset = compute_offset(
input_shape, norm_inputs.at("input_starts"), norm_inputs.at("input_axes"));
calc_shape = shape{input_shape.type(),
lens_calc(input_shape.lens(),
norm_inputs.at("input_starts"),
norm_inputs.at("input_ends"),
norm_inputs.at("input_axes")),
input_shape.strides()};
});
return {calc_shape, [=] { return input.data() + offset; }};
}
if(input_shape.dynamic())
{
return shape{t, new_mins, new_lens, {}};
default: {
// Should never get here; covering in case some code change occurs
MIGRAPHX_THROW("SLICE: invalid number of inputs");
}
else
{
return shape{t, new_lens, old_strides};
}
}
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
auto input = args[0];
auto offset = compute_offset(input.get_shape()) * dyn_out.computed_shape.type_size();
return {dyn_out.computed_shape, [=] { return input.data() + offset; }};
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
......@@ -66,6 +66,10 @@ MIGRAPHX_EXPORT std::vector<int64_t> invert_permutation(const std::vector<int64_
MIGRAPHX_EXPORT std::vector<int64_t> find_permutation(const shape& s);
MIGRAPHX_EXPORT std::vector<int64_t> find_permutation(const std::vector<shape>& shapes);
/// Normalize the shapes so the order of dimensions will be in the order it is
/// in memory as much as possible.
MIGRAPHX_EXPORT std::vector<shape> normalize_permutation(const std::vector<shape>& shapes);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -64,10 +64,7 @@ void instruction::replace(const shape& r)
result = r;
for(auto&& ins : output)
{
if(ins->name() == "@return")
continue;
assert(ins->name().front() != '@');
assert(ins->name() == "@return" or ins->name().front() != '@');
ins->recompute_shape();
}
}
......@@ -122,10 +119,6 @@ bool instruction::valid() const
{
computed = result;
}
else if(op.name() == "@return")
{
computed = {};
}
else
{
try
......@@ -145,6 +138,7 @@ bool instruction::valid() const
}
shape instruction::get_shape() const { return result; }
const literal& instruction::get_literal() const
{
assert(op.name() == "@literal");
......@@ -395,7 +389,7 @@ void instruction::print(std::ostream& os,
if(not ins->module_inputs().empty())
{
std::string delim = ", [";
for(auto&& mod_arg : ins->module_inputs())
for(const const_module_ref& mod_arg : ins->module_inputs())
{
os << delim << mod_arg->name();
delim = ", ";
......
......@@ -23,9 +23,9 @@
*/
#include <migraphx/memory_coloring.hpp>
#include <migraphx/module.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/ranges.hpp>
......@@ -382,7 +382,8 @@ void memory_coloring::apply(module& m) const
auto s = ins->get_shape();
std::size_t offset = seg.first * alignment;
assert(offset < n);
m.replace_instruction(ins, op::load{s, offset}, mem);
m.replace_instruction(
ins, make_op("load", {{"shape", to_value(s)}, {"offset", offset}}), mem);
}
// Replace zero allocation
......@@ -391,7 +392,8 @@ void memory_coloring::apply(module& m) const
if(ins->name() != allocation_op)
continue;
assert(ins->get_shape().bytes() == 0);
m.replace_instruction(ins, op::load{ins->get_shape(), 0}, mem);
m.replace_instruction(
ins, make_op("load", {{"shape", to_value(ins->get_shape())}, {"offset", 0}}), mem);
}
// Remove scratch parameter if its not used
......
......@@ -460,11 +460,11 @@ instruction_ref module::add_parameter(std::string name, shape s)
instruction_ref module::add_return(std::vector<instruction_ref> args)
{
impl->push_back({builtin::returns{}, {}, std::move(args)});
shape instr_shape = compute_shape(builtin::returns{}, args);
impl->push_back({builtin::returns{}, instr_shape, std::move(args)});
auto result = std::prev(impl->instructions.end());
instruction::backreference(result);
assert(result->valid(begin()));
return result;
}
......@@ -873,12 +873,11 @@ module::print_py(std::ostream& os,
if(ins->name() == "@literal")
{
os << mname << ".add_literal(";
bool use_abs = false;
ins->get_literal().visit([&](auto v) {
use_abs = std::none_of(v.begin(), v.end(), [](auto x) { return x < 0; });
});
const bool use_abs = false;
// Disable abs for now
use_abs = false;
// ins->get_literal().visit([&](auto v) {
// use_abs = std::none_of(v.begin(), v.end(), [](auto x) { return x < 0; });
// });
if(use_abs)
os << "migraphx.abs_literal(";
os << "migraphx.generate_argument(";
......@@ -1011,9 +1010,17 @@ std::vector<module_ref> module::get_sub_modules(bool shallow) const
module& module::sort()
{
auto implicit_deps = calc_implicit_deps();
fix([&](auto self, auto ins) {
this->move_instruction(ins, this->begin());
for(auto child : ins->inputs())
auto ins_inputs = ins->inputs();
if(implicit_deps.find(ins) != implicit_deps.end())
{
auto ins_implict_inputs = implicit_deps.at(ins);
ins_inputs.insert(
ins_inputs.end(), ins_implict_inputs.begin(), ins_implict_inputs.end());
}
for(auto child : ins_inputs)
{
if(not contains(this->impl->instructions, child))
{
......
......@@ -49,6 +49,10 @@ auto tune_attribute(const std::vector<int64_t>& vec,
Message m)
{
std::vector<int64_t> result(vec);
if(result.empty())
{
return result;
};
int64_t n_rank = input_shape.ndim();
std::vector<op::normalize_attribute> vec_attrs = val.to_vector<op::normalize_attribute>();
if(contains(vec_attrs, op::normalize_attribute::use_output))
......@@ -251,5 +255,22 @@ bool normalize_attributes(operation& op, const shape& input_shape)
return tuned;
}
std::vector<int64_t> normalize_axes(const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix)
{
return tune_attribute(axes, {}, attr_val, input_shape, [&] { return prefix; });
}
std::vector<int64_t> normalize_indices(const std::vector<int64_t>& indices,
const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix)
{
return tune_attribute(indices, axes, attr_val, input_shape, [&] { return prefix; });
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -117,6 +117,7 @@ struct onnx_parser
parse_graph(module* mod, const onnx::GraphProto& graph, bool inlining = false);
literal parse_value(const onnx::AttributeProto& attr) const;
literal parse_tensor(const onnx::TensorProto& t) const;
shape parse_type(const onnx::TypeProto& t) const;
shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims) const;
};
......
......@@ -357,10 +357,9 @@ parse_inputs(const onnx_parser& parser,
}
shape s;
std::vector<std::size_t> dims;
if(parser.map_input_dims.count(name) > 0)
{
dims = parser.map_input_dims.at(name);
std::vector<std::size_t> dims = parser.map_input_dims.at(name);
s = parser.parse_type(input.type(), dims);
}
else if(parser.map_dyn_input_dims.count(name) > 0)
......@@ -370,7 +369,7 @@ parse_inputs(const onnx_parser& parser,
}
else
{
s = parser.parse_type(input.type(), dims);
s = parser.parse_type(input.type());
}
mod_insts[name] = mod->add_parameter(name, s);
}
......@@ -553,14 +552,9 @@ literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
}
MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
const std::vector<std::size_t>& input_dims) const
shape onnx_parser::parse_type(const onnx::TypeProto& t) const
{
shape::type_t shape_type = get_type(t.tensor_type().elem_type());
if(not input_dims.empty())
{
return {shape_type, input_dims};
}
std::vector<shape::dynamic_dimension> dynamic_dims;
auto&& tensor_dims = t.tensor_type().shape().dim();
......@@ -590,6 +584,15 @@ shape onnx_parser::parse_type(const onnx::TypeProto& t,
return shape_from_dyn_dims(shape_type, dynamic_dims);
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
const std::vector<std::size_t>& input_dims) const
{
shape::type_t shape_type = get_type(t.tensor_type().elem_type());
if(input_dims.empty())
return {shape_type};
return {shape_type, input_dims};
}
shape::type_t get_type(int dtype)
{
switch(dtype)
......
......@@ -55,9 +55,6 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape>
l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
}
// input is empty, output is a scalar
auto type = l_val.get_shape().type();
if(args.empty())
{
MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
......@@ -65,6 +62,8 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape>
else
{
migraphx::shape s;
// input is empty, output is a scalar
auto type = l_val.get_shape().type();
// empty input tensor, output is a scalar
if(args[0]->get_shape().elements() == 0)
{
......
......@@ -96,7 +96,7 @@ struct parse_randomuniform_ops : op_parser<parse_randomuniform_ops>
if(contains(info.attributes, "seed"))
gen.seed(info.attributes.at("seed").f());
std::uniform_real_distribution<> d(high, low);
std::uniform_real_distribution<> d(low, high);
std::vector<double> rand_vals(out_shape.elements());
std::generate(rand_vals.begin(), rand_vals.end(), [&]() { return d(gen); });
......
......@@ -34,16 +34,65 @@ namespace onnx {
struct parse_slice : op_parser<parse_slice>
{
std::vector<op_desc> operators() const { return {{"Slice"}}; }
struct slice_desc
{
op::slice op;
std::vector<instruction_ref> op_args;
std::vector<int64_t> steps;
std::vector<int64_t> raxes;
void always_insert(instruction_ref arg) { op_args.insert(op_args.begin(), arg); }
std::vector<int64_t> insert(instruction_ref arg)
{
std::vector<int64_t> result;
migraphx::argument arg_value = arg->eval();
if(arg_value.empty())
{
op_args.insert(op_args.begin(), arg);
}
else
{
arg_value.visit([&](auto s) { result.assign(s.begin(), s.end()); });
}
return result;
}
};
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
op::slice op;
auto sd = construct_slice_desc(parser, info, args);
auto ins = info.add_instruction(sd.op, sd.op_args);
if(not sd.raxes.empty())
{
ins = info.add_instruction(make_op("reverse", {{"axes", sd.raxes}}), ins);
}
// If any steps are other than default 1, add a "steps" op
if(std::any_of(sd.steps.begin(), sd.steps.end(), [](auto s) { return std::abs(s) != 1; }))
{
std::vector<int64_t> nsteps;
std::transform(sd.steps.begin(),
sd.steps.end(),
std::back_inserter(nsteps),
[](auto s) { return std::abs(s); });
return ins = info.add_instruction(
make_op("step", {{"axes", sd.op.axes}, {"steps", nsteps}}), ins);
}
else
return ins;
}
std::vector<int64_t> steps;
slice_desc construct_slice_desc(const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
slice_desc sd;
// slice can have up to 5 inputs, we first check the 5th one
// to decide whether MIGRAPHX can handle this slice.
......@@ -51,89 +100,73 @@ struct parse_slice : op_parser<parse_slice>
{
migraphx::argument step_arg = args.back()->eval();
check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
step_arg.visit([&](auto s) { sd.steps.assign(s.begin(), s.end()); });
}
if(args.size() >= 4)
{
migraphx::argument axes_arg = args.at(3)->eval();
check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
sd.op.axes = sd.insert(args.at(3));
}
else if(contains(info.attributes, "axes"))
{
literal s = parser.parse_value(info.attributes.at("axes"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.axes)); });
}
if(args.size() >= 3)
{
migraphx::argument end_arg = args.at(2)->eval();
check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
sd.op.ends = sd.insert(args.at(2));
}
else if(contains(info.attributes, "ends"))
{
literal s = parser.parse_value(info.attributes.at("ends"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.ends)); });
}
if(args.size() >= 2)
{
migraphx::argument start_arg = args.at(1)->eval();
check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
sd.op.starts = sd.insert(args.at(1));
}
else if(contains(info.attributes, "starts"))
{
literal s = parser.parse_value(info.attributes.at("starts"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.starts)); });
}
// data input argument
sd.always_insert(args.at(0));
// If axes arg is not given, the default is all of them.
if(op.axes.empty())
if(sd.op.axes.empty() and sd.op_args.size() < 3)
{
std::vector<int64_t> axes(args[0]->get_shape().ndim());
std::iota(axes.begin(), axes.end(), int64_t{0});
op.axes = axes;
sd.op.axes = axes;
}
std::vector<int64_t> raxes;
if(not sd.steps.empty())
{
if(sd.op.starts.empty() or sd.op.ends.empty())
MIGRAPHX_THROW("PARSE_SLICE: steps and variable starts and ends is not supported");
if(sd.op.axes.empty())
MIGRAPHX_THROW("PARSE_SLICE: steps and variable axes is not supported");
}
assert(steps.empty() or steps.size() == op.axes.size());
assert(op.axes.size() == op.starts.size());
assert(op.axes.size() == op.ends.size());
assert(sd.steps.empty() or sd.steps.size() == sd.op.axes.size());
// If any axes have negative step, prepare to add a "reverse" op
for(auto i : range(steps.size()))
for(auto i : range(sd.steps.size()))
{
if(steps[i] >= 0)
if(sd.steps[i] >= 0)
continue;
op.starts[i] += 1;
if(op.starts[i] == 0)
op.starts[i] = INT_MAX;
op.ends[i] += 1;
raxes.push_back(op.axes[i]);
std::swap(op.starts[i], op.ends[i]);
}
auto ins = info.add_instruction(op, args[0]);
if(not raxes.empty())
{
ins = info.add_instruction(make_op("reverse", {{"axes", raxes}}), ins);
sd.op.starts[i] += 1;
if(sd.op.starts[i] == 0)
sd.op.starts[i] = INT_MAX;
sd.op.ends[i] += 1;
sd.raxes.push_back(sd.op.axes[i]);
std::swap(sd.op.starts[i], sd.op.ends[i]);
}
// If any steps are other than default 1, add a "steps" op
if(std::any_of(steps.begin(), steps.end(), [](auto s) { return std::abs(s) != 1; }))
{
std::vector<int64_t> nsteps;
std::transform(steps.begin(), steps.end(), std::back_inserter(nsteps), [](auto s) {
return std::abs(s);
});
return ins = info.add_instruction(
make_op("step", {{"axes", op.axes}, {"steps", nsteps}}), ins);
}
else
return ins;
return sd;
}
};
......
......@@ -74,5 +74,15 @@ std::vector<int64_t> find_permutation(const std::vector<shape>& shapes)
return it->first;
}
std::vector<shape> normalize_permutation(const std::vector<shape>& shapes)
{
auto result = shapes;
auto perm = find_permutation(shapes);
std::transform(result.begin(), result.end(), result.begin(), [&](auto s) {
return reorder_shape(s, perm);
});
return result;
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -40,13 +40,14 @@
#include <migraphx/make_op.hpp>
#include <migraphx/marker.hpp>
#include <migraphx/supported_segments.hpp>
#include <iostream>
#include <queue>
#include <sstream>
#include <algorithm>
#include <set>
#include <unordered_map>
#include <utility>
#include <unordered_set>
#include <map>
#include <cassert>
......@@ -222,7 +223,7 @@ void program::compile(const std::vector<target>& targets, std::vector<compile_op
// Gather all the target roots
std::unordered_multimap<std::size_t, module_ref> roots;
auto mods = this->get_modules();
for(auto* mod : mods)
for(const auto* mod : mods)
{
for(const auto& ins : *mod)
{
......@@ -547,7 +548,7 @@ std::vector<argument> program::eval(parameter_map params, execution_environment
ins_out[x] = ss.str();
});
ret = generic_eval(*this, contexts, std::move(params), [&](instruction_ref ins, auto f) {
auto& ctx = contexts[ins->get_target_id()];
const auto& ctx = contexts[ins->get_target_id()];
ctx.finish();
std::cout << "Run instruction: " << ins_out.at(ins) << std::endl;
timer t{};
......@@ -727,7 +728,7 @@ static void mod_from_val(module_ref mod,
std::back_inserter(module_inputs),
[&](const value& i) { return map_mods.at(i.to<std::string>()); });
for(auto& smod : module_inputs)
for(const auto& smod : module_inputs)
{
mod_from_val(smod, v, instructions, map_mods);
}
......@@ -1185,17 +1186,25 @@ void program::remove_unused_modules()
std::vector<module*> unused;
generic_get_unused_modules(
impl->modules, generic_get_modules(this->get_main_module()), std::back_inserter(unused));
for(auto* m : unused)
for(const auto* m : unused)
this->remove_module(m->name());
}
program& program::sort()
{
for(auto& pp : this->impl->modules)
std::queue<migraphx::module_ref> mqueue;
mqueue.push(get_main_module());
while(not mqueue.empty())
{
pp.second.sort();
module_ref current_mod = mqueue.front();
current_mod->sort();
mqueue.pop();
auto child_mods = current_mod->get_sub_modules(true);
for(auto& sub_mod : child_mods)
{
mqueue.push(sub_mod);
}
}
return *this;
}
......
......@@ -23,14 +23,25 @@
#####################################################################################
option(MIGRAPHX_ENABLE_PYTHON "Enable python bindings" ON)
add_library(migraphx_py py_loader.cpp)
migraphx_generate_export_header(migraphx_py)
target_include_directories(migraphx_py PRIVATE include)
target_link_libraries(migraphx_py PUBLIC migraphx)
rocm_install_targets(TARGETS migraphx_py INCLUDE include)
if(MIGRAPHX_ENABLE_PYTHON)
include(PythonModules)
add_custom_target(migraphx_py)
foreach(PYTHON_VERSION ${PYTHON_VERSIONS})
py_add_module(migraphx_py_${PYTHON_VERSION} migraphx_py.cpp PYTHON_VERSION ${PYTHON_VERSION} PYTHON_MODULE migraphx)
target_link_libraries(migraphx_py_${PYTHON_VERSION} PRIVATE migraphx migraphx_tf migraphx_onnx migraphx_all_targets)
py_add_module(migraphx_pybind_${PYTHON_VERSION} migraphx_py.cpp PYTHON_VERSION ${PYTHON_VERSION} PYTHON_MODULE migraphx)
target_link_libraries(migraphx_pybind_${PYTHON_VERSION} PRIVATE migraphx migraphx_tf migraphx_onnx migraphx_all_targets)
rocm_install_targets(TARGETS migraphx_pybind_${PYTHON_VERSION})
add_dependencies(migraphx_py migraphx_pybind_${PYTHON_VERSION})
add_library(migraphx_py_${PYTHON_VERSION} py.cpp)
target_include_directories(migraphx_py_${PYTHON_VERSION} PRIVATE include)
target_link_libraries(migraphx_py_${PYTHON_VERSION} PUBLIC migraphx)
target_link_libraries(migraphx_py_${PYTHON_VERSION} PRIVATE pybind11::pybind11 python${PYTHON_VERSION}::runtime)
rocm_install_targets(TARGETS migraphx_py_${PYTHON_VERSION})
add_dependencies(migraphx_py migraphx_py_${PYTHON_VERSION})
endforeach()
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_MIGRAPHX_PY_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_PY_HPP
#include <migraphx/config.hpp>
#include <migraphx/program.hpp>
#include <migraphx/py/export.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
MIGRAPHX_PY_EXPORT program load_py(const std::string& filename);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_MIGRAPHX_PY_HPP
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/config.hpp>
#include <migraphx/program.hpp>
#include <migraphx/dynamic_loader.hpp>
#include <migraphx/file_buffer.hpp>
#include <pybind11/embed.h>
namespace py = pybind11;
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreturn-type-c-linkage"
#endif
// extern "C" is used to disable name mangling, but the function will still be called from C++
extern "C" program migraphx_load_py(const std::string& filename);
#ifdef __clang__
#pragma clang diagnostic pop
#endif
const std::string& python_path()
{
static const auto path = dynamic_loader::path(&migraphx_load_py).parent_path().string();
return path;
}
static py::dict run_file(const std::string& file)
{
py::object scope = py::module_::import("__main__").attr("__dict__");
std::string buffer;
buffer.append("import sys\n");
buffer.append("sys.path.insert(0, '" + python_path() + "')\n");
buffer.append("import migraphx\n");
buffer.append(read_string(file));
py::exec(buffer, scope);
return scope.cast<py::dict>();
}
extern "C" program migraphx_load_py(const std::string& filename)
{
py::scoped_interpreter guard{};
py::dict vars = run_file(filename);
auto it = std::find_if(vars.begin(), vars.end(), [](const auto& p) {
return py::isinstance<migraphx::program>(p.second);
});
if(it == vars.end())
MIGRAPHX_THROW("No program variable found");
return it->second.cast<migraphx::program>();
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/py.hpp>
#include <migraphx/dynamic_loader.hpp>
#include <migraphx/process.hpp>
#include <migraphx/ranges.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
static std::vector<fs::path> find_available_python_versions()
{
std::vector<fs::path> result;
auto path = dynamic_loader::path(&load_py).parent_path();
for(const auto& entry : fs::directory_iterator{path})
{
auto p = entry.path();
if(not fs::is_regular_file(p))
continue;
if(not contains(p.stem().string(), "migraphx_py_"))
continue;
result.push_back(p);
}
std::sort(result.begin(), result.end(), std::greater<>{});
return result;
}
static dynamic_loader load_py_lib()
{
auto libs = find_available_python_versions();
for(const auto& lib : libs)
{
auto result = dynamic_loader::try_load(lib);
if(result.has_value())
return *result;
}
MIGRAPHX_THROW("Cant find a viable version of python");
}
static dynamic_loader py_lib()
{
static dynamic_loader lib = load_py_lib();
return lib;
}
MIGRAPHX_PY_EXPORT program load_py(const std::string& filename)
{
static auto f = py_lib().get_function<program(const std::string&)>("migraphx_load_py");
return f(filename);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -28,6 +28,7 @@
#include <migraphx/tune_axis.hpp>
#include <migraphx/program.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/common.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -61,13 +62,10 @@ void apply_quantizelinear(module& m, instruction_ref ins)
max_quant = qt.max();
min_quant = qt.min();
});
auto s = add_zero_point->get_shape();
std::vector<int> min_data(s.elements(), min_quant);
std::vector<int> max_data(s.elements(), max_quant);
auto min_arg = m.add_literal(literal(s, min_data));
auto max_arg = m.add_literal(literal(s, max_data));
auto saturate = m.insert_instruction(ins, make_op("clip"), add_zero_point, min_arg, max_arg);
auto s = add_zero_point->get_shape();
auto min_arg = m.add_literal(literal{shape{s.type()}, {min_quant}});
auto max_arg = m.add_literal(literal{shape{s.type()}, {max_quant}});
auto saturate = insert_common_op(m, ins, make_op("clip"), {add_zero_point, min_arg, max_arg});
m.replace_instruction(
ins, make_op("convert", {{"target_type", ins->get_shape().type()}}), saturate);
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment