Commit 5af9aac0 authored by charlie's avatar charlie
Browse files

Merge branch 'dyn_batch_pass' of github.com:ROCmSoftwarePlatform/AMDMIGraphX into dyn_test_runner

parents 7b2516e0 05e81ed3
##################################################################################### #####################################################################################
# The MIT License (MIT) # The MIT License (MIT)
# #
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. # Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
# #
# Permission is hereby granted, free of charge, to any person obtaining a copy # Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal # of this software and associated documentation files (the "Software"), to deal
...@@ -759,6 +759,22 @@ def concat_test(): ...@@ -759,6 +759,22 @@ def concat_test():
return ([node], [x, y], [z]) return ([node], [x, y], [z])
@onnx_test()
def concat_dyn_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None, 3])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None, 3])
z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None, None, 3])
node = onnx.helper.make_node(
'Concat',
inputs=['0', '1'],
axis=0,
outputs=['2'],
)
return ([node], [x, y], [z])
@onnx_test() @onnx_test()
def constant_test(): def constant_test():
x = np.array([0, 1, 2]) x = np.array([0, 1, 2])
...@@ -2053,6 +2069,40 @@ def gather_test(): ...@@ -2053,6 +2069,40 @@ def gather_test():
return ([node], [x, i], [y]) return ([node], [x, i], [y])
@onnx_test()
def gather_scalar_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
i = helper.make_tensor_value_info('indices', TensorProto.INT32, [])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
node = onnx.helper.make_node(
'Gather',
inputs=['data', 'indices'],
outputs=['y'],
axis=1,
)
return ([node], [x, i], [y])
@onnx_test()
def gather_dyn_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT,
[None, 4, 5, 6])
i = helper.make_tensor_value_info('indices', TensorProto.INT32,
[None, 3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])
node = onnx.helper.make_node(
'Gather',
inputs=['data', 'indices'],
outputs=['y'],
axis=1,
)
return ([node], [x, i], [y])
@onnx_test() @onnx_test()
def gather_elements_axis0_test(): def gather_elements_axis0_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4]) x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
...@@ -2098,6 +2148,19 @@ def gathernd_test(): ...@@ -2098,6 +2148,19 @@ def gathernd_test():
return ([node], [x, i], [y]) return ([node], [x, i], [y])
@onnx_test()
def gathernd_dyn_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])
node = onnx.helper.make_node('GatherND',
inputs=['data', 'indices'],
outputs=['y'])
return ([node], [x, i], [y])
@onnx_test() @onnx_test()
def gathernd_batch_dims_test(): def gathernd_batch_dims_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2]) x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
...@@ -2464,6 +2527,58 @@ def if_else_test(): ...@@ -2464,6 +2527,58 @@ def if_else_test():
x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3]) x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3]) y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])
then_out = onnx.helper.make_tensor_value_info('then_out',
onnx.TensorProto.FLOAT,
[2, 3])
else_out = onnx.helper.make_tensor_value_info('else_out',
onnx.TensorProto.FLOAT,
[2, 3])
xt = np.ones((2, 3)).astype(np.float)
xt_tensor = helper.make_tensor(name='xt',
data_type=TensorProto.FLOAT,
dims=xt.shape,
vals=xt.flatten().astype(np.float32))
yt = np.random.randn(2, 3).astype(np.float)
yt_tensor = helper.make_tensor(name='yt',
data_type=TensorProto.FLOAT,
dims=yt.shape,
vals=yt.flatten().astype(np.float32))
then_add_node = onnx.helper.make_node('Add',
inputs=['x', 'xt'],
outputs=['then_out'])
else_mul_node = onnx.helper.make_node('Mul',
inputs=['y', 'yt'],
outputs=['else_out'])
then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
[then_out])
else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
[else_out])
cond_tensor = onnx.helper.make_tensor_value_info("cond",
onnx.TensorProto.BOOL,
[1])
res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])
node = onnx.helper.make_node('If',
inputs=['cond'],
outputs=['res'],
then_branch=then_body,
else_branch=else_body)
return ([node], [x, y, cond_tensor], [res], [xt_tensor, yt_tensor])
@onnx_test()
def if_else_test_inlined():
x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])
then_out = onnx.helper.make_tensor_value_info('then_out', then_out = onnx.helper.make_tensor_value_info('then_out',
onnx.TensorProto.FLOAT, onnx.TensorProto.FLOAT,
[2, 3]) [2, 3])
...@@ -2513,6 +2628,149 @@ def if_else_test(): ...@@ -2513,6 +2628,149 @@ def if_else_test():
return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor]) return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])
@onnx_test()
def if_then_else_multi_output_shapes_inlined_test():
x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT,
[2, 3, 1])
y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])
then_out = onnx.helper.make_tensor_value_info('then_out',
onnx.TensorProto.FLOAT,
[2, 3, 1])
then_out2 = onnx.helper.make_tensor_value_info('then_out2',
onnx.TensorProto.FLOAT,
[2, 3, 1])
else_out = onnx.helper.make_tensor_value_info('else_out',
onnx.TensorProto.FLOAT,
[2, 3])
else_out2 = onnx.helper.make_tensor_value_info('else_out2',
onnx.TensorProto.FLOAT,
[2, 3])
xt = np.ones((2, 3, 1)).astype(np.float)
xt_tensor = helper.make_tensor(name='xt',
data_type=TensorProto.FLOAT,
dims=xt.shape,
vals=xt.flatten().astype(np.float32))
yt = np.random.randn(2, 3).astype(np.float)
yt_tensor = helper.make_tensor(name='yt',
data_type=TensorProto.FLOAT,
dims=yt.shape,
vals=yt.flatten().astype(np.float32))
then_add_node = onnx.helper.make_node('Add',
inputs=['x', 'xt'],
outputs=['then_out'])
then_add_node2 = onnx.helper.make_node('Add',
inputs=['x', 'x'],
outputs=['then_out2'])
else_mul_node = onnx.helper.make_node('Mul',
inputs=['y', 'yt'],
outputs=['else_out'])
else_sub_node = onnx.helper.make_node('Sub',
inputs=['y', 'yt'],
outputs=['else_out2'])
then_body = onnx.helper.make_graph([then_add_node, then_add_node2],
'then_body', [], [then_out, then_out2])
else_body = onnx.helper.make_graph([else_mul_node, else_sub_node],
'else_body', [], [else_out, else_out2])
cond = np.array([1]).astype(np.bool)
cond_tensor = helper.make_tensor(name="cond",
data_type=TensorProto.BOOL,
dims=cond.shape,
vals=cond.astype(bool))
res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])
res2 = onnx.helper.make_tensor_value_info('res2', TensorProto.FLOAT, [])
node = onnx.helper.make_node('If',
inputs=['cond'],
outputs=['res1', 'res2'],
then_branch=then_body,
else_branch=else_body)
return ([node], [x, y], [res1, res2], [cond_tensor, xt_tensor, yt_tensor])
@onnx_test()
def if_then_else_multi_output_shapes_test():
x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT,
[2, 3, 1])
y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT,
[2, 3, 1])
then_out = onnx.helper.make_tensor_value_info('then_out',
onnx.TensorProto.FLOAT,
[2, 3, 1])
then_out2 = onnx.helper.make_tensor_value_info('then_out2',
onnx.TensorProto.FLOAT,
[2, 3, 1])
else_out = onnx.helper.make_tensor_value_info('else_out',
onnx.TensorProto.FLOAT,
[2, 3, 1])
else_out2 = onnx.helper.make_tensor_value_info('else_out2',
onnx.TensorProto.FLOAT,
[2, 3, 1])
xt = np.ones((2, 3, 1)).astype(np.float)
xt_tensor = helper.make_tensor(name='xt',
data_type=TensorProto.FLOAT,
dims=xt.shape,
vals=xt.flatten().astype(np.float32))
yt = np.random.randn(2, 3, 1).astype(np.float)
yt_tensor = helper.make_tensor(name='yt',
data_type=TensorProto.FLOAT,
dims=yt.shape,
vals=yt.flatten().astype(np.float32))
then_add_node = onnx.helper.make_node('Add',
inputs=['x', 'xt'],
outputs=['then_out'])
then_add_node2 = onnx.helper.make_node('Add',
inputs=['x', 'x'],
outputs=['then_out2'])
else_mul_node = onnx.helper.make_node('Mul',
inputs=['y', 'yt'],
outputs=['else_out'])
else_sub_node = onnx.helper.make_node('Sub',
inputs=['y', 'yt'],
outputs=['else_out2'])
then_body = onnx.helper.make_graph([then_add_node, then_add_node2],
'then_body', [], [then_out, then_out2])
else_body = onnx.helper.make_graph([else_mul_node, else_sub_node],
'else_body', [], [else_out, else_out2])
cond_tensor = onnx.helper.make_tensor_value_info("cond",
onnx.TensorProto.BOOL,
[1])
res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])
res2 = onnx.helper.make_tensor_value_info('res2', TensorProto.FLOAT, [])
node = onnx.helper.make_node('If',
inputs=['cond'],
outputs=['res1', 'res2'],
then_branch=then_body,
else_branch=else_body)
return ([node], [x, y, cond_tensor], [res1, res2], [xt_tensor, yt_tensor])
@onnx_test() @onnx_test()
def if_literal_test(): def if_literal_test():
then_out = onnx.helper.make_tensor_value_info('then_out', then_out = onnx.helper.make_tensor_value_info('then_out',
...@@ -2773,6 +3031,59 @@ def if_then_test(): ...@@ -2773,6 +3031,59 @@ def if_then_test():
x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3]) x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3]) y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])
then_out = onnx.helper.make_tensor_value_info('then_out',
onnx.TensorProto.FLOAT,
[2, 3])
else_out = onnx.helper.make_tensor_value_info('else_out',
onnx.TensorProto.FLOAT,
[2, 3])
xt = np.ones((2, 3)).astype(np.float)
xt_tensor = helper.make_tensor(name='xt',
data_type=TensorProto.FLOAT,
dims=xt.shape,
vals=xt.flatten().astype(np.float32))
yt = np.random.randn(2, 3).astype(np.float)
yt_tensor = helper.make_tensor(name='yt',
data_type=TensorProto.FLOAT,
dims=yt.shape,
vals=yt.flatten().astype(np.float32))
then_add_node = onnx.helper.make_node('Add',
inputs=['x', 'xt'],
outputs=['then_out'])
else_mul_node = onnx.helper.make_node('Mul',
inputs=['y', 'yt'],
outputs=['else_out'])
then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
[then_out])
else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
[else_out])
cond_tensor = onnx.helper.make_tensor_value_info("cond",
onnx.TensorProto.BOOL,
[1])
res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])
node = onnx.helper.make_node('If',
inputs=['cond'],
outputs=['res'],
then_branch=then_body,
else_branch=else_body)
return ([node], [x, y, cond_tensor], [res], [xt_tensor, yt_tensor])
@onnx_test()
def if_then_test_inlined():
x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])
then_out = onnx.helper.make_tensor_value_info('then_out', then_out = onnx.helper.make_tensor_value_info('then_out',
onnx.TensorProto.FLOAT, onnx.TensorProto.FLOAT,
[2, 3]) [2, 3])
...@@ -5673,6 +5984,24 @@ def scatternd_test(): ...@@ -5673,6 +5984,24 @@ def scatternd_test():
return ([node], [data, indices, updates], [output]) return ([node], [data, indices, updates], [output])
@onnx_test()
def scatternd_dyn_test():
data = helper.make_tensor_value_info('data', TensorProto.FLOAT,
[None, 2, 2])
indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
[None, 1, 2])
updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
[None, 1, 2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
[None, 2, 2])
node = onnx.helper.make_node('ScatterND',
inputs=['data', 'indices', 'updates'],
outputs=['output'])
return ([node], [data, indices, updates], [output])
@onnx_test() @onnx_test()
def selu_test(): def selu_test():
x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3]) x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
...@@ -5855,6 +6184,132 @@ def slice_test(): ...@@ -5855,6 +6184,132 @@ def slice_test():
return ([node], [x], [y]) return ([node], [x], [y])
@onnx_test()
def slice_dyn_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None, 2])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None, 2])
node = onnx.helper.make_node('Slice',
inputs=['0'],
axes=[0],
starts=[1],
ends=[2],
outputs=['1'])
return ([node], [x], [y])
@onnx_test
def slice_step_dyn_test():
# A slice command with non - default steps will have a "Step"
# instruction added in parsing.
step = np.array([2, 1])
step_tensor = helper.make_tensor(name="step",
data_type=TensorProto.INT32,
dims=step.shape,
vals=step.astype(int))
arg_step = helper.make_node("Constant",
inputs=[],
outputs=['arg_step'],
value=step_tensor)
axis = np.array([-1, -2])
axis_tensor = helper.make_tensor(name="axis",
data_type=TensorProto.INT32,
dims=axis.shape,
vals=axis.astype(int))
arg_axis = helper.make_node("Constant",
inputs=[],
outputs=['arg_axis'],
value=axis_tensor)
end = np.array([-1, -1])
end_tensor = helper.make_tensor(name="end",
data_type=TensorProto.INT32,
dims=end.shape,
vals=end.astype(int))
arg_end = helper.make_node("Constant",
inputs=[],
outputs=['arg_end'],
value=end_tensor)
start = np.array([-5, -3])
start_tensor = helper.make_tensor(name="start",
data_type=TensorProto.INT32,
dims=start.shape,
vals=start.astype(int))
arg_start = helper.make_node("Constant",
inputs=[],
outputs=['arg_start'],
value=start_tensor)
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 2])
node = onnx.helper.make_node(
'Slice',
inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
outputs=['1'])
return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])
@onnx_test
def slice_reverse_dyn_test():
# A slice command with negative step on any axis will have
# a "Reverse" instruction added in parsing.
step = np.array([-1, 1])
step_tensor = helper.make_tensor(name="step",
data_type=TensorProto.INT32,
dims=step.shape,
vals=step.astype(int))
arg_step = helper.make_node("Constant",
inputs=[],
outputs=['arg_step'],
value=step_tensor)
axis = np.array([-1, -2])
axis_tensor = helper.make_tensor(name="axis",
data_type=TensorProto.INT32,
dims=axis.shape,
vals=axis.astype(int))
arg_axis = helper.make_node("Constant",
inputs=[],
outputs=['arg_axis'],
value=axis_tensor)
end = np.array([-1, -1])
end_tensor = helper.make_tensor(name="end",
data_type=TensorProto.INT32,
dims=end.shape,
vals=end.astype(int))
arg_end = helper.make_node("Constant",
inputs=[],
outputs=['arg_end'],
value=end_tensor)
start = np.array([-5, -3])
start_tensor = helper.make_tensor(name="start",
data_type=TensorProto.INT32,
dims=start.shape,
vals=start.astype(int))
arg_start = helper.make_node("Constant",
inputs=[],
outputs=['arg_start'],
value=start_tensor)
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 2])
node = onnx.helper.make_node(
'Slice',
inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
outputs=['1'])
return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])
@onnx_test() @onnx_test()
def slice_3arg_test(): def slice_3arg_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5]) x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
...@@ -6771,6 +7226,92 @@ def transpose_gather_test(): ...@@ -6771,6 +7226,92 @@ def transpose_gather_test():
return ([td, ti, node], [x, i], [y]) return ([td, ti, node], [x, i], [y])
@onnx_test()
def trilu_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node(
'Trilu',
inputs=['x'],
outputs=['y'],
)
return ([node], [x], [y])
@onnx_test()
def trilu_batch_diff_k_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
k = np.array([2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
k_tensor = helper.make_tensor(name='k',
data_type=TensorProto.INT64,
dims=k.shape,
vals=k.astype(np.int64))
node = onnx.helper.make_node(
'Trilu',
inputs=['x', 'k'],
outputs=['y'],
)
return ([node], [x], [y], [k_tensor])
@onnx_test()
def trilu_lower_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node('Trilu', inputs=['x'], outputs=['y'], upper=0)
return ([node], [x], [y])
@onnx_test()
def trilu_neg_k_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
k = np.array([-1])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
k_tensor = helper.make_tensor(name='k',
data_type=TensorProto.INT64,
dims=k.shape,
vals=k.astype(np.int64))
node = onnx.helper.make_node('Trilu', inputs=['x', 'k'], outputs=['y'])
return ([node], [x], [y], [k_tensor])
@onnx_test()
def trilu_out_k_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
k = np.array([5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
k_tensor = helper.make_tensor(name='k',
data_type=TensorProto.INT64,
dims=k.shape,
vals=k.astype(np.int64))
node = onnx.helper.make_node('Trilu', inputs=['x', 'k'], outputs=['y'])
return ([node], [x], [y], [k_tensor])
@onnx_test()
def trilu_row_one_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
k = np.array([1])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])
k_tensor = helper.make_tensor(name='k',
data_type=TensorProto.INT64,
dims=k.shape,
vals=k.astype(np.int64))
node = onnx.helper.make_node(
'Trilu',
inputs=['x', 'k'],
outputs=['y'],
)
return ([node], [x], [y], [k_tensor])
@onnx_test() @onnx_test()
def undefined_test(): def undefined_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5]) x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
...@@ -6889,3 +7430,32 @@ def where_test(): ...@@ -6889,3 +7430,32 @@ def where_test():
outputs=['z']) outputs=['z'])
return ([node], [c, x, y], [z]) return ([node], [c, x, y], [z])
@onnx_test()
def where_dyn_test():
c = helper.make_tensor_value_info('c', TensorProto.BOOL, [None, 2, 2])
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 2, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 2, 2])
z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [None, 2, 2])
node = onnx.helper.make_node('Where',
inputs=['c', 'x', 'y'],
outputs=['z'])
return ([node], [c, x, y], [z])
@onnx_test()
def where_mixed_test():
# mixture of static and dynamic input shapes is not supported
c = helper.make_tensor_value_info('c', TensorProto.BOOL, [None, 2, 2])
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 2, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 2, 2])
z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [None, 2, 2])
node = onnx.helper.make_node('Where',
inputs=['c', 'x', 'y'],
outputs=['z'])
return ([node], [c, x, y], [z])
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -840,6 +840,25 @@ TEST_CASE(concat_test) ...@@ -840,6 +840,25 @@ TEST_CASE(concat_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(concat_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", migraphx::shape{migraphx::shape::float_type, {{1, 4, 0}, {1, 4, 0}, {3, 3, 0}}});
auto l1 = mm->add_parameter(
"1", migraphx::shape{migraphx::shape::float_type, {{1, 4, 0}, {1, 4, 0}, {3, 3, 0}}});
auto ret = mm->add_instruction(migraphx::make_op("concat"), l0, l1);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4, 0};
auto prog = parse_onnx("concat_dyn_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(constant_test) TEST_CASE(constant_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -2048,6 +2067,46 @@ TEST_CASE(gather_test) ...@@ -2048,6 +2067,46 @@ TEST_CASE(gather_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(gather_scalar_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {3, 4, 5, 6}});
std::vector<size_t> idims{1};
auto l1 =
mm->add_parameter("indices", migraphx::shape{migraphx::shape::int32_type, idims, {0}});
int axis = 1;
mm->add_instruction(migraphx::make_op("gather", {{"axis", axis}}), l0, l1);
auto prog = optimize_onnx("gather_scalar_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(gather_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"data",
migraphx::shape{migraphx::shape::float_type, {{1, 4, 0}, {4, 4, 0}, {5, 5, 0}, {6, 6, 0}}});
auto l1 = mm->add_parameter(
"indices",
migraphx::shape{migraphx::shape::int32_type, {{1, 4, 0}, {3, 3, 0}, {4, 4, 0}, {5, 5, 0}}});
auto cont_l0 = mm->add_instruction(migraphx::make_op("contiguous"), l0);
auto cont_l1 = mm->add_instruction(migraphx::make_op("contiguous"), l1);
int axis = 1;
auto gather_op = migraphx::make_op("gather", {{"axis", axis}});
auto ret = mm->add_instruction(gather_op, cont_l0, cont_l1);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4, 0};
auto prog = parse_onnx("gather_dyn_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(gather_elements_axis0_test) TEST_CASE(gather_elements_axis0_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -2118,6 +2177,24 @@ TEST_CASE(gathernd_test) ...@@ -2118,6 +2177,24 @@ TEST_CASE(gathernd_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(gathernd_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("data",
migraphx::shape{migraphx::shape::float_type, {{2, 4, 2}, {2, 4}}});
auto l1 = mm->add_parameter("indices",
migraphx::shape{migraphx::shape::int64_type, {{1, 3}, {2, 2}}});
auto r = mm->add_instruction(migraphx::make_op("gathernd"), l0, l1);
mm->add_return({r});
migraphx::onnx_options options;
options.map_dyn_input_dims["data"] = {{2, 4, 2}, {2, 4}};
options.map_dyn_input_dims["indices"] = {{1, 3}, {2, 2}};
auto prog = migraphx::parse_onnx("gathernd_dyn_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(gathernd_batch_dims_test) TEST_CASE(gathernd_batch_dims_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -2632,14 +2709,16 @@ TEST_CASE(if_else_test) ...@@ -2632,14 +2709,16 @@ TEST_CASE(if_else_test)
migraphx::program p; migraphx::program p;
auto* mm = p.get_main_module(); auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}}; migraphx::shape sc{migraphx::shape::bool_type, {1}};
auto cond = mm->add_literal(migraphx::literal(sc, {0}));
migraphx::shape s{migraphx::shape::float_type, {2, 3}}; migraphx::shape s{migraphx::shape::float_type, {2, 3}};
std::vector<float> ones(s.elements(), 1.0f); std::vector<float> ones(s.elements(), 1.0f);
auto l1 = mm->add_literal(s, ones); std::vector<float> rand = {1.3865, -0.494756, -0.283504, 0.200491, -0.490031, 1.32388};
std::vector<float> rand = {-0.583375, 0.633757, 0.0668345, -0.479422, -0.604634, 0.0388589};
auto l2 = mm->add_literal(s, rand); auto l1 = mm->add_literal(s, ones);
auto x = mm->add_parameter("x", s); auto l2 = mm->add_literal(s, rand);
auto y = mm->add_parameter("y", s); auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
auto cond = mm->add_parameter("cond", sc);
auto* then_mod = p.create_module("If_5_if"); auto* then_mod = p.create_module("If_5_if");
auto rt = then_mod->add_instruction(migraphx::make_op("add"), x, l1); auto rt = then_mod->add_instruction(migraphx::make_op("add"), x, l1);
...@@ -2653,15 +2732,32 @@ TEST_CASE(if_else_test) ...@@ -2653,15 +2732,32 @@ TEST_CASE(if_else_test)
auto r = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), ret); auto r = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), ret);
mm->add_return({r}); mm->add_return({r});
std::ifstream ifs("if_else_test.onnx", std::ios::binary); auto prog = migraphx::parse_onnx("if_else_test.onnx");
ifs.seekg(0, std::ios::end); EXPECT(p == prog);
auto length = ifs.tellg(); }
ifs.seekg(0, std::ios::beg);
std::vector<char> onnx_buffer(length);
ifs.read(onnx_buffer.data(), length);
ifs.close();
auto prog = migraphx::parse_onnx_buffer(onnx_buffer.data(), length, {}); TEST_CASE(if_else_test_inlined)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}};
mm->add_literal(migraphx::literal(sc, {0}));
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
std::vector<float> ones(s.elements(), 1.0f);
mm->add_literal(s, ones);
std::vector<float> rand = {0.811412, -0.949771, -0.169276, 0.36552, -0.14801, 2.07061};
auto l2 = mm->add_literal(s, rand);
mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
auto re = mm->add_instruction(migraphx::make_op("mul"), y, l2);
mm->add_return({re});
auto prog = migraphx::parse_onnx("if_else_test_inlined.onnx");
EXPECT(p == prog); EXPECT(p == prog);
} }
...@@ -2734,6 +2830,70 @@ TEST_CASE(if_param_test) ...@@ -2734,6 +2830,70 @@ TEST_CASE(if_param_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(if_then_else_multi_output_shapes_inlined_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}};
mm->add_literal(migraphx::literal(sc, {1}));
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
migraphx::shape s_trail{migraphx::shape::float_type, {2, 3, 1}};
std::vector<float> ones(s.elements(), 1.0f);
auto l1 = mm->add_literal(s_trail, ones);
std::vector<float> rand = {-1.01837, -0.305541, -0.254105, 0.892955, 1.38714, -0.584205};
mm->add_literal(s, rand);
auto x = mm->add_parameter("x", s_trail);
mm->add_parameter("y", s);
auto rt = mm->add_instruction(migraphx::make_op("add"), x, l1);
auto rt2 = mm->add_instruction(migraphx::make_op("add"), x, x);
mm->add_return({rt, rt2});
auto prog = migraphx::parse_onnx("if_then_else_multi_output_shapes_inlined_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(if_then_else_multi_output_shapes_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}};
migraphx::shape s{migraphx::shape::float_type, {2, 3, 1}};
migraphx::shape s_trail{migraphx::shape::float_type, {2, 3, 1}};
std::vector<float> ones(s.elements(), 1.0f);
auto l1 = mm->add_literal(s_trail, ones);
std::vector<float> rand = {-0.753997, 0.707831, -0.865795, 2.49574, 0.464937, -0.168745};
auto l2 = mm->add_literal(s, rand);
auto x = mm->add_parameter("x", s_trail);
auto y = mm->add_parameter("y", s);
auto cond = mm->add_parameter("cond", sc);
auto* then_mod = p.create_module("If_5_if");
auto rt = then_mod->add_instruction(migraphx::make_op("add"), x, l1);
auto rt2 = then_mod->add_instruction(migraphx::make_op("add"), x, x);
then_mod->add_return({rt, rt2});
auto* else_mod = p.create_module("If_5_else");
auto re = else_mod->add_instruction(migraphx::make_op("mul"), y, l2);
auto re2 = else_mod->add_instruction(migraphx::make_op("sub"), y, l2);
else_mod->add_return({re, re2});
auto ret = mm->add_instruction(migraphx::make_op("if"), {cond}, {then_mod, else_mod});
auto r1 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), ret);
auto r2 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), ret);
mm->add_return({r1, r2});
auto prog = migraphx::parse_onnx("if_then_else_multi_output_shapes_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(if_pl_test) TEST_CASE(if_pl_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -2774,14 +2934,16 @@ TEST_CASE(if_then_test) ...@@ -2774,14 +2934,16 @@ TEST_CASE(if_then_test)
migraphx::program p; migraphx::program p;
auto* mm = p.get_main_module(); auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}}; migraphx::shape sc{migraphx::shape::bool_type, {1}};
auto cond = mm->add_literal(migraphx::literal(sc, {1}));
migraphx::shape s{migraphx::shape::float_type, {2, 3}}; migraphx::shape s{migraphx::shape::float_type, {2, 3}};
std::vector<float> ones(s.elements(), 1.0f); std::vector<float> ones(s.elements(), 1.0f);
auto l1 = mm->add_literal(s, ones); std::vector<float> rand = {-0.266913, -0.180328, -0.124268, -1.23768, 0.312334, 1.18475};
std::vector<float> rand = {-1.26487, -2.42279, 0.990835, 1.63072, 0.812238, -0.174946};
auto l2 = mm->add_literal(s, rand); auto l1 = mm->add_literal(s, ones);
auto x = mm->add_parameter("x", s); auto l2 = mm->add_literal(s, rand);
auto y = mm->add_parameter("y", s); auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
auto cond = mm->add_parameter("cond", sc);
auto* then_mod = p.create_module("If_5_if"); auto* then_mod = p.create_module("If_5_if");
auto rt = then_mod->add_instruction(migraphx::make_op("add"), x, l1); auto rt = then_mod->add_instruction(migraphx::make_op("add"), x, l1);
...@@ -2799,6 +2961,32 @@ TEST_CASE(if_then_test) ...@@ -2799,6 +2961,32 @@ TEST_CASE(if_then_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(if_then_test_inlined)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sc{migraphx::shape::bool_type, {1}};
mm->add_literal(migraphx::literal(sc, {1}));
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
std::vector<float> ones(s.elements(), 1.0f);
auto l1 = mm->add_literal(s, ones);
std::vector<float> rand = {-1.26487, -2.42279, 0.990835, 1.63072, 0.812238, -0.174946};
mm->add_literal(s, rand);
auto x = mm->add_parameter("x", s);
mm->add_parameter("y", s);
auto rt = mm->add_instruction(migraphx::make_op("add"), x, l1);
mm->add_return({rt});
auto prog = migraphx::parse_onnx("if_then_test_inlined.onnx");
EXPECT(p == prog);
}
TEST_CASE(if_tuple_test) TEST_CASE(if_tuple_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -5599,53 +5787,67 @@ TEST_CASE(scatter_none_test) ...@@ -5599,53 +5787,67 @@ TEST_CASE(scatter_none_test)
TEST_CASE(scatternd_test) TEST_CASE(scatternd_test)
{ {
{ migraphx::program p;
migraphx::program p; auto* mm = p.get_main_module();
auto* mm = p.get_main_module(); auto l0 = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}});
auto l0 = auto l1 = mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}});
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}}); auto l2 = mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}});
auto l1 = auto r = mm->add_instruction(migraphx::make_op("scatternd_none"), l0, l1, l2);
mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}}); mm->add_return({r});
auto l2 = auto prog = migraphx::parse_onnx("scatternd_test.onnx");
mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}});
auto r = mm->add_instruction(migraphx::make_op("scatternd_none"), l0, l1, l2);
mm->add_return({r});
auto prog = migraphx::parse_onnx("scatternd_test.onnx");
EXPECT(p == prog); EXPECT(p == prog);
} }
{ TEST_CASE(scatternd_dyn_test)
migraphx::program p; {
auto* mm = p.get_main_module(); // dynamic input.
auto l0 = migraphx::program p;
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}}); auto* mm = p.get_main_module();
auto l1 = // parameters with dynamic dimensions
mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}}); auto l0 = mm->add_parameter(
auto l2 = "data", migraphx::shape{migraphx::shape::float_type, {{1, 3, 2}, {2, 2}, {2, 2}}});
mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}}); auto l1 = mm->add_parameter(
auto r = mm->add_instruction(migraphx::make_op("scatternd_add"), l0, l1, l2); "indices", migraphx::shape{migraphx::shape::int64_type, {{2, 1, 2}, {1, 1}, {2, 2}}});
mm->add_return({r}); auto l2 = mm->add_parameter(
auto prog = migraphx::parse_onnx("scatternd_add_test.onnx"); "updates", migraphx::shape{migraphx::shape::float_type, {{2, 1, 2}, {1, 1}, {2, 2}}});
auto r = mm->add_instruction(migraphx::make_op("scatternd_none"), l0, l1, l2);
mm->add_return({r});
migraphx::onnx_options options;
options.map_dyn_input_dims["data"] = {{1, 3, 2}, {2, 2}, {2, 2}};
options.map_dyn_input_dims["indices"] = {{2, 1, 2}, {1, 1}, {2, 2}};
options.map_dyn_input_dims["updates"] = {{2, 1, 2}, {1, 1}, {2, 2}};
auto prog = migraphx::parse_onnx("scatternd_dyn_test.onnx", options);
EXPECT(p == prog); EXPECT(p == prog);
} }
{ TEST_CASE(scatternd_add_test)
migraphx::program p; {
auto* mm = p.get_main_module(); migraphx::program p;
auto l0 = auto* mm = p.get_main_module();
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}}); auto l0 = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}});
auto l1 = auto l1 = mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}});
mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}}); auto l2 = mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}});
auto l2 = auto r = mm->add_instruction(migraphx::make_op("scatternd_add"), l0, l1, l2);
mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}}); mm->add_return({r});
auto r = mm->add_instruction(migraphx::make_op("scatternd_mul"), l0, l1, l2); auto prog = migraphx::parse_onnx("scatternd_add_test.onnx");
mm->add_return({r});
auto prog = migraphx::parse_onnx("scatternd_mul_test.onnx");
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(scatternd_mul_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}});
auto l1 = mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}});
auto l2 = mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}});
auto r = mm->add_instruction(migraphx::make_op("scatternd_mul"), l0, l1, l2);
mm->add_return({r});
auto prog = migraphx::parse_onnx("scatternd_mul_test.onnx");
EXPECT(p == prog);
} }
TEST_CASE(selu_test) TEST_CASE(selu_test)
...@@ -5808,6 +6010,44 @@ TEST_CASE(slice_test) ...@@ -5808,6 +6010,44 @@ TEST_CASE(slice_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(slice_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", migraphx::shape{migraphx::shape::float_type, {{3, 3, 0}, {1, 3, 0}, {2, 2, 0}}});
auto ret = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {1}}, {"ends", {2}}}), l0);
mm->add_return({ret});
migraphx::onnx_options options;
// Parser converts the dynamic input shape to static unless there is at least one non-fixed
// dynamic dimension. Slicing is not allowed along the non-fixed axis 1.
options.map_dyn_input_dims["0"] = {{3, 3, 0}, {1, 3, 0}, {2, 2, 0}};
auto prog = migraphx::parse_onnx("slice_dyn_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(slice_step_dyn_test)
{
// A slice command with non-default steps will have a "Step" instruction added in parsing.
// At the time of writing, Step doesn't support dynamic shape input.
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4, 0};
EXPECT(test::throws([&] { migraphx::parse_onnx("slice_step_dyn_test.onnx", options); }));
}
TEST_CASE(slice_reverse_dyn_test)
{
// A slice command with negative step on any axis will have a "Reverse" instruction added in
// parsing. At the time of writing, Reverse doesn't support dynamic shape input.
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4, 0};
EXPECT(test::throws([&] { migraphx::parse_onnx("slice_reverse_dyn_test.onnx", options); }));
}
TEST_CASE(slice_3arg_test) TEST_CASE(slice_3arg_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -6552,6 +6792,11 @@ TEST_CASE(transpose_gather_test) ...@@ -6552,6 +6792,11 @@ TEST_CASE(transpose_gather_test)
EXPECT(p.sort() == prog.sort()); EXPECT(p.sort() == prog.sort());
} }
TEST_CASE(trilu_neg_k_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("trilu_neg_k_test.onnx"); }));
}
TEST_CASE(undefined_test) TEST_CASE(undefined_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -6760,4 +7005,35 @@ TEST_CASE(where_test) ...@@ -6760,4 +7005,35 @@ TEST_CASE(where_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(where_dyn_test)
{
// TODO: broadcasting for dynamic shapes isn't implemented at time of writing.
// Update this test case to use shapes that require broadcasting, when available.
migraphx::program p;
auto* mm = p.get_main_module();
auto lc = mm->add_parameter(
"c", migraphx::shape{migraphx::shape::bool_type, {{1, 4, 0}, {2, 2, 0}, {2, 2, 0}}});
auto lx = mm->add_parameter(
"x", migraphx::shape{migraphx::shape::float_type, {{1, 4, 0}, {2, 2, 0}, {2, 2, 0}}});
auto ly = mm->add_parameter(
"y", migraphx::shape{migraphx::shape::float_type, {{1, 4, 0}, {2, 2, 0}, {2, 2, 0}}});
auto r = mm->add_instruction(migraphx::make_op("where"), lc, lx, ly);
mm->add_return({r});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4, 0};
auto prog = parse_onnx("where_dyn_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(where_mixed_test)
{
// mixture of static and dynamic input shapes is not supported
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4, 0};
EXPECT(test::throws([&] { migraphx::parse_onnx("where_mixed_test.onnx", options); }));
}
int main(int argc, const char* argv[]) { test::run(argc, argv); } int main(int argc, const char* argv[]) { test::run(argc, argv); }
trilu_batch_diff_k_test:i

x
ky"Trilutrilu_batch_diff_k_test*
:BkZ
x



b
y



B
\ No newline at end of file
trilu_neg_k_test:c

x
ky"Trilutrilu_neg_k_test*:
BkZ
x


b
y


B
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment