Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
5a1af3d1
Commit
5a1af3d1
authored
May 31, 2022
by
Paul
Browse files
Merge
parents
dfc7bbac
6e94e607
Changes
49
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
181 additions
and
30 deletions
+181
-30
src/targets/gpu/pack_int8_args.cpp
src/targets/gpu/pack_int8_args.cpp
+2
-2
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+14
-0
test/onnx/mean_integral_test.onnx
test/onnx/mean_integral_test.onnx
+67
-0
test/onnx/onnx_test.cpp
test/onnx/onnx_test.cpp
+24
-1
test/onnx/verify_onnx.cpp
test/onnx/verify_onnx.cpp
+27
-0
test/reduce_dims.cpp
test/reduce_dims.cpp
+23
-0
test/ref_rnn_ops_test.cpp
test/ref_rnn_ops_test.cpp
+23
-25
test/verify/run_verify.cpp
test/verify/run_verify.cpp
+1
-1
test/verify/test_conv_bias_clipped_relu.cpp
test/verify/test_conv_bias_clipped_relu.cpp
+0
-1
No files found.
src/targets/gpu/pack_int8_args.cpp
View file @
5a1af3d1
...
...
@@ -22,10 +22,10 @@ static instruction_ref pad_ins(module& m, instruction_ref ins, int offset)
auto
pad_k
=
(
k
+
3
)
/
4
*
4
;
auto
pad_lens
=
lens
;
pad_lens
[
lens
.
size
()
+
offset
]
=
pad_k
;
std
::
vector
<
int64_t
>
pad_dims
(
lens
.
size
()
*
2
,
0
);
auto
ret_ins
=
ins
;
auto
ret_ins
=
ins
;
if
(
pad_k
!=
k
)
{
std
::
vector
<
int64_t
>
pad_dims
(
lens
.
size
()
*
2
,
0
);
pad_dims
[
lens
.
size
()
+
offset
]
=
pad_k
-
k
;
shape
ps
{
s
.
type
(),
pad_lens
};
auto
ins_out
=
...
...
test/onnx/gen_onnx.py
View file @
5a1af3d1
...
...
@@ -3178,6 +3178,20 @@ def mean_test():
return
([
node
],
data
,
[
mean
])
@
onnx_test
def
mean_integral_test
():
data
=
[
helper
.
make_tensor_value_info
(
str
(
i
),
TensorProto
.
INT32
,
[
2
,
2
,
2
])
for
i
in
range
(
10
)
]
data_names
=
[
str
(
i
)
for
i
in
range
(
10
)]
mean
=
helper
.
make_tensor_value_info
(
'mean'
,
TensorProto
.
INT32
,
[
2
,
2
,
2
])
node
=
onnx
.
helper
.
make_node
(
"Mean"
,
inputs
=
data_names
,
outputs
=
[
"mean"
])
return
([
node
],
data
,
[
mean
])
@
onnx_test
def
min_test
():
a
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
3
])
...
...
test/onnx/mean_integral_test.onnx
0 → 100644
View file @
5a1af3d1
mean_integral_test:Ö
*
0
1
2
3
4
5
6
7
8
9mean"Meanmean_integral_testZ
0
Z
1
Z
2
Z
3
Z
4
Z
5
Z
6
Z
7
Z
8
Z
9
b
mean
B
\ No newline at end of file
test/onnx/onnx_test.cpp
View file @
5a1af3d1
...
...
@@ -2890,6 +2890,30 @@ TEST_CASE(mean_test)
EXPECT
(
p
==
prog
);
}
TEST_CASE
(
mean_integral_test
)
{
const
std
::
size_t
num_data
=
10
;
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
int32_type
,
{
2
,
2
,
2
}};
auto
mean
=
mm
->
add_parameter
(
"0"
,
s
);
for
(
std
::
size_t
i
=
1
;
i
<
num_data
;
++
i
)
{
auto
data
=
mm
->
add_parameter
(
std
::
to_string
(
i
),
s
);
mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
mean
,
data
);
}
auto
div_lit
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
s
.
type
()},
{
num_data
}});
auto
divisor
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
s
.
lens
()}}),
div_lit
);
mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"div"
),
mean
,
divisor
);
auto
prog
=
optimize_onnx
(
"mean_integral_test.onnx"
);
EXPECT
(
p
==
prog
);
}
TEST_CASE
(
min_test
)
{
migraphx
::
program
p
;
...
...
@@ -3807,7 +3831,6 @@ TEST_CASE(reshape_non_standard_test)
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
op
::
reshape
op
;
std
::
vector
<
int64_t
>
reshape_dims
{
4
,
3
,
2
};
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
2
,
3
,
4
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
tran_x
=
...
...
test/onnx/verify_onnx.cpp
View file @
5a1af3d1
...
...
@@ -581,6 +581,33 @@ TEST_CASE(mean_test)
EXPECT
(
migraphx
::
verify_range
(
result_vector
,
gold
));
}
TEST_CASE
(
mean_integral_test
)
{
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"mean_integral_test.onnx"
);
p
.
compile
(
migraphx
::
ref
::
target
{});
migraphx
::
shape
s
{
migraphx
::
shape
::
int32_type
,
{
2
,
2
,
2
}};
const
int
num_elms
=
8
;
const
int
num_data
=
10
;
const
std
::
vector
<
int
>
scalars
{
1
,
5
,
14
,
2
,
6
,
21
,
101
,
0
,
-
4
,
-
11
};
std
::
vector
<
std
::
vector
<
int
>>
data
;
std
::
transform
(
scalars
.
begin
(),
scalars
.
end
(),
std
::
back_inserter
(
data
),
[
&
](
const
auto
i
)
{
return
std
::
vector
<
int
>
(
num_elms
,
i
);
});
migraphx
::
parameter_map
pp
;
for
(
std
::
size_t
i
=
0
;
i
<
num_data
;
++
i
)
pp
[
std
::
to_string
(
i
)]
=
migraphx
::
argument
(
s
,
data
[
i
].
data
());
auto
result
=
p
.
eval
(
pp
).
back
();
std
::
vector
<
double
>
result_vector
;
result
.
visit
([
&
](
auto
output
)
{
result_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
const
auto
mean
=
std
::
accumulate
(
scalars
.
begin
(),
scalars
.
end
(),
0
)
/
num_data
;
std
::
vector
<
int
>
gold
(
num_elms
,
mean
);
EXPECT
(
migraphx
::
verify_range
(
result_vector
,
gold
));
}
TEST_CASE
(
nonzero_test
)
{
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"nonzero_dynamic_test.onnx"
);
...
...
test/reduce_dims.cpp
View file @
5a1af3d1
...
...
@@ -109,6 +109,29 @@ TEST_CASE(transposed1)
EXPECT
(
eshapes
==
rshapes
);
}
TEST_CASE
(
non_packed_empty1
)
{
std
::
vector
<
migraphx
::
shape
>
ishapes
=
{
make_shape
({
1
,
12
},
{
589824
,
64
})};
std
::
vector
<
migraphx
::
shape
>
eshapes
=
{
make_shape
({
12
},
{
64
})};
auto
rshapes
=
migraphx
::
reduce_dims
(
ishapes
);
EXPECT
(
eshapes
==
rshapes
);
}
TEST_CASE
(
non_packed_empty2
)
{
std
::
vector
<
migraphx
::
shape
>
ishapes
=
{
make_shape
({
12
,
1
},
{
64
,
589824
})};
std
::
vector
<
migraphx
::
shape
>
eshapes
=
{
make_shape
({
12
},
{
64
})};
auto
rshapes
=
migraphx
::
reduce_dims
(
ishapes
);
EXPECT
(
eshapes
==
rshapes
);
}
TEST_CASE
(
single_dim
)
{
std
::
vector
<
migraphx
::
shape
>
ishapes
=
{
make_shape
({
1
},
{
1
})};
auto
rshapes
=
migraphx
::
reduce_dims
(
ishapes
);
EXPECT
(
ishapes
==
rshapes
);
}
TEST_CASE
(
empty
)
{
auto
rshapes
=
migraphx
::
reduce_dims
({});
...
...
test/ref_rnn_ops_test.cpp
100755 → 100644
View file @
5a1af3d1
...
...
@@ -1173,12 +1173,6 @@ TEST_CASE(gru_forward_args)
0.3852
,
-
0.1170
,
-
0.2937
,
0.2979
,
-
0.1357
,
0.4257
,
0.3884
,
-
0.2916
,
0.1071
,
0.0934
,
0.3645
,
-
0.4310
,
-
0.3480
,
0.0702
,
-
0.1558
};
migraphx
::
shape
b_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
6
*
hidden_size
}};
std
::
vector
<
float
>
bias_data
{
0.0560
,
0.0310
,
-
0.1669
,
-
0.0781
,
0.1793
,
-
0.1758
,
0.3173
,
-
0.1650
,
-
0.3732
,
0.2946
,
-
0.0912
,
0.3118
,
0.1391
,
0.2755
,
0.2695
,
-
0.1059
,
-
0.2357
,
0.3629
,
-
0.2534
,
-
0.0494
,
0.0556
,
0.0881
,
-
0.2592
,
-
0.2213
,
0.2310
,
-
0.4044
,
0.1801
,
0.1438
,
0.3108
,
-
0.3607
};
migraphx
::
shape
in_shape
{
migraphx
::
shape
::
float_type
,
{
seq_len
,
batch_size
,
input_size
}};
std
::
vector
<
float
>
input
{
-
0.8432
,
-
0.9887
,
...
...
@@ -1199,9 +1193,6 @@ TEST_CASE(gru_forward_args)
-
1.0536
,
-
0.2529
};
migraphx
::
shape
ih_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
batch_size
,
hidden_size
}};
std
::
vector
<
float
>
ih_data
{
-
0.0468
,
0.5691
,
-
0.0882
,
0.8340
,
0.1483
,
-
0.3902
,
-
0.5348
,
0.4178
,
1.0175
,
0.9212
};
float
clip
=
0.0
f
;
// 3 args
...
...
@@ -1242,6 +1233,11 @@ TEST_CASE(gru_forward_args)
// 4 args (bias is used)
{
std
::
vector
<
float
>
bias_data
{
0.0560
,
0.0310
,
-
0.1669
,
-
0.0781
,
0.1793
,
-
0.1758
,
0.3173
,
-
0.1650
,
-
0.3732
,
0.2946
,
-
0.0912
,
0.3118
,
0.1391
,
0.2755
,
0.2695
,
-
0.1059
,
-
0.2357
,
0.3629
,
-
0.2534
,
-
0.0494
,
0.0556
,
0.0881
,
-
0.2592
,
-
0.2213
,
0.2310
,
-
0.4044
,
0.1801
,
0.1438
,
0.3108
,
-
0.3607
};
migraphx
::
shape
b_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
6
*
hidden_size
}};
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
seq
=
mm
->
add_literal
(
migraphx
::
literal
{
in_shape
,
input
});
...
...
@@ -1280,6 +1276,9 @@ TEST_CASE(gru_forward_args)
// 4 args (ih is used)
{
std
::
vector
<
float
>
ih_data
{
-
0.0468
,
0.5691
,
-
0.0882
,
0.8340
,
0.1483
,
-
0.3902
,
-
0.5348
,
0.4178
,
1.0175
,
0.9212
};
migraphx
::
shape
ih_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
batch_size
,
hidden_size
}};
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
seq
=
mm
->
add_literal
(
migraphx
::
literal
{
in_shape
,
input
});
...
...
@@ -2210,15 +2209,6 @@ TEST_CASE(gru_bidirectional_args)
0.4101
,
0.2641
,
-
0.4110
,
-
0.1681
,
0.3582
,
-
0.2089
,
0.0852
,
0.0963
,
0.3866
,
0.1955
,
-
0.2174
,
0.1996
,
-
0.2252
,
0.1748
,
0.1833
,
-
0.3155
,
0.2567
,
-
0.4387
,
0.3402
,
0.0599
};
migraphx
::
shape
b_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
6
*
hidden_size
}};
std
::
vector
<
float
>
bias_data
{
-
0.1582
,
-
0.0826
,
0.4008
,
0.0118
,
0.2511
,
0.1900
,
-
0.2838
,
0.2549
,
-
0.2484
,
0.2363
,
-
0.4083
,
-
0.0295
,
-
0.1161
,
0.1211
,
0.2509
,
-
0.1414
,
-
0.2628
,
-
0.2992
,
0.1517
,
0.1817
,
-
0.2783
,
0.3183
,
-
0.1629
,
-
0.3108
,
-
0.3418
,
0.0411
,
0.2203
,
0.2187
,
-
0.2990
,
-
0.0416
,
0.0209
,
-
0.1024
,
0.4443
,
-
0.4420
,
-
0.0330
,
-
0.3591
,
-
0.2990
,
0.2167
,
0.1395
,
0.2317
,
0.1318
,
0.1909
,
-
0.3615
,
0.1953
,
-
0.2582
,
-
0.2217
,
0.3723
,
0.1458
,
0.2630
,
-
0.0377
,
0.1754
,
0.0800
,
-
0.3964
,
-
0.3247
,
0.4219
,
-
0.0900
,
0.3553
,
0.2614
,
-
0.1298
,
-
0.1124
};
migraphx
::
shape
in_shape
{
migraphx
::
shape
::
float_type
,
{
seq_len
,
batch_size
,
input_size
}};
std
::
vector
<
float
>
input
{
-
0.8432
,
-
0.9887
,
...
...
@@ -2239,11 +2229,6 @@ TEST_CASE(gru_bidirectional_args)
-
1.0536
,
-
0.2529
};
migraphx
::
shape
ih_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
batch_size
,
hidden_size
}};
std
::
vector
<
float
>
ih_data
{
-
0.0468
,
0.5691
,
-
0.0882
,
0.8340
,
0.1483
,
-
0.3902
,
-
0.5348
,
0.4178
,
1.0175
,
0.9212
,
-
0.0468
,
0.5691
,
-
0.0882
,
0.8340
,
0.1483
,
-
0.3902
,
-
0.5348
,
0.4178
,
1.0175
,
0.9212
};
float
clip
=
0.0
f
;
// 3 args
...
...
@@ -2288,6 +2273,15 @@ TEST_CASE(gru_bidirectional_args)
// 4 args (bias is used)
{
std
::
vector
<
float
>
bias_data
{
-
0.1582
,
-
0.0826
,
0.4008
,
0.0118
,
0.2511
,
0.1900
,
-
0.2838
,
0.2549
,
-
0.2484
,
0.2363
,
-
0.4083
,
-
0.0295
,
-
0.1161
,
0.1211
,
0.2509
,
-
0.1414
,
-
0.2628
,
-
0.2992
,
0.1517
,
0.1817
,
-
0.2783
,
0.3183
,
-
0.1629
,
-
0.3108
,
-
0.3418
,
0.0411
,
0.2203
,
0.2187
,
-
0.2990
,
-
0.0416
,
0.0209
,
-
0.1024
,
0.4443
,
-
0.4420
,
-
0.0330
,
-
0.3591
,
-
0.2990
,
0.2167
,
0.1395
,
0.2317
,
0.1318
,
0.1909
,
-
0.3615
,
0.1953
,
-
0.2582
,
-
0.2217
,
0.3723
,
0.1458
,
0.2630
,
-
0.0377
,
0.1754
,
0.0800
,
-
0.3964
,
-
0.3247
,
0.4219
,
-
0.0900
,
0.3553
,
0.2614
,
-
0.1298
,
-
0.1124
};
migraphx
::
shape
b_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
6
*
hidden_size
}};
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
seq
=
mm
->
add_literal
(
migraphx
::
literal
{
in_shape
,
input
});
...
...
@@ -2330,6 +2324,10 @@ TEST_CASE(gru_bidirectional_args)
// 4 args (ih is used)
{
std
::
vector
<
float
>
ih_data
{
-
0.0468
,
0.5691
,
-
0.0882
,
0.8340
,
0.1483
,
-
0.3902
,
-
0.5348
,
0.4178
,
1.0175
,
0.9212
,
-
0.0468
,
0.5691
,
-
0.0882
,
0.8340
,
0.1483
,
-
0.3902
,
-
0.5348
,
0.4178
,
1.0175
,
0.9212
};
migraphx
::
shape
ih_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
batch_size
,
hidden_size
}};
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
seq
=
mm
->
add_literal
(
migraphx
::
literal
{
in_shape
,
input
});
...
...
@@ -4186,7 +4184,6 @@ TEST_CASE(lstm_bidirectional_var_seq_lens)
-
0.83699064
,
0.49162736
,
-
0.8271
,
-
0.5683
,
0.4562
,
-
1.2545
,
1.2729
,
-
0.4082
,
-
0.4392
,
-
0.9406
,
0.7794
,
1.8194
,
-
0.5811
,
0.2166
};
std
::
vector
<
int
>
sl_data
{
1
,
2
,
3
};
float
clip
=
0.0
f
;
migraphx
::
shape
in_shape
{
migraphx
::
shape
::
float_type
,
{
seq_len
,
batch_size
,
input_size
}};
...
...
@@ -4196,10 +4193,11 @@ TEST_CASE(lstm_bidirectional_var_seq_lens)
migraphx
::
shape
ih_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
batch_size
,
hidden_size
}};
migraphx
::
shape
ic_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
batch_size
,
hidden_size
}};
migraphx
::
shape
pph_shape
{
migraphx
::
shape
::
float_type
,
{
num_dirct
,
3
*
hidden_size
}};
migraphx
::
shape
sl_shape
{
migraphx
::
shape
::
int32_type
,
{
batch_size
}};
// concatenation of hidden states as program output
{
std
::
vector
<
int
>
sl_data
{
1
,
2
,
3
};
migraphx
::
shape
sl_shape
{
migraphx
::
shape
::
int32_type
,
{
batch_size
}};
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
seq
=
mm
->
add_literal
(
migraphx
::
literal
{
in_shape
,
input_data
});
...
...
test/verify/run_verify.cpp
View file @
5a1af3d1
...
...
@@ -129,7 +129,6 @@ void run_verify::verify(const std::string& name, const migraphx::program& p) con
auto_print
::
set_terminate_handler
(
name
);
if
(
migraphx
::
enabled
(
MIGRAPHX_DUMP_TEST
{}))
migraphx
::
save
(
p
,
name
+
".mxr"
);
std
::
vector
<
std
::
pair
<
std
::
string
,
result_future
>>
results
;
std
::
vector
<
std
::
string
>
target_names
;
for
(
const
auto
&
tname
:
migraphx
::
get_targets
())
{
...
...
@@ -145,6 +144,7 @@ void run_verify::verify(const std::string& name, const migraphx::program& p) con
}
if
(
not
target_names
.
empty
())
{
std
::
vector
<
std
::
pair
<
std
::
string
,
result_future
>>
results
;
migraphx
::
parameter_map
m
;
for
(
auto
&&
x
:
p
.
get_parameter_shapes
())
{
...
...
test/verify/test_conv_bias_clipped_relu.cpp
View file @
5a1af3d1
...
...
@@ -12,7 +12,6 @@ struct test_conv_bias_clipped_relu : verify_program<test_conv_bias_clipped_relu>
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
std
::
vector
<
size_t
>
input_lens
{
4
,
3
,
3
,
3
};
auto
input
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
4
,
3
,
3
,
3
}});
auto
weights
=
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment