Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
51597ed7
Commit
51597ed7
authored
Jul 08, 2019
by
Khalique
Browse files
fix tests and tf parser
parents
7bacd3ba
bc80dee8
Changes
55
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
848 additions
and
174 deletions
+848
-174
src/driver/main.cpp
src/driver/main.cpp
+24
-0
src/include/migraphx/functional.hpp
src/include/migraphx/functional.hpp
+17
-0
src/include/migraphx/matcher.hpp
src/include/migraphx/matcher.hpp
+171
-45
src/include/migraphx/op/argmax.hpp
src/include/migraphx/op/argmax.hpp
+81
-0
src/include/migraphx/op/argmin.hpp
src/include/migraphx/op/argmin.hpp
+81
-0
src/include/migraphx/op/logsoftmax.hpp
src/include/migraphx/op/logsoftmax.hpp
+0
-7
src/include/migraphx/op/multibroadcast.hpp
src/include/migraphx/op/multibroadcast.hpp
+17
-3
src/include/migraphx/op/softmax.hpp
src/include/migraphx/op/softmax.hpp
+0
-7
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+2
-0
src/include/migraphx/shape.hpp
src/include/migraphx/shape.hpp
+2
-0
src/onnx/onnx.cpp
src/onnx/onnx.cpp
+100
-1
src/shape.cpp
src/shape.cpp
+18
-0
src/simplify_reshapes.cpp
src/simplify_reshapes.cpp
+179
-56
src/targets/cpu/lowering.cpp
src/targets/cpu/lowering.cpp
+55
-52
src/targets/gpu/CMakeLists.txt
src/targets/gpu/CMakeLists.txt
+4
-0
src/targets/gpu/argmax.cpp
src/targets/gpu/argmax.cpp
+23
-0
src/targets/gpu/argmin.cpp
src/targets/gpu/argmin.cpp
+23
-0
src/targets/gpu/device/argmax.cpp
src/targets/gpu/device/argmax.cpp
+23
-0
src/targets/gpu/device/argmin.cpp
src/targets/gpu/device/argmin.cpp
+23
-0
src/targets/gpu/device/concat.cpp
src/targets/gpu/device/concat.cpp
+5
-3
No files found.
src/driver/main.cpp
View file @
51597ed7
...
@@ -7,6 +7,14 @@
...
@@ -7,6 +7,14 @@
#include <migraphx/onnx.hpp>
#include <migraphx/onnx.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_identity.hpp>
#include <migraphx/eliminate_pad.hpp>
#include <migraphx/propagate_constant.hpp>
#include <migraphx/simplify_algebra.hpp>
#include <migraphx/simplify_reshapes.hpp>
namespace
migraphx
{
namespace
migraphx
{
namespace
driver
{
namespace
driver
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
@@ -17,6 +25,7 @@ struct loader
...
@@ -17,6 +25,7 @@ struct loader
std
::
string
file_type
;
std
::
string
file_type
;
bool
is_nhwc
=
true
;
bool
is_nhwc
=
true
;
unsigned
trim
=
0
;
unsigned
trim
=
0
;
bool
optimize
=
false
;
void
parse
(
argument_parser
&
ap
)
void
parse
(
argument_parser
&
ap
)
{
{
...
@@ -26,6 +35,7 @@ struct loader
...
@@ -26,6 +35,7 @@ struct loader
ap
(
is_nhwc
,
{
"--nhwc"
},
ap
.
help
(
"Treat tensorflow format as nhwc"
),
ap
.
set_value
(
true
));
ap
(
is_nhwc
,
{
"--nhwc"
},
ap
.
help
(
"Treat tensorflow format as nhwc"
),
ap
.
set_value
(
true
));
ap
(
is_nhwc
,
{
"--nchw"
},
ap
.
help
(
"Treat tensorflow format as nchw"
),
ap
.
set_value
(
false
));
ap
(
is_nhwc
,
{
"--nchw"
},
ap
.
help
(
"Treat tensorflow format as nchw"
),
ap
.
set_value
(
false
));
ap
(
trim
,
{
"--trim"
,
"-t"
},
ap
.
help
(
"Trim instructions from the end"
));
ap
(
trim
,
{
"--trim"
,
"-t"
},
ap
.
help
(
"Trim instructions from the end"
));
ap
(
optimize
,
{
"--optimize"
},
ap
.
help
(
"Optimize when reading"
),
ap
.
set_value
(
true
));
}
}
program
load
()
program
load
()
...
@@ -48,6 +58,20 @@ struct loader
...
@@ -48,6 +58,20 @@ struct loader
auto
last
=
std
::
prev
(
p
.
end
(),
trim
);
auto
last
=
std
::
prev
(
p
.
end
(),
trim
);
p
.
remove_instructions
(
last
,
p
.
end
());
p
.
remove_instructions
(
last
,
p
.
end
());
}
}
if
(
optimize
)
migraphx
::
run_passes
(
p
,
{
migraphx
::
eliminate_identity
{},
migraphx
::
dead_code_elimination
{},
migraphx
::
simplify_algebra
{},
migraphx
::
dead_code_elimination
{},
migraphx
::
simplify_reshapes
{},
migraphx
::
dead_code_elimination
{},
migraphx
::
propagate_constant
{},
migraphx
::
dead_code_elimination
{},
migraphx
::
eliminate_pad
{},
migraphx
::
dead_code_elimination
{},
});
return
p
;
return
p
;
}
}
};
};
...
...
src/include/migraphx/functional.hpp
View file @
51597ed7
...
@@ -190,6 +190,23 @@ auto pop_back_args(Ts&&... xs)
...
@@ -190,6 +190,23 @@ auto pop_back_args(Ts&&... xs)
};
};
}
}
template
<
class
T
>
struct
always_f
{
T
x
;
template
<
class
...
Ts
>
constexpr
T
operator
()(
Ts
&&
...)
const
{
return
x
;
}
};
template
<
class
T
>
auto
always
(
T
x
)
{
return
always_f
<
T
>
{
x
};
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
}
// namespace migraphx
...
...
src/include/migraphx/matcher.hpp
View file @
51597ed7
...
@@ -8,6 +8,7 @@
...
@@ -8,6 +8,7 @@
#include <migraphx/iterator_for.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
#include <unordered_map>
#include <unordered_map>
#include <unordered_set>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
@@ -20,6 +21,12 @@ struct matcher_context
...
@@ -20,6 +21,12 @@ struct matcher_context
std
::
unordered_map
<
std
::
string
,
instruction_ref
>
instructions
;
std
::
unordered_map
<
std
::
string
,
instruction_ref
>
instructions
;
instruction_ref
not_found
()
const
{
return
last
;
}
instruction_ref
not_found
()
const
{
return
last
;
}
template
<
class
M
>
bool
matched
(
M
m
,
instruction_ref
ins
)
{
return
m
.
match
(
*
this
,
ins
)
!=
this
->
not_found
();
}
private:
private:
instruction_ref
last
;
instruction_ref
last
;
};
};
...
@@ -205,12 +212,10 @@ matcher_result match_instruction(program& p, instruction_ref ins, M&& m)
...
@@ -205,12 +212,10 @@ matcher_result match_instruction(program& p, instruction_ref ins, M&& m)
return
result
;
return
result
;
}
}
/// Find matches
in a
program
/// Find matches
for an instruction in the
program
template
<
class
...
Ms
>
template
<
class
...
Ms
>
void
find_matches
(
program
&
p
,
Ms
&&
...
ms
)
void
find_matches
(
program
&
p
,
instruction_ref
ins
,
Ms
&&
...
ms
)
{
{
for
(
auto
ins
:
iterator_for
(
p
))
{
bool
match
=
false
;
bool
match
=
false
;
each_args
(
each_args
(
[
&
](
auto
&&
m
)
{
[
&
](
auto
&&
m
)
{
...
@@ -223,56 +228,131 @@ void find_matches(program& p, Ms&&... ms)
...
@@ -223,56 +228,131 @@ void find_matches(program& p, Ms&&... ms)
match
=
true
;
match
=
true
;
},
},
ms
...);
ms
...);
}
/// Find matches in a program
template
<
class
...
Ms
>
void
find_matches
(
program
&
p
,
Ms
&&
...
ms
)
{
for
(
auto
ins
:
iterator_for
(
p
))
{
find_matches
(
p
,
ins
,
ms
...);
}
}
}
}
template
<
class
...
Ts
>
struct
lazy_and
auto
all_of
(
Ts
...
ms
)
{
template
<
class
F
,
class
G
>
bool
operator
()(
F
f
,
G
g
)
const
{
return
f
()
and
g
();
}
};
struct
lazy_or
{
template
<
class
F
,
class
G
>
bool
operator
()(
F
f
,
G
g
)
const
{
return
f
()
or
g
();
}
};
template
<
class
Op
,
bool
Start
,
bool
Matches
>
struct
match_fold_f
{
{
template
<
class
...
Ms
>
static
bool
fold_matchers
(
matcher_context
&
ctx
,
instruction_ref
ins
,
Ms
...
ms
)
{
Op
op
;
auto
matched
=
[
&
](
auto
m
)
{
return
[
=
,
&
ctx
]
{
return
ctx
.
matched
(
m
,
ins
);
};
};
return
fold
([
&
](
auto
x
,
auto
y
)
{
return
op
(
always
(
x
),
matched
(
y
));
})(
Start
,
ms
...);
}
template
<
class
Pack
>
static
bool
fold_matchers_pack
(
matcher_context
&
ctx
,
instruction_ref
ins
,
Pack
p
)
{
return
p
([
&
](
auto
...
ms
)
{
return
match_fold_f
::
fold_matchers
(
ctx
,
ins
,
ms
...);
});
}
template
<
class
...
Ts
>
auto
operator
()(
Ts
...
ms
)
const
{
return
make_bf_matcher
([
=
](
matcher_context
&
ctx
,
instruction_ref
ins
)
{
return
make_bf_matcher
([
=
](
matcher_context
&
ctx
,
instruction_ref
ins
)
{
bool
matches
=
fold
([
&
](
auto
x
,
auto
y
)
{
bool
matches
=
match_fold_f
::
fold_matchers
(
ctx
,
ins
,
ms
...);
return
x
and
y
.
match
(
ctx
,
ins
)
!=
ctx
.
not_found
();
if
(
matches
==
Matches
)
})(
true
,
ms
...);
if
(
matches
)
return
ins
;
return
ins
;
return
ctx
.
not_found
();
return
ctx
.
not_found
();
});
});
}
}
template
<
class
...
Ts
>
template
<
class
Selector
>
auto
none_of
(
Ts
...
ms
)
auto
operator
[](
Selector
select
)
const
{
{
return
make_bf_matcher
([
=
](
matcher_context
&
ctx
,
instruction_ref
ins
)
{
return
[
=
](
auto
...
ms
)
{
bool
matches
=
fold
([
&
](
auto
x
,
auto
y
)
{
// Workaround ICE on gcc by packing matchers into an object
return
x
and
y
.
match
(
ctx
,
ins
)
==
ctx
.
not_found
();
auto
mpack
=
pack
(
ms
...);
})(
true
,
ms
...);
return
make_bf_matcher
([
=
](
matcher_context
&
ctx
,
instruction_ref
start
)
{
if
(
matches
)
Op
op
;
return
ins
;
bool
matches
=
Start
;
select
(
start
,
[
&
](
auto
ins
)
{
auto
fm
=
[
&
]
{
return
match_fold_f
::
fold_matchers_pack
(
ctx
,
ins
,
mpack
);
};
matches
=
op
(
always
(
matches
),
fm
);
});
if
(
matches
==
Matches
)
return
start
;
return
ctx
.
not_found
();
return
ctx
.
not_found
();
});
});
};
}
};
const
constexpr
auto
all_of
=
match_fold_f
<
lazy_and
,
true
,
true
>
{};
const
constexpr
auto
any_of
=
match_fold_f
<
lazy_or
,
false
,
true
>
{};
const
constexpr
auto
none_of
=
match_fold_f
<
lazy_or
,
false
,
false
>
{};
inline
auto
inputs
()
{
return
[](
auto
ins
,
auto
f
)
{
for
(
auto
&&
x
:
ins
->
inputs
())
f
(
x
);
};
}
}
template
<
class
...
Ts
>
inline
auto
outputs
()
auto
any_of
(
Ts
...
ms
)
{
{
return
make_bf_matcher
([
=
](
matcher_context
&
ctx
,
instruction_ref
ins
)
{
return
[](
auto
ins
,
auto
f
)
{
bool
matches
=
fold
([
&
](
auto
x
,
auto
y
)
{
for
(
auto
&&
x
:
ins
->
outputs
())
return
x
or
y
.
match
(
ctx
,
ins
)
!=
ctx
.
not_found
();
f
(
x
);
})(
false
,
ms
...);
};
if
(
matches
)
return
ins
;
return
ctx
.
not_found
();
});
}
}
MIGRAPHX_PRED_MATCHER
(
any
,
instruction_ref
)
{
return
true
;
}
MIGRAPHX_PRED_MATCHER
(
any
,
instruction_ref
)
{
return
true
;
}
MIGRAPHX_PRED_MATCHER
(
none
,
instruction_ref
)
{
return
false
;
}
MIGRAPHX_PRED_MATCHER
(
none
,
instruction_ref
)
{
return
false
;
}
MIGRAPHX_PRED_MATCHER
(
standard_shape
,
instruction_ref
ins
)
{
return
ins
->
get_shape
().
standard
();
}
MIGRAPHX_PRED_MATCHER
(
standard_shape
,
instruction_ref
ins
)
{
return
ins
->
get_shape
().
standard
();
}
MIGRAPHX_PRED_MATCHER
(
not_standard_shape
,
instruction_ref
ins
)
{
return
not
ins
->
get_shape
().
standard
();
}
MIGRAPHX_PRED_MATCHER
(
broadcast_shape
,
instruction_ref
ins
)
MIGRAPHX_PRED_MATCHER
(
broadcast_shape
,
instruction_ref
ins
)
{
{
return
ins
->
get_shape
().
broadcasted
();
return
ins
->
get_shape
().
broadcasted
();
}
}
MIGRAPHX_PRED_MATCHER
(
transpose_shape
,
instruction_ref
ins
)
{
return
ins
->
get_shape
().
transposed
();
}
MIGRAPHX_PRED_MATCHER
(
same_input_shapes
,
instruction_ref
ins
)
{
if
(
ins
->
inputs
().
empty
())
return
false
;
auto
s
=
ins
->
inputs
().
front
()
->
get_shape
();
return
std
::
all_of
(
ins
->
inputs
().
begin
(),
ins
->
inputs
().
end
(),
[
&
](
auto
x
)
{
return
x
->
get_shape
()
==
s
;
});
}
MIGRAPHX_BASIC_MATCHER
(
output
,
matcher_context
&
ctx
,
instruction_ref
ins
)
MIGRAPHX_BASIC_MATCHER
(
output
,
matcher_context
&
ctx
,
instruction_ref
ins
)
{
{
if
(
ins
->
outputs
().
size
()
==
1
)
if
(
ins
->
outputs
().
size
()
==
1
)
...
@@ -289,10 +369,39 @@ MIGRAPHX_BASIC_MATCHER(used_once, matcher_context& ctx, instruction_ref ins)
...
@@ -289,10 +369,39 @@ MIGRAPHX_BASIC_MATCHER(used_once, matcher_context& ctx, instruction_ref ins)
return
ctx
.
not_found
();
return
ctx
.
not_found
();
}
}
inline
auto
name
(
std
::
string
name
)
template
<
class
...
Ms
>
auto
skip_output
(
Ms
...
ms
)
{
auto
m
=
any_of
(
ms
...);
return
make_basic_fun_matcher
([
=
](
matcher_context
&
ctx
,
instruction_ref
start
)
{
return
fix
<
instruction_ref
>
([
&
](
auto
self
,
auto
ins
)
{
if
(
ins
->
outputs
().
size
()
==
1
)
{
auto
next
=
ins
->
outputs
().
front
();
if
(
ctx
.
matched
(
m
,
next
))
{
auto
skipped_next
=
self
(
next
);
if
(
skipped_next
!=
ctx
.
not_found
())
return
skipped_next
;
}
return
next
;
}
return
ctx
.
not_found
();
})(
start
);
});
}
inline
auto
name
(
std
::
string
s
)
{
{
return
make_basic_pred_matcher
(
return
make_basic_pred_matcher
(
[
=
,
name
=
std
::
move
(
name
)
](
instruction_ref
ins
)
{
return
ins
->
name
()
==
name
;
});
[
=
,
s
=
std
::
move
(
s
)
](
instruction_ref
ins
)
{
return
ins
->
name
()
==
s
;
});
}
inline
auto
name
(
std
::
unordered_set
<
std
::
string
>
names
)
{
return
make_basic_pred_matcher
([
=
,
names
=
std
::
move
(
names
)
](
instruction_ref
ins
)
{
return
names
.
count
(
ins
->
name
())
>
0
;
});
}
}
inline
auto
nargs
(
std
::
size_t
n
)
inline
auto
nargs
(
std
::
size_t
n
)
...
@@ -338,6 +447,23 @@ inline auto either_arg(std::size_t i, std::size_t j)
...
@@ -338,6 +447,23 @@ inline auto either_arg(std::size_t i, std::size_t j)
};
};
}
}
template
<
class
M
>
auto
same_shape
(
M
m
)
{
return
make_basic_fun_matcher
([
=
](
matcher_context
&
ctx
,
instruction_ref
ins
)
{
auto
i
=
m
.
match
(
ctx
,
ins
);
if
(
i
!=
ctx
.
not_found
()
and
i
->
get_shape
()
==
ins
->
get_shape
())
return
ins
;
return
ctx
.
not_found
();
});
}
template
<
class
...
Ms
>
auto
same_shape
(
Ms
...
ms
)
{
return
all_of
(
same_shape
(
ms
)...);
}
}
// namespace match
}
// namespace match
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
}
// namespace migraphx
...
...
src/include/migraphx/op/argmax.hpp
0 → 100644
View file @
51597ed7
#ifndef MIGRAPHX_GUARD_OPERATORS_ARGMAX_HPP
#define MIGRAPHX_GUARD_OPERATORS_ARGMAX_HPP
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/par_dfor.hpp>
#include <migraphx/config.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
argmax
{
int64_t
axis
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axis
,
"axis"
));
}
std
::
string
name
()
const
{
return
"argmax"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
standard
();
auto
lens
=
inputs
[
0
].
lens
();
int64_t
n_dim
=
static_cast
<
int64_t
>
(
lens
.
size
());
if
(
axis
>=
n_dim
||
axis
<
0
)
{
MIGRAPHX_THROW
(
"ARGMAX: axis is out of range."
);
}
lens
[
axis
]
=
1
;
return
{
shape
::
int64_type
,
lens
};
}
template
<
class
T
>
int64_t
calc_argmax
(
T
&
input
,
std
::
vector
<
std
::
size_t
>&
indices
,
size_t
item_num
)
const
{
auto
max_val
=
input
(
indices
.
begin
(),
indices
.
end
());
int64_t
max_index
=
0
;
for
(
std
::
size_t
i
=
1
;
i
<
item_num
;
++
i
)
{
indices
[
axis
]
=
i
;
auto
cur_val
=
input
(
indices
.
begin
(),
indices
.
end
());
if
(
max_val
<
cur_val
)
{
max_val
=
cur_val
;
max_index
=
i
;
}
}
return
max_index
;
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
auto
batch_item_num
=
args
.
front
().
get_shape
().
lens
()[
axis
];
result
.
visit
([
&
](
auto
output
)
{
args
[
0
].
visit
([
&
](
auto
input
)
{
par_for
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
data_idx
=
output_shape
.
multi
(
i
);
output
[
i
]
=
this
->
calc_argmax
(
input
,
data_idx
,
batch_item_num
);
});
});
});
return
result
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/argmin.hpp
0 → 100644
View file @
51597ed7
#ifndef MIGRAPHX_GUARD_OPERATORS_ARGMIN_HPP
#define MIGRAPHX_GUARD_OPERATORS_ARGMIN_HPP
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/par_dfor.hpp>
#include <migraphx/config.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
argmin
{
int64_t
axis
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axis
,
"axis"
));
}
std
::
string
name
()
const
{
return
"argmin"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
standard
();
auto
lens
=
inputs
[
0
].
lens
();
int64_t
n_dim
=
static_cast
<
int64_t
>
(
lens
.
size
());
if
(
axis
>=
n_dim
||
axis
<
0
)
{
MIGRAPHX_THROW
(
"ARGMIN: axis is out of range."
);
}
lens
[
axis
]
=
1
;
return
{
shape
::
int64_type
,
lens
};
}
template
<
class
T
>
int64_t
calc_argmin
(
T
&
input
,
std
::
vector
<
std
::
size_t
>&
indices
,
size_t
item_num
)
const
{
auto
min_val
=
input
(
indices
.
begin
(),
indices
.
end
());
int64_t
min_index
=
0
;
for
(
std
::
size_t
i
=
1
;
i
<
item_num
;
++
i
)
{
indices
[
axis
]
=
i
;
auto
cur_val
=
input
(
indices
.
begin
(),
indices
.
end
());
if
(
min_val
>
cur_val
)
{
min_val
=
cur_val
;
min_index
=
i
;
}
}
return
min_index
;
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
std
::
size_t
batch_item_num
=
args
.
front
().
get_shape
().
lens
()[
axis
];
result
.
visit
([
&
](
auto
output
)
{
args
[
0
].
visit
([
&
](
auto
input
)
{
par_for
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
data_idx
=
output_shape
.
multi
(
i
);
output
[
i
]
=
this
->
calc_argmin
(
input
,
data_idx
,
batch_item_num
);
});
});
});
return
result
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/logsoftmax.hpp
View file @
51597ed7
#ifndef MIGRAPHX_GUARD_OPERATORS_LOGSOFTMAX_HPP
#ifndef MIGRAPHX_GUARD_OPERATORS_LOGSOFTMAX_HPP
#define MIGRAPHX_GUARD_OPERATORS_LOGSOFTMAX_HPP
#define MIGRAPHX_GUARD_OPERATORS_LOGSOFTMAX_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
src/include/migraphx/op/multibroadcast.hpp
View file @
51597ed7
...
@@ -35,14 +35,28 @@ struct multibroadcast
...
@@ -35,14 +35,28 @@ struct multibroadcast
auto
input
=
inputs
.
at
(
0
);
auto
input
=
inputs
.
at
(
0
);
if
(
input
.
lens
().
empty
())
if
(
input
.
lens
().
empty
())
MIGRAPHX_THROW
(
"inputs dimensions should be > 0"
);
{
MIGRAPHX_THROW
(
"MULTIBROADCAST: inputs dimensions should be > 0"
);
}
if
(
input
.
lens
().
size
()
>
output_lens
.
size
())
if
(
input
.
lens
().
size
()
>
output_lens
.
size
())
MIGRAPHX_THROW
(
"inputs dimensions should <= output size"
);
{
MIGRAPHX_THROW
(
"MULTIBROADCAST: inputs dimensions should <= output size"
);
}
std
::
vector
<
size_t
>
bcast_strides
(
output_lens
.
size
(),
0
);
auto
offset
=
output_lens
.
size
()
-
input
.
lens
().
size
();
auto
offset
=
output_lens
.
size
()
-
input
.
lens
().
size
();
for
(
std
::
ptrdiff_t
i
=
input
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
for
(
std
::
ptrdiff_t
i
=
input
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
{
if
(
output_lens
[
i
+
offset
]
!=
input
.
lens
()[
i
]
and
input
.
lens
()[
i
]
!=
1
)
{
MIGRAPHX_THROW
(
"MULTIBROADCAST: input shape {"
+
to_string_range
(
input
.
lens
())
+
"} cannot be broadcasted to {"
+
to_string_range
(
output_lens
)
+
"}!"
);
}
}
std
::
vector
<
size_t
>
bcast_strides
(
output_lens
.
size
(),
0
);
for
(
std
::
ptrdiff_t
i
=
input
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
{
{
if
(
output_lens
[
i
+
offset
]
==
input
.
lens
()[
i
])
if
(
output_lens
[
i
+
offset
]
==
input
.
lens
()[
i
])
{
{
...
...
src/include/migraphx/op/softmax.hpp
View file @
51597ed7
#ifndef MIGRAPHX_GUARD_OPERATORS_SOFTMAX_HPP
#ifndef MIGRAPHX_GUARD_OPERATORS_SOFTMAX_HPP
#define MIGRAPHX_GUARD_OPERATORS_SOFTMAX_HPP
#define MIGRAPHX_GUARD_OPERATORS_SOFTMAX_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
src/include/migraphx/operators.hpp
View file @
51597ed7
...
@@ -5,6 +5,8 @@
...
@@ -5,6 +5,8 @@
#include <migraphx/op/abs.hpp>
#include <migraphx/op/abs.hpp>
#include <migraphx/op/acos.hpp>
#include <migraphx/op/acos.hpp>
#include <migraphx/op/add.hpp>
#include <migraphx/op/add.hpp>
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
#include <migraphx/op/asin.hpp>
#include <migraphx/op/asin.hpp>
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/atan.hpp>
#include <migraphx/op/atan.hpp>
...
...
src/include/migraphx/shape.hpp
View file @
51597ed7
...
@@ -99,6 +99,8 @@ struct shape
...
@@ -99,6 +99,8 @@ struct shape
/// Map element index to space index
/// Map element index to space index
std
::
size_t
index
(
std
::
size_t
i
)
const
;
std
::
size_t
index
(
std
::
size_t
i
)
const
;
std
::
vector
<
std
::
size_t
>
multi
(
std
::
size_t
i
)
const
;
/// Returns true if the shape is packed with no padding
/// Returns true if the shape is packed with no padding
bool
packed
()
const
;
bool
packed
()
const
;
/// Returns true is the shape has been transposed. That is the strides are not in descending
/// Returns true is the shape has been transposed. That is the strides are not in descending
...
...
src/onnx/onnx.cpp
View file @
51597ed7
...
@@ -63,6 +63,8 @@ struct onnx_parser
...
@@ -63,6 +63,8 @@ struct onnx_parser
add_variadic_op
(
"Max"
,
op
::
max
{});
add_variadic_op
(
"Max"
,
op
::
max
{});
add_variadic_op
(
"Min"
,
op
::
min
{});
add_variadic_op
(
"Min"
,
op
::
min
{});
add_mem_op
(
"ArgMax"
,
&
onnx_parser
::
parse_argmax
);
add_mem_op
(
"ArgMin"
,
&
onnx_parser
::
parse_argmin
);
add_mem_op
(
"Clip"
,
&
onnx_parser
::
parse_clip
);
add_mem_op
(
"Clip"
,
&
onnx_parser
::
parse_clip
);
add_mem_op
(
"LRN"
,
&
onnx_parser
::
parse_lrn
);
add_mem_op
(
"LRN"
,
&
onnx_parser
::
parse_lrn
);
add_mem_op
(
"ImageScaler"
,
&
onnx_parser
::
parse_imagescaler
);
add_mem_op
(
"ImageScaler"
,
&
onnx_parser
::
parse_imagescaler
);
...
@@ -93,6 +95,7 @@ struct onnx_parser
...
@@ -93,6 +95,7 @@ struct onnx_parser
add_mem_op
(
"GRU"
,
&
onnx_parser
::
parse_gru
);
add_mem_op
(
"GRU"
,
&
onnx_parser
::
parse_gru
);
add_mem_op
(
"LSTM"
,
&
onnx_parser
::
parse_lstm
);
add_mem_op
(
"LSTM"
,
&
onnx_parser
::
parse_lstm
);
add_mem_op
(
"Pad"
,
&
onnx_parser
::
parse_pad
);
add_mem_op
(
"Pad"
,
&
onnx_parser
::
parse_pad
);
add_mem_op
(
"ReduceSum"
,
&
onnx_parser
::
parse_reduce_sum
);
// init the activation function map
// init the activation function map
init_actv_func
();
init_actv_func
();
...
@@ -182,7 +185,15 @@ struct onnx_parser
...
@@ -182,7 +185,15 @@ struct onnx_parser
s0
.
end
(),
s0
.
end
(),
s1
.
begin
()
+
offset
,
s1
.
begin
()
+
offset
,
out_lens
.
begin
()
+
offset
,
out_lens
.
begin
()
+
offset
,
[](
auto
a
,
auto
b
)
{
return
std
::
max
(
a
,
b
);
});
[
&
](
auto
a
,
auto
b
)
{
if
(
a
!=
b
and
a
!=
1
and
b
!=
1
)
{
MIGRAPHX_THROW
(
"COMPUTE_BROADCASTLEN: shape {"
+
to_string_range
(
s0
)
+
"} and {"
+
to_string_range
(
s1
)
+
"} mismatch!"
);
}
return
std
::
max
(
a
,
b
);
});
return
out_lens
;
return
out_lens
;
}
}
...
@@ -266,6 +277,60 @@ struct onnx_parser
...
@@ -266,6 +277,60 @@ struct onnx_parser
return
prog
.
add_instruction
(
op
::
logsoftmax
{
axis
},
std
::
move
(
args
));
return
prog
.
add_instruction
(
op
::
logsoftmax
{
axis
},
std
::
move
(
args
));
}
}
instruction_ref
parse_argmax
(
const
std
::
string
&
,
const
attribute_map
&
attributes
,
std
::
vector
<
instruction_ref
>
args
)
{
int64_t
axis
=
0
;
if
(
contains
(
attributes
,
"axis"
))
{
axis
=
static_cast
<
int64_t
>
(
parse_value
(
attributes
.
at
(
"axis"
)).
at
<
int
>
());
}
int
keep_dims
=
1
;
if
(
contains
(
attributes
,
"keepdims"
))
{
keep_dims
=
parse_value
(
attributes
.
at
(
"keepdims"
)).
at
<
int
>
();
}
if
(
keep_dims
==
0
)
{
auto
ins
=
prog
.
add_instruction
(
op
::
argmax
{
axis
},
std
::
move
(
args
));
return
prog
.
add_instruction
(
op
::
squeeze
{{
axis
}},
ins
);
}
else
{
return
prog
.
add_instruction
(
op
::
argmax
{
axis
},
std
::
move
(
args
));
}
}
instruction_ref
parse_argmin
(
const
std
::
string
&
,
const
attribute_map
&
attributes
,
std
::
vector
<
instruction_ref
>
args
)
{
int64_t
axis
=
0
;
if
(
contains
(
attributes
,
"axis"
))
{
axis
=
static_cast
<
int64_t
>
(
parse_value
(
attributes
.
at
(
"axis"
)).
at
<
int
>
());
}
int
keep_dims
=
1
;
if
(
contains
(
attributes
,
"keepdims"
))
{
keep_dims
=
parse_value
(
attributes
.
at
(
"keepdims"
)).
at
<
int
>
();
}
if
(
keep_dims
==
0
)
{
auto
ins
=
prog
.
add_instruction
(
op
::
argmin
{
axis
},
std
::
move
(
args
));
return
prog
.
add_instruction
(
op
::
squeeze
{{
axis
}},
ins
);
}
else
{
return
prog
.
add_instruction
(
op
::
argmin
{
axis
},
std
::
move
(
args
));
}
}
instruction_ref
instruction_ref
parse_conv
(
const
std
::
string
&
,
attribute_map
attributes
,
std
::
vector
<
instruction_ref
>
args
)
parse_conv
(
const
std
::
string
&
,
attribute_map
attributes
,
std
::
vector
<
instruction_ref
>
args
)
{
{
...
@@ -1222,6 +1287,40 @@ struct onnx_parser
...
@@ -1222,6 +1287,40 @@ struct onnx_parser
return
{
hidden_states
,
last_output
,
last_cell_output
};
return
{
hidden_states
,
last_output
,
last_cell_output
};
}
}
instruction_ref
parse_reduce_sum
(
const
std
::
string
&
,
attribute_map
attributes
,
std
::
vector
<
instruction_ref
>
args
)
{
std
::
size_t
n_dim
=
args
.
front
()
->
get_shape
().
lens
().
size
();
// default to reduce over all dimensions
std
::
vector
<
std
::
size_t
>
axes
(
n_dim
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
0
);
if
(
contains
(
attributes
,
"axes"
))
{
axes
.
clear
();
auto
&&
attr_axes
=
attributes
[
"axes"
].
ints
();
axes
=
std
::
vector
<
std
::
size_t
>
(
attr_axes
.
begin
(),
attr_axes
.
end
());
}
int
keep_dims
=
1
;
if
(
contains
(
attributes
,
"keepdims"
))
{
keep_dims
=
parse_value
(
attributes
.
at
(
"keepdims"
)).
at
<
int
>
();
}
if
(
keep_dims
==
1
)
{
return
prog
.
add_instruction
(
op
::
reduce_sum
{
axes
},
std
::
move
(
args
));
}
else
{
auto
ins
=
prog
.
add_instruction
(
op
::
reduce_sum
{
axes
},
std
::
move
(
args
));
std
::
vector
<
int64_t
>
squeeze_axes
{
axes
.
begin
(),
axes
.
end
()};
return
prog
.
add_instruction
(
op
::
squeeze
{
squeeze_axes
},
ins
);
}
}
void
parse_from
(
std
::
istream
&
is
)
void
parse_from
(
std
::
istream
&
is
)
{
{
onnx
::
ModelProto
model
;
onnx
::
ModelProto
model
;
...
...
src/shape.cpp
View file @
51597ed7
...
@@ -138,6 +138,24 @@ std::size_t shape::index(std::size_t i) const
...
@@ -138,6 +138,24 @@ std::size_t shape::index(std::size_t i) const
return
result
;
return
result
;
}
}
}
}
std
::
vector
<
std
::
size_t
>
shape
::
multi
(
std
::
size_t
i
)
const
{
assert
(
this
->
standard
());
std
::
vector
<
std
::
size_t
>
indices
(
lens
().
size
());
std
::
transform
(
strides
().
begin
(),
strides
().
end
(),
lens
().
begin
(),
indices
.
begin
(),
[
&
](
std
::
size_t
stride
,
std
::
size_t
len
)
{
assert
(
len
>
0
and
stride
>
0
);
return
(
i
/
stride
)
%
len
;
});
return
indices
;
}
bool
shape
::
packed
()
const
{
return
this
->
elements
()
==
this
->
element_space
();
}
bool
shape
::
packed
()
const
{
return
this
->
elements
()
==
this
->
element_space
();
}
bool
shape
::
transposed
()
const
bool
shape
::
transposed
()
const
...
...
src/simplify_reshapes.cpp
View file @
51597ed7
...
@@ -2,14 +2,17 @@
...
@@ -2,14 +2,17 @@
#include <migraphx/program.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/matcher.hpp>
#include <unordered_set>
#include <unordered_set>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
bool
is_reshaper
(
instruction_ref
ins
)
const
auto
&
reshaper_names
(
)
{
{
// clang-format off
// clang-format off
static
const
std
::
unordered_set
<
std
::
string
>
names
=
{
static
const
std
::
unordered_set
<
std
::
string
>
names
=
{
...
@@ -19,17 +22,10 @@ bool is_reshaper(instruction_ref ins)
...
@@ -19,17 +22,10 @@ bool is_reshaper(instruction_ref ins)
"unsqueeze"
"unsqueeze"
};
};
// clang-format on
// clang-format on
return
contains
(
names
,
ins
->
name
())
;
return
names
;
}
}
bool
is_transpose_output
(
instruction_ref
ins
)
bool
is_reshaper
(
instruction_ref
ins
)
{
return
contains
(
reshaper_names
(),
ins
->
name
());
}
{
if
(
ins
->
outputs
().
size
()
!=
1
)
return
false
;
if
(
ins
->
outputs
().
front
()
->
name
()
==
"contiguous"
)
return
is_transpose_output
(
ins
->
outputs
().
front
());
return
ins
->
outputs
().
front
()
->
name
()
==
"transpose"
;
}
instruction_ref
find_transpose_input
(
instruction_ref
ins
)
instruction_ref
find_transpose_input
(
instruction_ref
ins
)
{
{
...
@@ -42,21 +38,62 @@ instruction_ref find_transpose_input(instruction_ref ins)
...
@@ -42,21 +38,62 @@ instruction_ref find_transpose_input(instruction_ref ins)
return
ins
;
return
ins
;
}
}
void
simplify_reshapes
::
apply
(
program
&
p
)
co
ns
t
auto
get_transpose_dims
(
instruction_ref
i
ns
)
{
{
auto
end
=
std
::
prev
(
p
.
end
());
return
any_cast
<
const
op
::
transpose
&>
(
ins
->
get_operator
()).
dims
;
for
(
auto
ins
:
iterator_for
(
p
))
}
std
::
vector
<
int64_t
>
reorder_dims
(
std
::
vector
<
int64_t
>
dims
,
std
::
vector
<
int64_t
>
permutation
)
{
std
::
vector
<
int64_t
>
result
(
dims
.
size
());
assert
(
dims
.
size
()
==
permutation
.
size
());
for
(
std
::
size_t
i
=
0
;
i
<
dims
.
size
();
i
++
)
{
{
if
(
ins
==
end
and
ins
->
name
()
==
"contiguous"
)
result
[
i
]
=
dims
[
permutation
[
i
]];
continue
;
}
// Skip possible dead instructions
return
result
;
if
(
ins
->
outputs
().
empty
()
and
ins
!=
end
)
}
continue
;
if
(
is_reshaper
(
ins
))
bool
is_no_transpose
(
const
std
::
vector
<
int64_t
>&
dims
)
{
if
(
dims
.
empty
())
return
true
;
if
(
dims
.
front
()
!=
0
)
return
false
;
return
std
::
adjacent_find
(
dims
.
begin
(),
dims
.
end
(),
[](
auto
x
,
auto
y
)
{
return
(
y
-
x
)
!=
1
;
})
==
dims
.
end
();
}
template
<
class
Vector
,
class
Op
>
std
::
vector
<
int64_t
>
sort_permutation
(
const
Vector
&
data
,
Op
op
)
{
std
::
vector
<
std
::
int64_t
>
result
(
data
.
size
());
std
::
iota
(
result
.
begin
(),
result
.
end
(),
0
);
std
::
sort
(
result
.
begin
(),
result
.
end
(),
[
&
](
auto
x
,
auto
y
)
{
return
op
(
data
[
x
],
data
[
y
]);
});
return
result
;
}
std
::
vector
<
int64_t
>
invert_permutation
(
const
std
::
vector
<
int64_t
>&
permutation
)
{
return
sort_permutation
(
permutation
,
std
::
less
<>
{});
}
std
::
vector
<
int64_t
>
find_permutation
(
const
shape
&
s
)
{
return
sort_permutation
(
s
.
strides
(),
std
::
greater
<>
{});
}
struct
find_reshaper
{
auto
matcher
()
const
{
{
if
(
std
::
any_of
(
ins
->
outputs
().
begin
(),
ins
->
outputs
().
end
(),
&
is_reshaper
))
return
match
::
name
(
reshaper_names
())(
continue
;
match
::
any_of
[
match
::
outputs
()](
match
::
name
(
reshaper_names
())));
// Gather reshapes
}
void
apply
(
program
&
p
,
const
match
::
matcher_result
&
mr
)
const
{
auto
ins
=
mr
.
result
;
std
::
vector
<
instruction_ref
>
reshapes
{
ins
};
std
::
vector
<
instruction_ref
>
reshapes
{
ins
};
while
(
is_reshaper
(
reshapes
.
back
()))
while
(
is_reshaper
(
reshapes
.
back
()))
{
{
...
@@ -83,21 +120,107 @@ void simplify_reshapes::apply(program& p) const
...
@@ -83,21 +120,107 @@ void simplify_reshapes::apply(program& p) const
p
.
replace_instruction
(
r
.
first
,
r
.
second
);
p
.
replace_instruction
(
r
.
first
,
r
.
second
);
}
}
}
}
else
if
(
ins
->
name
()
==
"transpose"
)
};
struct
find_nop_reshapes
{
auto
matcher
()
const
{
{
if
(
is_transpose_output
(
ins
))
auto
reshapes
=
reshaper_names
();
continue
;
reshapes
.
insert
(
"transpose"
);
reshapes
.
insert
(
"slice"
);
return
match
::
name
(
reshapes
)(
match
::
same_shape
(
match
::
arg
(
0
)));
}
void
apply
(
program
&
p
,
const
match
::
matcher_result
&
mr
)
const
{
auto
ins
=
mr
.
result
;
p
.
replace_instruction
(
ins
,
ins
->
inputs
().
front
());
}
};
struct
find_transpose
{
auto
matcher
()
const
{
return
match
::
name
(
"transpose"
)(
match
::
none_of
(
match
::
skip_output
(
match
::
name
(
"contiguous"
))(
match
::
name
(
"transpose"
))));
}
void
apply
(
program
&
p
,
const
match
::
matcher_result
&
mr
)
const
{
auto
ins
=
mr
.
result
;
auto
x
=
ins
;
auto
x
=
ins
;
auto
t
=
ins
;
auto
t
=
ins
;
std
::
vector
<
std
::
int64_t
>
dims
(
ins
->
get_shape
().
lens
().
size
());
std
::
iota
(
dims
.
begin
(),
dims
.
end
(),
0
);
do
do
{
{
dims
=
reorder_dims
(
get_transpose_dims
(
t
),
dims
);
x
=
t
;
x
=
t
;
t
=
find_transpose_input
(
x
);
t
=
find_transpose_input
(
x
);
}
while
(
x
!=
t
and
t
->
name
()
==
"transpose"
);
}
while
(
x
!=
t
and
t
->
name
()
==
"transpose"
);
if
(
t
==
ins
or
t
->
name
()
!=
"transpose"
)
if
(
t
==
ins
or
t
->
name
()
!=
"transpose"
)
continue
;
return
;
if
(
is_no_transpose
(
dims
))
{
p
.
replace_instruction
(
ins
,
t
->
inputs
().
front
());
p
.
replace_instruction
(
ins
,
t
->
inputs
().
front
());
}
}
else
{
p
.
replace_instruction
(
ins
,
op
::
transpose
{{
dims
}},
t
->
inputs
().
front
());
}
}
};
struct
find_concat_transpose
{
auto
matcher
()
const
{
return
match
::
name
(
"concat"
)(
match
::
same_input_shapes
(),
match
::
all_of
[
match
::
inputs
()](
match
::
transpose_shape
()));
}
void
apply
(
program
&
p
,
const
match
::
matcher_result
&
mr
)
const
{
auto
ins
=
mr
.
result
;
auto
s
=
ins
->
inputs
().
front
()
->
get_shape
();
assert
(
s
.
transposed
());
auto
op
=
any_cast
<
op
::
concat
>
(
ins
->
get_operator
());
auto
permutation
=
find_permutation
(
s
);
auto
ipermutation
=
invert_permutation
(
permutation
);
op
.
axis
=
ipermutation
[
op
.
axis
];
std
::
vector
<
instruction_ref
>
inputs
;
std
::
transform
(
ins
->
inputs
().
begin
(),
ins
->
inputs
().
end
(),
std
::
back_inserter
(
inputs
),
[
&
](
auto
i
)
{
if
(
i
->
name
()
==
"transpose"
and
i
->
inputs
().
front
()
->
get_shape
().
standard
())
return
i
->
inputs
().
front
();
return
p
.
insert_instruction
(
ins
,
op
::
transpose
{
permutation
},
i
);
});
auto
concat
=
p
.
insert_instruction
(
ins
,
op
,
inputs
);
auto
t
=
p
.
insert_instruction
(
ins
,
op
::
transpose
{
ipermutation
},
concat
);
assert
(
ins
->
get_shape
().
lens
()
==
t
->
get_shape
().
lens
());
p
.
replace_instruction
(
ins
,
t
);
}
};
void
simplify_reshapes
::
apply
(
program
&
p
)
const
{
auto
end
=
std
::
prev
(
p
.
end
());
for
(
auto
ins
:
iterator_for
(
p
))
{
if
(
ins
==
end
and
ins
->
name
()
==
"contiguous"
)
continue
;
// Skip possible dead instructions
if
(
ins
->
outputs
().
empty
()
and
ins
!=
end
)
continue
;
match
::
find_matches
(
p
,
ins
,
find_nop_reshapes
{},
find_reshaper
{},
find_transpose
{},
find_concat_transpose
{});
}
}
}
}
...
...
src/targets/cpu/lowering.cpp
View file @
51597ed7
...
@@ -13,6 +13,8 @@
...
@@ -13,6 +13,8 @@
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
#include <migraphx/op/softmax.hpp>
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/par_dfor.hpp>
#include <migraphx/par_dfor.hpp>
...
@@ -539,18 +541,11 @@ struct cpu_softmax
...
@@ -539,18 +541,11 @@ struct cpu_softmax
std
::
string
name
()
const
{
return
"cpu::softmax"
;
}
std
::
string
name
()
const
{
return
"cpu::softmax"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
template
<
typename
T
>
std
::
size_t
compute_batch_index
(
T
idx
,
shape
&
batch_shape
,
int
axis
)
const
{
idx
[
axis
]
=
0
;
return
batch_shape
.
index
(
idx
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
{
argument
result
{
output_shape
};
argument
result
{
output_shape
};
auto
batch_lens
=
output_shape
.
lens
();
auto
batch_lens
=
output_shape
.
lens
();
std
::
size_t
n_dims
=
batch_lens
[
op
.
axis
];
batch_lens
[
op
.
axis
]
=
1
;
batch_lens
[
op
.
axis
]
=
1
;
shape
batch_shape
{
shape
::
int32_type
,
batch_lens
};
shape
batch_shape
{
shape
::
int32_type
,
batch_lens
};
...
@@ -558,26 +553,33 @@ struct cpu_softmax
...
@@ -558,26 +553,33 @@ struct cpu_softmax
using
value_type
=
typename
decltype
(
input
)
::
value_type
;
using
value_type
=
typename
decltype
(
input
)
::
value_type
;
std
::
vector
<
value_type
>
batch_max
(
batch_shape
.
elements
(),
std
::
vector
<
value_type
>
batch_max
(
batch_shape
.
elements
(),
std
::
numeric_limits
<
value_type
>::
lowest
());
std
::
numeric_limits
<
value_type
>::
lowest
());
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
std
::
vector
<
value_type
>
batch_sum
(
batch_shape
.
elements
(),
value_type
(
0
));
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
par_for
(
batch_shape
.
elements
(),
[
&
](
auto
i
)
{
batch_max
[
index
]
=
std
::
max
(
batch_max
[
index
],
input
(
idx
.
begin
(),
idx
.
end
()));
auto
idx
=
batch_shape
.
multi
(
i
);
});
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
{
idx
[
op
.
axis
]
=
j
;
batch_max
[
i
]
=
std
::
max
(
batch_max
[
i
],
input
(
idx
.
begin
(),
idx
.
end
()));
}
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
{
output
(
idx
.
begin
(),
idx
.
end
())
=
idx
[
op
.
axis
]
=
j
;
std
::
exp
(
input
(
idx
.
begin
(),
idx
.
end
())
-
batch_max
[
index
]);
std
::
size_t
index
=
output_shape
.
index
(
idx
);
});
output
[
index
]
=
std
::
exp
(
input
[
index
]
-
batch_max
[
i
]);
}
std
::
vector
<
value_type
>
batch_sum
(
batch_shape
.
elements
(),
value_type
(
0
));
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
{
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
)
;
idx
[
op
.
axis
]
=
j
;
batch_sum
[
i
ndex
]
+=
output
(
idx
.
begin
(),
idx
.
end
());
batch_sum
[
i
]
+=
output
(
idx
.
begin
(),
idx
.
end
());
});
}
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
{
output
(
idx
.
begin
(),
idx
.
end
())
/=
batch_sum
[
index
];
idx
[
op
.
axis
]
=
j
;
output
(
idx
.
begin
(),
idx
.
end
())
/=
batch_sum
[
i
];
}
});
});
});
});
...
@@ -597,49 +599,50 @@ struct cpu_logsoftmax
...
@@ -597,49 +599,50 @@ struct cpu_logsoftmax
std
::
string
name
()
const
{
return
"cpu::logsoftmax"
;
}
std
::
string
name
()
const
{
return
"cpu::logsoftmax"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
template
<
typename
T
>
std
::
size_t
compute_batch_index
(
T
idx
,
const
shape
&
batch_shape
,
int
axis
)
const
{
idx
[
axis
]
=
0
;
return
batch_shape
.
index
(
idx
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
{
argument
result
{
output_shape
};
argument
result
{
output_shape
};
auto
batch_lens
=
output_shape
.
lens
();
auto
batch_lens
=
output_shape
.
lens
();
std
::
size_t
n_dims
=
batch_lens
[
op
.
axis
];
batch_lens
[
op
.
axis
]
=
1
;
batch_lens
[
op
.
axis
]
=
1
;
shape
batch_shape
{
shape
::
int32_type
,
batch_lens
};
shape
batch_shape
{
shape
::
int32_type
,
batch_lens
};
// use a parallel implementation to acheive better performance
// one thread for one batch
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
using
value_type
=
typename
decltype
(
input
)
::
value_type
;
using
value_type
=
typename
decltype
(
input
)
::
value_type
;
std
::
vector
<
value_type
>
batch_max
(
batch_shape
.
elements
(),
std
::
vector
<
value_type
>
batch_max
(
batch_shape
.
elements
(),
std
::
numeric_limits
<
value_type
>::
lowest
());
std
::
numeric_limits
<
value_type
>::
lowest
());
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
std
::
vector
<
value_type
>
batch_sum
(
batch_shape
.
elements
(),
value_type
(
0
));
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
batch_max
[
index
]
=
std
::
max
(
batch_max
[
index
],
input
(
idx
.
begin
(),
idx
.
end
()));
});
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
par_for
(
batch_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
auto
idx
=
batch_shape
.
multi
(
i
);
output
(
idx
.
begin
(),
idx
.
end
())
=
input
(
idx
.
begin
(),
idx
.
end
())
-
batch_max
[
index
];
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
});
{
idx
[
op
.
axis
]
=
j
;
batch_max
[
i
]
=
std
::
max
(
batch_max
[
i
],
input
(
idx
.
begin
(),
idx
.
end
()));
}
std
::
vector
<
value_type
>
batch_sum
(
batch_shape
.
elements
(),
value_type
(
0
));
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
{
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
idx
[
op
.
axis
]
=
j
;
batch_sum
[
index
]
+=
std
::
exp
(
output
(
idx
.
begin
(),
idx
.
end
()));
std
::
size_t
index
=
output_shape
.
index
(
idx
);
});
output
[
index
]
=
input
[
index
]
-
batch_max
[
i
];
}
for
(
std
::
size_t
i
=
0
;
i
<
batch_sum
.
size
()
;
++
i
)
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
{
{
batch_sum
[
i
]
=
std
::
log
(
batch_sum
[
i
]);
idx
[
op
.
axis
]
=
j
;
batch_sum
[
i
]
+=
std
::
exp
(
output
(
idx
.
begin
(),
idx
.
end
()));
}
}
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
batch_sum
[
i
]
=
std
::
log
(
batch_sum
[
i
]);
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
output
(
idx
.
begin
(),
idx
.
end
())
-=
batch_sum
[
index
];
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
{
idx
[
op
.
axis
]
=
j
;
output
(
idx
.
begin
(),
idx
.
end
())
-=
batch_sum
[
i
];
}
});
});
});
});
...
...
src/targets/gpu/CMakeLists.txt
View file @
51597ed7
...
@@ -12,6 +12,8 @@ endif()
...
@@ -12,6 +12,8 @@ endif()
add_library
(
migraphx_device
add_library
(
migraphx_device
device/add.cpp
device/add.cpp
device/argmax.cpp
device/argmin.cpp
device/max.cpp
device/max.cpp
device/min.cpp
device/min.cpp
device/exp.cpp
device/exp.cpp
...
@@ -44,6 +46,8 @@ target_include_directories(migraphx_device PUBLIC $<BUILD_INTERFACE:${CMAKE_CURR
...
@@ -44,6 +46,8 @@ target_include_directories(migraphx_device PUBLIC $<BUILD_INTERFACE:${CMAKE_CURR
target_include_directories
(
migraphx_device PRIVATE $<BUILD_INTERFACE:
${
CMAKE_CURRENT_SOURCE_DIR
}
/device/include>
)
target_include_directories
(
migraphx_device PRIVATE $<BUILD_INTERFACE:
${
CMAKE_CURRENT_SOURCE_DIR
}
/device/include>
)
add_library
(
migraphx_gpu
add_library
(
migraphx_gpu
argmax.cpp
argmin.cpp
eliminate_workspace.cpp
eliminate_workspace.cpp
fuse_ops.cpp
fuse_ops.cpp
hip.cpp
hip.cpp
...
...
src/targets/gpu/argmax.cpp
0 → 100644
View file @
51597ed7
#include <migraphx/gpu/argmax.hpp>
#include <migraphx/gpu/device/argmax.hpp>
#include <migraphx/gpu/context.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
shape
hip_argmax
::
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
standard
();
return
op
.
compute_shape
({
inputs
.
at
(
0
)});
}
argument
hip_argmax
::
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
device
::
argmax
(
ctx
.
get_stream
().
get
(),
args
.
back
(),
args
.
front
(),
op
.
axis
);
return
args
.
back
();
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/argmin.cpp
0 → 100644
View file @
51597ed7
#include <migraphx/gpu/argmin.hpp>
#include <migraphx/gpu/device/argmin.hpp>
#include <migraphx/gpu/context.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
shape
hip_argmin
::
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
standard
();
return
op
.
compute_shape
({
inputs
.
at
(
0
)});
}
argument
hip_argmin
::
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
device
::
argmin
(
ctx
.
get_stream
().
get
(),
args
.
back
(),
args
.
front
(),
op
.
axis
);
return
args
.
back
();
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/device/argmax.cpp
0 → 100644
View file @
51597ed7
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/argmax.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/device/arg_op.hpp>
#include <migraphx/gpu/hip.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
argmax
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int64_t
axis
)
{
arg_op
(
argmax_op
{},
stream
,
result
,
arg
,
axis
);
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/device/argmin.cpp
0 → 100644
View file @
51597ed7
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/argmin.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/device/arg_op.hpp>
#include <migraphx/gpu/hip.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
argmin
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int64_t
axis
)
{
arg_op
(
argmin_op
{},
stream
,
result
,
arg
,
axis
);
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/device/concat.cpp
View file @
51597ed7
...
@@ -20,10 +20,12 @@ argument concat(hipStream_t stream,
...
@@ -20,10 +20,12 @@ argument concat(hipStream_t stream,
auto
&&
arg
=
args
[
j
];
auto
&&
arg
=
args
[
j
];
std
::
size_t
nelements
=
arg
.
get_shape
().
elements
();
std
::
size_t
nelements
=
arg
.
get_shape
().
elements
();
auto
offset
=
offsets
[
j
];
auto
offset
=
offsets
[
j
];
hip_visit_all
(
args
.
back
(),
arg
)([
&
](
auto
output
,
auto
input
)
{
shape
arg_shape
{
arg
.
get_shape
().
type
(),
arg
.
get_shape
().
lens
()};
hip_visit_all
(
args
.
back
(),
arg
,
arg_shape
)([
&
](
auto
output
,
auto
input
,
auto
input_shape
)
{
gs_launch
(
stream
,
nelements
)([
=
](
auto
i
)
{
gs_launch
(
stream
,
nelements
)([
=
](
auto
i
)
{
auto
idx
=
output
.
get_shape
().
index
(
input
.
get_shape
().
multi
(
i
));
auto
input_idx
=
input_shape
.
multi
(
i
);
output
.
data
()[
idx
+
offset
]
=
input
.
data
()[
i
];
auto
idx
=
output
.
get_shape
().
index
(
input_idx
);
output
.
data
()[
idx
+
offset
]
=
input
[
input_idx
];
});
});
});
});
}
}
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment