Commit 5ec8f913 authored by Ted Themistokleous's avatar Ted Themistokleous Committed by Ted Themistokleous
Browse files

Merge branch 'develop' into simplify_1_mul_div_ops

parents 32d69e8e d78bcdfb
...@@ -37,6 +37,7 @@ ...@@ -37,6 +37,7 @@
#include <migraphx/output_iterator.hpp> #include <migraphx/output_iterator.hpp>
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
#include <migraphx/marker.hpp> #include <migraphx/marker.hpp>
#include <migraphx/supported_segments.hpp>
#include <iostream> #include <iostream>
#include <sstream> #include <sstream>
#include <algorithm> #include <algorithm>
...@@ -77,11 +78,11 @@ program& program::operator=(program p) ...@@ -77,11 +78,11 @@ program& program::operator=(program p)
void program::assign(const program& p) void program::assign(const program& p)
{ {
if(!impl) if(not impl)
{ {
impl = std::make_unique<program_impl>(); impl = std::make_unique<program_impl>();
} }
else if(!impl->modules.empty()) else if(not impl->modules.empty())
{ {
impl->modules.clear(); impl->modules.clear();
} }
...@@ -167,13 +168,37 @@ target_assignments program::get_target_assignments(const std::vector<target>& ta ...@@ -167,13 +168,37 @@ target_assignments program::get_target_assignments(const std::vector<target>& ta
target_assignments p; target_assignments p;
const auto* mod = get_main_module(); const auto* mod = get_main_module();
for(auto it : iterator_for(*mod)) std::vector<std::pair<target, supported_segments>> target_subgraphs;
target_subgraphs.reserve(targets.size());
std::transform(targets.begin(),
targets.end(),
std::back_inserter(target_subgraphs),
[&](const auto& t) { return std::make_pair(t, t.find_supported(mod, m)); });
for(const auto ins : iterator_for(*mod))
{ {
auto t = std::max_element( if(contains(p, ins))
targets.begin(), targets.end(), [it, m](const target& lhs, const target& rhs) { {
return lhs.is_supported(it, m) < rhs.is_supported(it, m); continue;
}); }
p.add_assignment(it, t->name());
for(const auto& [target, subgraph] : target_subgraphs)
{
// can't pass a structured binding into lambda in C++17 so create a variable for it
const auto& t = target;
for(const auto& segment : subgraph)
{
const auto& instructions = segment.instructions;
if(not contains(instructions, ins))
{
continue;
}
std::transform(instructions.begin(),
instructions.end(),
std::inserter(p, p.end()),
[&](auto instr) { return std::make_pair(instr, t.name()); });
}
}
} }
return p; return p;
} }
......
...@@ -40,6 +40,7 @@ ...@@ -40,6 +40,7 @@
#include <migraphx/register_target.hpp> #include <migraphx/register_target.hpp>
#include <migraphx/json.hpp> #include <migraphx/json.hpp>
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
#ifdef HAVE_GPU #ifdef HAVE_GPU
#include <migraphx/gpu/hip.hpp> #include <migraphx/gpu/hip.hpp>
...@@ -82,7 +83,7 @@ void visit_py(T x, F f) ...@@ -82,7 +83,7 @@ void visit_py(T x, F f)
{ {
f(x.template cast<bool>()); f(x.template cast<bool>());
} }
else if(py::isinstance<py::int_>(x)) else if(py::isinstance<py::int_>(x) or py::hasattr(x, "__index__"))
{ {
f(x.template cast<int>()); f(x.template cast<int>());
} }
...@@ -324,6 +325,7 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m) ...@@ -324,6 +325,7 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
.def("get_parameter_names", &migraphx::program::get_parameter_names) .def("get_parameter_names", &migraphx::program::get_parameter_names)
.def("get_parameter_shapes", &migraphx::program::get_parameter_shapes) .def("get_parameter_shapes", &migraphx::program::get_parameter_shapes)
.def("get_output_shapes", &migraphx::program::get_output_shapes) .def("get_output_shapes", &migraphx::program::get_output_shapes)
.def("is_compiled", &migraphx::program::is_compiled)
.def( .def(
"compile", "compile",
[](migraphx::program& p, const migraphx::target& t, bool offload_copy, bool fast_math) { [](migraphx::program& p, const migraphx::target& t, bool offload_copy, bool fast_math) {
...@@ -358,18 +360,35 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m) ...@@ -358,18 +360,35 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
.def("__ne__", std::not_equal_to<migraphx::program>{}) .def("__ne__", std::not_equal_to<migraphx::program>{})
.def("__repr__", [](const migraphx::program& p) { return migraphx::to_string(p); }); .def("__repr__", [](const migraphx::program& p) { return migraphx::to_string(p); });
py::class_<migraphx::operation>(m, "op") py::class_<migraphx::operation> op(m, "op");
.def(py::init([](const std::string& name, py::kwargs kwargs) { op.def(py::init([](const std::string& name, py::kwargs kwargs) {
migraphx::value v = migraphx::value::object{}; migraphx::value v = migraphx::value::object{};
if(kwargs) if(kwargs)
{ {
v = migraphx::to_value(kwargs); v = migraphx::to_value(kwargs);
} }
return migraphx::make_op(name, v); return migraphx::make_op(name, v);
})) }))
.def("name", &migraphx::operation::name); .def("name", &migraphx::operation::name);
py::enum_<migraphx::op::pooling_mode>(op, "pooling_mode")
.value("average", migraphx::op::pooling_mode::average)
.value("max", migraphx::op::pooling_mode::max)
.value("lpnorm", migraphx::op::pooling_mode::lpnorm);
py::enum_<migraphx::op::rnn_direction>(op, "rnn_direction")
.value("forward", migraphx::op::rnn_direction::forward)
.value("reverse", migraphx::op::rnn_direction::reverse)
.value("bidirectional", migraphx::op::rnn_direction::bidirectional);
m.def(
"argument_from_pointer",
[](const migraphx::shape shape, const int64_t address) {
return migraphx::argument(shape, reinterpret_cast<void*>(address));
},
py::arg("shape"),
py::arg("address"));
m.def( m.def(
"parse_tf", "parse_tf",
[](const std::string& filename, [](const std::string& filename,
......
...@@ -70,7 +70,7 @@ void quantize_int8(program& prog, ...@@ -70,7 +70,7 @@ void quantize_int8(program& prog,
{ {
std::set<std::string> op_names = {"convolution", "dot"}; std::set<std::string> op_names = {"convolution", "dot"};
std::set<std::string> input_ins_names(ins_names.begin(), ins_names.end()); std::set<std::string> input_ins_names(ins_names.begin(), ins_names.end());
if(!std::includes( if(not std::includes(
op_names.begin(), op_names.end(), input_ins_names.begin(), input_ins_names.end())) op_names.begin(), op_names.end(), input_ins_names.begin(), input_ins_names.end()))
{ {
MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation"); MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation");
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/rewrite_gelu.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/match/gelu_erf.hpp>
#include <migraphx/common.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct find_gelu_erf
{
auto matcher() const { return match::gelu_erf(); }
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto x = r.instructions["x"];
if(x->get_shape().type() != migraphx::shape::half_type)
return;
auto lit = m.add_literal(literal{shape{x->get_shape().type()}, {1.702f}});
auto mul = insert_common_op(m, ins, make_op("mul"), {x, lit});
auto sig = m.insert_instruction(ins, make_op("neg"), mul);
sig = m.insert_instruction(ins, make_op("exp"), sig);
auto one = m.add_literal(literal{shape{x->get_shape().type()}, {1.0f}});
sig = insert_common_op(m, ins, make_op("add"), {sig, one});
sig = m.insert_instruction(ins, make_op("div"), x, sig);
m.replace_instruction(ins, sig);
}
};
void rewrite_gelu::apply(module& m) const { match::find_matches(m, find_gelu_erf{}); }
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -47,12 +47,12 @@ void rewrite_pooling::apply(module& m) const ...@@ -47,12 +47,12 @@ void rewrite_pooling::apply(module& m) const
if(not s.standard()) if(not s.standard())
continue; continue;
auto&& op = any_cast<op::pooling>(ins->get_operator()); auto&& op = any_cast<op::pooling>(ins->get_operator());
if(!std::all_of(op.padding.begin(), op.padding.end(), [](auto i) { return i == 0; })) if(not std::all_of(op.padding.begin(), op.padding.end(), [](auto i) { return i == 0; }))
continue; continue;
if(!std::all_of(op.stride.begin(), op.stride.end(), [](auto i) { return i == 1; })) if(not std::all_of(op.stride.begin(), op.stride.end(), [](auto i) { return i == 1; }))
continue; continue;
auto lens = s.lens(); auto lens = s.lens();
if(!std::equal(lens.begin() + 2, lens.end(), op.lengths.begin(), op.lengths.end())) if(not std::equal(lens.begin() + 2, lens.end(), op.lengths.begin(), op.lengths.end()))
continue; continue;
std::int64_t n = s.lens()[0]; std::int64_t n = s.lens()[0];
std::int64_t c = s.lens()[1]; std::int64_t c = s.lens()[1];
......
...@@ -214,7 +214,7 @@ void rewrite_rnn::apply_vanilla_rnn(module& m, instruction_ref ins) const ...@@ -214,7 +214,7 @@ void rewrite_rnn::apply_vanilla_rnn(module& m, instruction_ref ins) const
ih = m.add_literal(migraphx::literal{ih_shape, data}); ih = m.add_literal(migraphx::literal{ih_shape, data});
} }
if(!is_forward and variable_seq_len) if(not is_forward and variable_seq_len)
{ {
args[0] = args[0] =
m.insert_instruction(ins, make_op("rnn_var_sl_shift_sequence"), args[0], seq_lens); m.insert_instruction(ins, make_op("rnn_var_sl_shift_sequence"), args[0], seq_lens);
...@@ -520,7 +520,7 @@ void rewrite_rnn::apply_gru(module& m, instruction_ref ins) const ...@@ -520,7 +520,7 @@ void rewrite_rnn::apply_gru(module& m, instruction_ref ins) const
ih = m.add_literal(migraphx::literal{ih_shape, data}); ih = m.add_literal(migraphx::literal{ih_shape, data});
} }
if(!is_forward and variable_seq_len) if(not is_forward and variable_seq_len)
{ {
args[0] = args[0] =
m.insert_instruction(ins, make_op("rnn_var_sl_shift_sequence"), args[0], seq_lens); m.insert_instruction(ins, make_op("rnn_var_sl_shift_sequence"), args[0], seq_lens);
...@@ -977,7 +977,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const ...@@ -977,7 +977,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
pph = args[7]; pph = args[7];
} }
if(!is_forward and variable_seq_len) if(not is_forward and variable_seq_len)
{ {
args[0] = args[0] =
m.insert_instruction(ins, make_op("rnn_var_sl_shift_sequence"), args[0], seq_lens); m.insert_instruction(ins, make_op("rnn_var_sl_shift_sequence"), args[0], seq_lens);
...@@ -1294,11 +1294,11 @@ bool rewrite_rnn::is_variable_seq_lens(const module& m, instruction_ref seq_lens ...@@ -1294,11 +1294,11 @@ bool rewrite_rnn::is_variable_seq_lens(const module& m, instruction_ref seq_lens
std::vector<int64_t> vec_lens; std::vector<int64_t> vec_lens;
arg_lens.visit([&](auto l) { vec_lens.assign(l.begin(), l.end()); }); arg_lens.visit([&](auto l) { vec_lens.assign(l.begin(), l.end()); });
int64_t l = 0; int64_t l = 0;
if(!vec_lens.empty()) if(not vec_lens.empty())
{ {
l = vec_lens[0]; l = vec_lens[0];
} }
if(!std::all_of(vec_lens.begin(), vec_lens.end(), [&](auto v) { return v == l; })) if(not std::all_of(vec_lens.begin(), vec_lens.end(), [&](auto v) { return v == l; }))
{ {
is_var_lens = true; is_var_lens = true;
} }
...@@ -1318,7 +1318,7 @@ rewrite_rnn::get_seq_len(const module& m, instruction_ref input, instruction_ref ...@@ -1318,7 +1318,7 @@ rewrite_rnn::get_seq_len(const module& m, instruction_ref input, instruction_ref
bool is_var_lens = is_variable_seq_lens(m, seq_lens); bool is_var_lens = is_variable_seq_lens(m, seq_lens);
auto input_shape = input->get_shape(); auto input_shape = input->get_shape();
auto length = input_shape.lens()[0]; auto length = input_shape.lens()[0];
if(!is_var_lens and seq_lens != m.end()) if(not is_var_lens and seq_lens != m.end())
{ {
auto arg_len = seq_lens->eval(); auto arg_len = seq_lens->eval();
std::vector<std::size_t> vec_lens; std::vector<std::size_t> vec_lens;
...@@ -1387,7 +1387,7 @@ void rewrite_rnn::replace_last_cell_output(module& m, ...@@ -1387,7 +1387,7 @@ void rewrite_rnn::replace_last_cell_output(module& m,
if(variable_seq_len) if(variable_seq_len)
{ {
if(!ins_outputs.empty()) if(not ins_outputs.empty())
{ {
cell_outputs = m.insert_instruction( cell_outputs = m.insert_instruction(
std::next(ins), std::next(ins),
......
...@@ -477,7 +477,7 @@ bool operator==(const shape::dynamic_dimension& x, const shape::dynamic_dimensio ...@@ -477,7 +477,7 @@ bool operator==(const shape::dynamic_dimension& x, const shape::dynamic_dimensio
bool operator!=(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y) bool operator!=(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y)
{ {
return !(x == y); return not(x == y);
} }
std::ostream& operator<<(std::ostream& os, const shape::dynamic_dimension& x) std::ostream& operator<<(std::ostream& os, const shape::dynamic_dimension& x)
{ {
...@@ -497,7 +497,7 @@ bool operator==(const shape& x, const shape& y) ...@@ -497,7 +497,7 @@ bool operator==(const shape& x, const shape& y)
x.strides() == y.strides() and x.sub_shapes() == y.sub_shapes()); x.strides() == y.strides() and x.sub_shapes() == y.sub_shapes());
} }
bool operator!=(const shape& x, const shape& y) { return !(x == y); } bool operator!=(const shape& x, const shape& y) { return not(x == y); }
std::ostream& operator<<(std::ostream& os, const shape& x) std::ostream& operator<<(std::ostream& os, const shape& x)
{ {
......
This diff is collapsed.
This diff is collapsed.
...@@ -49,7 +49,7 @@ struct dnnl_binary : dnnl_op<dnnl_binary, dnnl::binary> ...@@ -49,7 +49,7 @@ struct dnnl_binary : dnnl_op<dnnl_binary, dnnl::binary>
auto s0 = inputs.at(0); auto s0 = inputs.at(0);
auto s1 = inputs.at(1); auto s1 = inputs.at(1);
auto r = s0; auto r = s0;
if(s0 != s1 or !s0.packed()) if(s0 != s1 or not s0.packed())
{ {
r = shape{s0.type(), s0.lens()}; r = shape{s0.type(), s0.lens()};
} }
......
...@@ -30,6 +30,7 @@ ...@@ -30,6 +30,7 @@
#include <migraphx/compile_options.hpp> #include <migraphx/compile_options.hpp>
#include <migraphx/fpga/context.hpp> #include <migraphx/fpga/context.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/supported_segments.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -41,7 +42,7 @@ struct target ...@@ -41,7 +42,7 @@ struct target
std::string name() const; std::string name() const;
std::vector<pass> get_passes(migraphx::context& ctx, const compile_options&) const; std::vector<pass> get_passes(migraphx::context& ctx, const compile_options&) const;
migraphx::context get_context() const { return context{}; } migraphx::context get_context() const { return context{}; }
float is_supported(instruction_ref ins, support_metric m); supported_segments find_supported(const_module_ref mod, support_metric m) const;
argument copy_to(const argument& arg) const { return arg; } argument copy_to(const argument& arg) const { return arg; }
argument copy_from(const argument& arg) const { return arg; } argument copy_from(const argument& arg) const { return arg; }
......
...@@ -95,7 +95,7 @@ void subgraph::apply(module_pass_manager& mpm) const ...@@ -95,7 +95,7 @@ void subgraph::apply(module_pass_manager& mpm) const
for(auto it : iterator_for(mod)) for(auto it : iterator_for(mod))
{ {
// assuming we want all the params/literals as inputs to the FPGA submodule // assuming we want all the params/literals as inputs to the FPGA submodule
if(migraphx::starts_with(it->name(), "@param") || if(migraphx::starts_with(it->name(), "@param") or
migraphx::starts_with(it->name(), "@literal")) migraphx::starts_with(it->name(), "@literal"))
{ {
literal_inputs.push_back(it); literal_inputs.push_back(it);
......
...@@ -34,6 +34,7 @@ ...@@ -34,6 +34,7 @@
#include <migraphx/dead_code_elimination.hpp> #include <migraphx/dead_code_elimination.hpp>
#include <migraphx/generate.hpp> #include <migraphx/generate.hpp>
#include <migraphx/normalize_ops.hpp> #include <migraphx/normalize_ops.hpp>
#include <migraphx/iterator_for.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -62,12 +63,17 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti ...@@ -62,12 +63,17 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
argument target::allocate(const shape& s) const { return fill_argument(s, 0); } argument target::allocate(const shape& s) const { return fill_argument(s, 0); }
float is_supported(instruction_ref ins, support_metric m) supported_segments target::find_supported(const_module_ref mod, support_metric m) const
{ {
// for now, not using the ins and metric to return a value
(void)ins;
(void)m; (void)m;
return 1.0;
supported_segment instrs;
for(const auto ins : iterator_for(*mod))
{
instrs.instructions.insert(ins);
}
instrs.metric = 1; // arbitrary value
return {instrs};
} }
MIGRAPHX_REGISTER_TARGET(target); MIGRAPHX_REGISTER_TARGET(target);
......
...@@ -51,7 +51,8 @@ code_object_op::compute(context& ctx, const shape&, const std::vector<argument>& ...@@ -51,7 +51,8 @@ code_object_op::compute(context& ctx, const shape&, const std::vector<argument>&
std::vector<void*> kargs(args.size()); std::vector<void*> kargs(args.size());
std::transform( std::transform(
args.begin(), args.end(), kargs.begin(), [](const argument& a) { return a.data(); }); args.begin(), args.end(), kargs.begin(), [](const argument& a) { return a.data(); });
k.launch(ctx.get_stream().get(), global, local, std::move(kargs)); auto [start, stop] = ctx.get_perf_events();
k.launch(ctx.get_stream().get(), global, local, std::move(kargs), start, stop);
return args[get_output_arg(args.size())]; return args[get_output_arg(args.size())];
} }
void code_object_op::finalize(context&, const shape&, const std::vector<shape>&) void code_object_op::finalize(context&, const shape&, const std::vector<shape>&)
......
This diff is collapsed.
...@@ -131,7 +131,7 @@ struct hip_array ...@@ -131,7 +131,7 @@ struct hip_array
friend MIGRAPHX_DEVICE_CONSTEXPR bool operator!=(const hip_array& x, const hip_array& y) friend MIGRAPHX_DEVICE_CONSTEXPR bool operator!=(const hip_array& x, const hip_array& y)
{ {
return !(x == y); return not(x == y);
} }
// This uses the product order rather than lexical order // This uses the product order rather than lexical order
friend MIGRAPHX_DEVICE_CONSTEXPR bool operator<(const hip_array& x, const hip_array& y) friend MIGRAPHX_DEVICE_CONSTEXPR bool operator<(const hip_array& x, const hip_array& y)
......
...@@ -117,12 +117,13 @@ template <class V, class F, class... Ts> ...@@ -117,12 +117,13 @@ template <class V, class F, class... Ts>
void hip_visit_all_impl(const shape& s, F f, V&& v, Ts&&... xs) void hip_visit_all_impl(const shape& s, F f, V&& v, Ts&&... xs)
{ {
std::initializer_list<migraphx::shape::type_t> types = {get_shape(xs).type()...}; std::initializer_list<migraphx::shape::type_t> types = {get_shape(xs).type()...};
if(!std::all_of( if(not std::all_of(
types.begin(), types.end(), [&](migraphx::shape::type_t t) { return t == s.type(); })) types.begin(), types.end(), [&](migraphx::shape::type_t t) { return t == s.type(); }))
MIGRAPHX_THROW("Types must be the same"); MIGRAPHX_THROW("Types must be the same");
std::initializer_list<index_int> ranks = { std::initializer_list<index_int> ranks = {
static_cast<index_int>(get_shape(xs).lens().size())...}; static_cast<index_int>(get_shape(xs).lens().size())...};
if(!std::all_of(ranks.begin(), ranks.end(), [&](index_int r) { return r == s.lens().size(); })) if(not std::all_of(
ranks.begin(), ranks.end(), [&](index_int r) { return r == s.lens().size(); }))
MIGRAPHX_THROW("Ranks must be the same"); MIGRAPHX_THROW("Ranks must be the same");
visit_tensor_size(s.lens().size(), [&](auto ndim) { visit_tensor_size(s.lens().size(), [&](auto ndim) {
s.visit_type(hip_visitor([&](auto as) { v(f(xs, ndim, as)...); })); s.visit_type(hip_visitor([&](auto as) { v(f(xs, ndim, as)...); }));
...@@ -134,7 +135,8 @@ void hip_visit_views_impl(const shape& s, F f, V&& v, Ts&&... xs) ...@@ -134,7 +135,8 @@ void hip_visit_views_impl(const shape& s, F f, V&& v, Ts&&... xs)
{ {
std::initializer_list<index_int> ranks = { std::initializer_list<index_int> ranks = {
static_cast<index_int>(get_shape(xs).lens().size())...}; static_cast<index_int>(get_shape(xs).lens().size())...};
if(!std::all_of(ranks.begin(), ranks.end(), [&](index_int r) { return r == s.lens().size(); })) if(not std::all_of(
ranks.begin(), ranks.end(), [&](index_int r) { return r == s.lens().size(); }))
MIGRAPHX_THROW("Ranks must be the same"); MIGRAPHX_THROW("Ranks must be the same");
visit_tensor_size(s.lens().size(), [&](auto ndim) { v(f(xs, ndim)...); }); visit_tensor_size(s.lens().size(), [&](auto ndim) { v(f(xs, ndim)...); });
} }
......
...@@ -47,7 +47,7 @@ constexpr Iterator upper_bound(Iterator first, Iterator last, const T& value) ...@@ -47,7 +47,7 @@ constexpr Iterator upper_bound(Iterator first, Iterator last, const T& value)
it = first; it = first;
step = count / 2; step = count / 2;
std::advance(it, step); std::advance(it, step);
if(!(value < *it)) if(not(value < *it))
{ {
first = ++it; first = ++it;
count -= step + 1; count -= step + 1;
......
This diff is collapsed.
...@@ -33,7 +33,8 @@ inline namespace MIGRAPHX_INLINE_NS { ...@@ -33,7 +33,8 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace gpu { namespace gpu {
namespace driver { namespace driver {
double time_op(context& ctx, operation op, const std::vector<shape>& inputs, int n = 100); std::pair<double, double>
time_op(context& ictx, operation op, const std::vector<shape>& inputs, int n = 100);
} // namespace driver } // namespace driver
} // namespace gpu } // namespace gpu
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment