Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
511c8d8f
"tools/vscode:/vscode.git/clone" did not exist on "a46f378eb038cbe3055a09541685f509109ac937"
Commit
511c8d8f
authored
Jun 25, 2019
by
Paul
Browse files
Merge from develop
parents
9b7c44ab
2a2c146c
Changes
62
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
654 additions
and
207 deletions
+654
-207
src/targets/gpu/device/include/migraphx/gpu/device/vector.hpp
...targets/gpu/device/include/migraphx/gpu/device/vector.hpp
+76
-0
src/targets/gpu/device/include/migraphx/gpu/device/visit.hpp
src/targets/gpu/device/include/migraphx/gpu/device/visit.hpp
+170
-0
src/targets/gpu/device/logsoftmax.cpp
src/targets/gpu/device/logsoftmax.cpp
+26
-30
src/targets/gpu/device/pad.cpp
src/targets/gpu/device/pad.cpp
+20
-17
src/targets/gpu/device/softmax.cpp
src/targets/gpu/device/softmax.cpp
+65
-0
src/targets/gpu/fuse_ops.cpp
src/targets/gpu/fuse_ops.cpp
+3
-9
src/targets/gpu/gather.cpp
src/targets/gpu/gather.cpp
+2
-4
src/targets/gpu/include/migraphx/gpu/device/gather.hpp
src/targets/gpu/include/migraphx/gpu/device/gather.hpp
+1
-4
src/targets/gpu/include/migraphx/gpu/device/logsoftmax.hpp
src/targets/gpu/include/migraphx/gpu/device/logsoftmax.hpp
+1
-4
src/targets/gpu/include/migraphx/gpu/device/softmax.hpp
src/targets/gpu/include/migraphx/gpu/device/softmax.hpp
+20
-0
src/targets/gpu/include/migraphx/gpu/softmax.hpp
src/targets/gpu/include/migraphx/gpu/softmax.hpp
+35
-1
src/targets/gpu/logsoftmax.cpp
src/targets/gpu/logsoftmax.cpp
+3
-4
src/targets/gpu/lowering.cpp
src/targets/gpu/lowering.cpp
+1
-1
src/targets/gpu/softmax.cpp
src/targets/gpu/softmax.cpp
+12
-0
src/tf/CMakeLists.txt
src/tf/CMakeLists.txt
+1
-1
src/tf/tf.cpp
src/tf/tf.cpp
+127
-36
test/CMakeLists.txt
test/CMakeLists.txt
+2
-2
test/cpu_ops_test.cpp
test/cpu_ops_test.cpp
+46
-66
test/eliminate_pad_test.cpp
test/eliminate_pad_test.cpp
+0
-19
test/gpu/miopen.cpp
test/gpu/miopen.cpp
+43
-9
No files found.
src/targets/gpu/device/include/migraphx/gpu/device/vector.hpp
0 → 100644
View file @
511c8d8f
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_VECTOR_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_VECTOR_HPP
#include <migraphx/gpu/device/types.hpp>
#include <vector>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
template
<
class
T
,
std
::
size_t
N
>
struct
hip_vector
{
MIGRAPHX_DEVICE_CONSTEXPR
hip_vector
()
=
default
;
MIGRAPHX_DEVICE_CONSTEXPR
hip_vector
(
std
::
size_t
s
)
:
len
(
s
)
{}
template
<
class
Iterator
>
__device__
__host__
hip_vector
(
Iterator
start
,
Iterator
last
)
{
auto
it
=
std
::
copy
(
start
,
last
,
d
);
len
=
std
::
distance
(
d
,
it
);
}
__device__
__host__
hip_vector
(
std
::
initializer_list
<
T
>
x
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
d
);
len
=
x
.
size
();
}
MIGRAPHX_DEVICE_CONSTEXPR
T
&
operator
[](
std
::
size_t
i
)
{
return
d
[
i
];
}
MIGRAPHX_DEVICE_CONSTEXPR
const
T
&
operator
[](
std
::
size_t
i
)
const
{
return
d
[
i
];
}
MIGRAPHX_DEVICE_CONSTEXPR
T
&
front
()
{
return
d
[
0
];
}
MIGRAPHX_DEVICE_CONSTEXPR
const
T
&
front
()
const
{
return
d
[
0
];
}
MIGRAPHX_DEVICE_CONSTEXPR
T
&
back
()
{
return
d
[
size
()
-
1
];
}
MIGRAPHX_DEVICE_CONSTEXPR
const
T
&
back
()
const
{
return
d
[
size
()
-
1
];
}
MIGRAPHX_DEVICE_CONSTEXPR
T
*
data
()
{
return
d
;
}
MIGRAPHX_DEVICE_CONSTEXPR
const
T
*
data
()
const
{
return
d
;
}
MIGRAPHX_DEVICE_CONSTEXPR
std
::
size_t
size
()
const
{
return
len
;
}
MIGRAPHX_DEVICE_CONSTEXPR
T
*
begin
()
{
return
d
;
}
MIGRAPHX_DEVICE_CONSTEXPR
const
T
*
begin
()
const
{
return
d
;
}
MIGRAPHX_DEVICE_CONSTEXPR
T
*
end
()
{
return
d
+
size
();
}
MIGRAPHX_DEVICE_CONSTEXPR
const
T
*
end
()
const
{
return
d
+
size
();
}
template
<
class
U
>
MIGRAPHX_DEVICE_CONSTEXPR
void
push_back
(
U
&&
x
)
{
d
[
len
]
=
static_cast
<
U
&&>
(
x
);
len
++
;
}
private:
T
d
[
N
]
=
{};
std
::
size_t
len
=
0
;
};
template
<
std
::
size_t
N
,
class
T
>
hip_vector
<
T
,
N
>
to_hip_vector
(
const
std
::
vector
<
T
>&
x
)
{
hip_vector
<
T
,
N
>
result
(
x
.
size
());
std
::
copy
(
x
.
begin
(),
x
.
end
(),
result
.
begin
());
return
result
;
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/device/include/migraphx/gpu/device/visit.hpp
0 → 100644
View file @
511c8d8f
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_VISIT_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_VISIT_HPP
#include <migraphx/gpu/device/tensor_view.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
template
<
class
F
>
void
visit_tensor_size
(
std
::
size_t
n
,
F
f
)
{
switch
(
n
)
{
case
1
:
{
f
(
std
::
integral_constant
<
std
::
size_t
,
1
>
{});
break
;
}
case
2
:
{
f
(
std
::
integral_constant
<
std
::
size_t
,
2
>
{});
break
;
}
case
3
:
{
f
(
std
::
integral_constant
<
std
::
size_t
,
3
>
{});
break
;
}
case
4
:
{
f
(
std
::
integral_constant
<
std
::
size_t
,
4
>
{});
break
;
}
case
5
:
{
f
(
std
::
integral_constant
<
std
::
size_t
,
5
>
{});
break
;
}
default:
throw
std
::
runtime_error
(
"Unknown tensor size"
);
}
}
inline
shape
get_shape
(
const
shape
&
x
)
{
return
x
;
}
template
<
class
T
>
auto
get_shape
(
const
T
&
x
)
->
decltype
(
x
.
get_shape
())
{
return
x
.
get_shape
();
}
template
<
class
V
,
class
F
,
class
...
Ts
>
void
hip_visit_all_impl
(
const
shape
&
s
,
F
f
,
V
&&
v
,
Ts
&&
...
xs
)
{
std
::
initializer_list
<
migraphx
::
shape
::
type_t
>
types
=
{
get_shape
(
xs
).
type
()...};
if
(
!
std
::
all_of
(
types
.
begin
(),
types
.
end
(),
[
&
](
migraphx
::
shape
::
type_t
t
)
{
return
t
==
s
.
type
();
}))
MIGRAPHX_THROW
(
"Types must be the same"
);
std
::
initializer_list
<
std
::
size_t
>
ranks
=
{
get_shape
(
xs
).
lens
().
size
()...};
if
(
!
std
::
all_of
(
ranks
.
begin
(),
ranks
.
end
(),
[
&
](
std
::
size_t
r
)
{
return
r
==
s
.
lens
().
size
();
}))
MIGRAPHX_THROW
(
"Ranks must be the same"
);
visit_tensor_size
(
s
.
lens
().
size
(),
[
&
](
auto
ndim
)
{
s
.
visit_type
([
&
](
auto
as
)
{
v
(
f
(
xs
,
ndim
,
as
)...);
});
});
}
template
<
class
V
,
class
F
,
class
...
Ts
>
void
hip_visit_views_impl
(
const
shape
&
s
,
F
f
,
V
&&
v
,
Ts
&&
...
xs
)
{
std
::
initializer_list
<
std
::
size_t
>
ranks
=
{
get_shape
(
xs
).
lens
().
size
()...};
if
(
!
std
::
all_of
(
ranks
.
begin
(),
ranks
.
end
(),
[
&
](
std
::
size_t
r
)
{
return
r
==
s
.
lens
().
size
();
}))
MIGRAPHX_THROW
(
"Ranks must be the same"
);
visit_tensor_size
(
s
.
lens
().
size
(),
[
&
](
auto
ndim
)
{
v
(
f
(
xs
,
ndim
)...);
});
}
template
<
class
F
>
struct
hip_convert
{
F
f
;
template
<
class
RawData
,
class
N
,
class
As
>
auto
operator
()(
RawData
x
,
N
ndim
,
As
as
)
const
->
decltype
(
make_hip_view
<
ndim
>
(
x
.
get_shape
(),
f
(
as
.
from
(
x
.
data
()))))
{
return
make_hip_view
<
ndim
>
(
x
.
get_shape
(),
f
(
as
.
from
(
x
.
data
())));
}
template
<
class
N
,
class
As
>
auto
operator
()(
const
shape
&
s
,
N
ndim
,
As
)
const
{
return
make_hip_shape
<
ndim
>
(
s
);
}
};
template
<
class
F
>
hip_convert
<
F
>
make_hip_convert
(
F
f
)
{
return
{
f
};
}
template
<
class
F
>
struct
hip_convert_view
{
F
f
;
template
<
class
T
,
class
N
>
auto
operator
()(
tensor_view
<
T
>
x
,
N
ndim
)
const
{
return
make_hip_view
<
ndim
>
(
f
(
x
));
}
template
<
class
N
>
auto
operator
()(
const
shape
&
s
,
N
ndim
)
const
{
return
make_hip_shape
<
ndim
>
(
s
);
}
};
template
<
class
F
>
hip_convert_view
<
F
>
make_hip_convert_view
(
F
f
)
{
return
{
f
};
}
template
<
class
T
,
class
...
Ts
>
auto
hip_visit_all
(
T
&&
x
,
Ts
&&
...
xs
)
{
return
[
&
](
auto
f
)
{
hip_visit_all_impl
(
get_shape
(
x
),
make_hip_convert
([](
auto
*
p
)
{
return
device_cast
(
p
);
}),
f
,
x
,
xs
...);
};
}
template
<
std
::
size_t
N
,
class
T
,
class
...
Ts
>
auto
hip_vec_visit_all
(
T
&&
x
,
Ts
&&
...
xs
)
{
return
[
&
](
auto
f
)
{
hip_visit_all_impl
(
get_shape
(
x
),
make_hip_convert
([](
auto
*
p
)
{
return
as_vec
<
N
>
(
device_cast
(
p
));
}),
f
,
x
,
xs
...);
};
}
template
<
class
T
,
class
...
Ts
>
auto
hip_pointer_visit_all
(
T
&&
x
,
Ts
&&
...
xs
)
{
return
[
&
](
auto
f
)
{
visit_all
(
x
,
xs
...)([
&
](
auto
...
vs
)
{
f
(
device_cast
(
vs
.
data
())...);
});
};
}
template
<
class
T
,
class
...
Ts
>
auto
hip_visit_views
(
T
&&
x
,
Ts
&&
...
xs
)
{
return
[
&
](
auto
f
)
{
hip_visit_views_impl
(
get_shape
(
x
),
make_hip_convert_view
([](
auto
v
)
{
return
device_cast
(
v
);
}),
f
,
x
,
xs
...);
};
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/device/logsoftmax.cpp
View file @
511c8d8f
...
...
@@ -11,57 +11,53 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace
gpu
{
namespace
device
{
argument
logsoftmax
(
hipStream_t
stream
,
const
migraphx
::
shape
&
output_shape
,
std
::
vector
<
migraphx
::
argument
>
args
,
int
axis
)
argument
logsoftmax
(
hipStream_t
stream
,
argument
result
,
argument
arg
,
int
axis
)
{
auto
lens
=
output_shape
.
lens
();
std
::
size_t
batch_size
=
std
::
accumulate
(
lens
.
begin
(),
lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<
std
::
size_t
>
());
std
::
size_t
n_dims
=
std
::
accumulate
(
lens
.
begin
()
+
axis
,
lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<
std
::
size_t
>
());
migraphx
::
shape
comp_shape
{
output_shape
.
type
(),
{
batch_size
,
n_dims
}};
auto
lens
=
result
.
get_shape
().
lens
();
auto
num_in_batch
=
lens
[
axis
];
auto
batch_lens
=
lens
;
batch_lens
[
axis
]
=
1
;
shape
batch_shape
{
result
.
get_shape
().
type
(),
batch_lens
};
visit_all
(
args
.
back
(),
args
.
front
())([
&
](
auto
output
,
auto
input
)
{
const
auto
*
input_ptr
=
device_cast
(
input
.
data
());
auto
*
output_ptr
=
device_cast
(
output
.
data
());
hip_visit_all
(
result
,
arg
,
batch_shape
)([
&
](
auto
output
,
auto
input
,
auto
batch
)
{
// each thread is for one item in the batch
gs_launch
(
stream
,
batch_size
)([
=
](
auto
i
)
{
std
::
size_t
row_start
=
i
*
n_dims
;
gs_launch
(
stream
,
batch_shape
.
elements
())([
=
](
auto
i
)
{
auto
batch_idx
=
batch
.
multi
(
i
);
auto
data_idx
=
batch_idx
;
// get max
auto
batch_max
=
input
_ptr
[
row_start
];
for
(
std
::
size_t
j
=
1
;
j
<
n
_dims
;
++
j
)
auto
batch_max
=
input
[
batch_idx
];
for
(
std
::
size_t
j
=
1
;
j
<
n
um_in_batch
;
++
j
)
{
auto
ind
=
row_start
+
j
;
batch_max
=
std
::
max
(
to_hip_type
(
batch_max
),
to_hip_type
(
input
_ptr
[
ind
]));
data_idx
[
axis
]
=
j
;
batch_max
=
std
::
max
(
to_hip_type
(
batch_max
),
to_hip_type
(
input
[
data_idx
]));
}
for
(
std
::
size_t
j
=
0
;
j
<
n
_dims
;
++
j
)
for
(
std
::
size_t
j
=
0
;
j
<
n
um_in_batch
;
++
j
)
{
auto
ind
=
row_start
+
j
;
output
_ptr
[
ind
]
=
input_ptr
[
ind
]
-
batch_max
;
data_idx
[
axis
]
=
j
;
output
[
data_idx
]
=
input
[
data_idx
]
-
batch_max
;
}
auto
batch_sum
=
::
exp
(
to_hip_type
(
output
_ptr
[
row_start
]));
for
(
std
::
size_t
j
=
1
;
j
<
n
_dims
;
++
j
)
auto
batch_sum
=
::
exp
(
to_hip_type
(
output
[
batch_idx
]));
for
(
std
::
size_t
j
=
1
;
j
<
n
um_in_batch
;
++
j
)
{
auto
ind
=
row_start
+
j
;
batch_sum
+=
::
exp
(
to_hip_type
(
output
_ptr
[
ind
]));
data_idx
[
axis
]
=
j
;
batch_sum
+=
::
exp
(
to_hip_type
(
output
[
data_idx
]));
}
batch_sum
=
::
log
(
to_hip_type
(
batch_sum
));
for
(
std
::
size_t
j
=
0
;
j
<
n
_dims
;
++
j
)
for
(
std
::
size_t
j
=
0
;
j
<
n
um_in_batch
;
++
j
)
{
auto
ind
=
row_start
+
j
;
output
_ptr
[
ind
]
-=
batch_sum
;
data_idx
[
axis
]
=
j
;
output
[
data_idx
]
-=
batch_sum
;
}
});
});
return
args
.
back
()
;
return
result
;
}
}
// namespace device
...
...
src/targets/gpu/device/pad.cpp
View file @
511c8d8f
...
...
@@ -4,6 +4,7 @@
#include <migraphx/gpu/device/pad.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/float_equal.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -14,24 +15,26 @@ argument
pad
(
hipStream_t
stream
,
argument
result
,
argument
arg1
,
float
value
,
std
::
vector
<
std
::
int64_t
>
pads
)
{
std
::
size_t
nelements
=
arg1
.
get_shape
().
elements
();
hip_visit_all
(
result
,
arg1
)([
&
](
auto
output
,
auto
input
)
{
using
type
=
typename
decltype
(
output
)
::
value_type
;
using
hip_index
=
typename
decltype
(
output
)
::
hip_index
;
type
device_val
=
value
;
if
(
float_equal
(
value
,
std
::
numeric_limits
<
float
>::
lowest
()))
{
device_val
=
device_cast
(
std
::
numeric_limits
<
type
>::
lowest
());
}
gs_launch
(
stream
,
result
.
get_shape
().
elements
())([
=
](
auto
i
)
{
output
.
data
()[
i
]
=
device_val
;
});
nary
(
stream
,
result
)([
=
]
{
return
value
;
});
visit_all
(
result
,
arg1
)([
&
](
auto
output
,
auto
input
)
{
visit_tensor_size
(
result
.
get_shape
().
lens
().
size
(),
[
&
](
auto
ndim
)
{
std
::
size_t
offsets
[
ndim
];
std
::
copy
(
pads
.
begin
(),
pads
.
begin
()
+
ndim
,
offsets
);
auto
*
outptr
=
output
.
data
();
const
auto
*
inptr
=
input
.
data
();
hip_tensor_descriptor
<
ndim
>
desc_input
(
input
.
get_shape
());
hip_tensor_descriptor
<
ndim
>
desc_output
(
output
.
get_shape
());
hip_index
offsets
;
std
::
copy
(
pads
.
begin
(),
pads
.
begin
()
+
offsets
.
size
(),
offsets
.
begin
());
gs_launch
(
stream
,
nelements
)([
=
](
auto
i
)
{
auto
idx
=
desc_
input
.
multi
(
i
);
for
(
std
::
size_t
j
=
0
;
j
<
ndim
;
j
++
)
auto
idx
=
input
.
get_shape
()
.
multi
(
i
);
for
(
std
::
size_t
j
=
0
;
j
<
offsets
.
size
()
;
j
++
)
{
idx
[
j
]
+=
offsets
[
j
];
}
outptr
[
desc_output
.
linear
(
idx
)]
=
inptr
[
i
];
});
output
[
idx
]
=
input
.
data
()[
i
];
});
});
return
result
;
...
...
src/targets/gpu/device/softmax.cpp
0 → 100644
View file @
511c8d8f
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/softmax.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/hip.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
argument
softmax
(
hipStream_t
stream
,
argument
result
,
argument
arg
,
int
axis
)
{
auto
lens
=
result
.
get_shape
().
lens
();
auto
batch_lens
=
lens
;
size_t
n_dims
=
lens
[
axis
];
batch_lens
[
axis
]
=
1
;
shape
batch_shape
{
result
.
get_shape
().
type
(),
batch_lens
};
hip_visit_all
(
result
,
arg
,
batch_shape
)([
&
](
auto
output
,
auto
input
,
auto
batch
)
{
// each thread is for one item in the batch
gs_launch
(
stream
,
batch_shape
.
elements
())([
=
](
auto
i
)
{
auto
batch_idx
=
batch
.
multi
(
i
);
auto
data_idx
=
batch_idx
;
// get max
auto
batch_max
=
input
[
batch_idx
];
for
(
std
::
size_t
j
=
1
;
j
<
n_dims
;
++
j
)
{
data_idx
[
axis
]
=
j
;
batch_max
=
std
::
max
(
to_hip_type
(
batch_max
),
to_hip_type
(
input
[
data_idx
]));
}
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
{
data_idx
[
axis
]
=
j
;
output
[
data_idx
]
=
exp
(
to_hip_type
(
input
[
data_idx
]
-
batch_max
));
}
auto
batch_sum
=
output
[
batch_idx
];
for
(
std
::
size_t
j
=
1
;
j
<
n_dims
;
++
j
)
{
data_idx
[
axis
]
=
j
;
batch_sum
+=
output
[
data_idx
];
}
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
{
data_idx
[
axis
]
=
j
;
output
[
data_idx
]
=
output
[
data_idx
]
/
batch_sum
;
}
});
});
return
result
;
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/fuse_ops.cpp
View file @
511c8d8f
...
...
@@ -5,6 +5,7 @@
#include <migraphx/gpu/device/add_relu.hpp>
#include <migraphx/gpu/device/add.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/array.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -122,13 +123,6 @@ MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins)
s
.
strides
()[
1
]
!=
0
and
s
.
strides
()[
2
]
==
0
and
s
.
strides
()[
3
]
==
0
;
}
// TODO: Move to another header
template
<
class
T
,
class
...
Ts
>
std
::
array
<
T
,
sizeof
...(
Ts
)
+
1
>
make_array
(
T
x
,
Ts
...
xs
)
{
return
{
std
::
move
(
x
),
std
::
move
(
static_cast
<
T
>
(
xs
))...};
}
MIGRAPHX_PRED_MATCHER
(
fusable_conv
,
instruction_ref
ins
)
{
if
(
ins
->
name
()
!=
"gpu::convolution"
)
...
...
@@ -408,8 +402,8 @@ void fuse_ops::apply(program& p) const
// clang-format off
match
::
find_matches
(
p
,
find_triadd
{});
match
::
find_matches
(
p
,
find_conv_bias_relu
{
ctx
},
find_conv_bias
{
ctx
},
//
find_conv_bias_relu{ctx},
//
find_conv_bias{ctx},
find_add_relu
{}
);
// clang-format on
...
...
src/targets/gpu/gather.cpp
View file @
511c8d8f
...
...
@@ -12,11 +12,9 @@ shape hip_gather::compute_shape(std::vector<shape> inputs) const
return
op
.
compute_shape
(
inputs
);
}
argument
hip_gather
::
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
argument
hip_gather
::
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
return
device
::
gather
(
ctx
.
get_stream
().
get
(),
output_shape
,
args
,
op
.
axis
);
return
device
::
gather
(
ctx
.
get_stream
().
get
(),
args
.
back
(),
args
[
0
]
,
args
[
1
]
,
op
.
axis
);
}
}
// namespace gpu
...
...
src/targets/gpu/include/migraphx/gpu/device/gather.hpp
View file @
511c8d8f
...
...
@@ -10,10 +10,7 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace
gpu
{
namespace
device
{
argument
gather
(
hipStream_t
stream
,
const
migraphx
::
shape
&
output_shape
,
std
::
vector
<
migraphx
::
argument
>
args
,
int
axis
);
argument
gather
(
hipStream_t
stream
,
argument
result
,
argument
arg1
,
argument
arg2
,
int
axis
);
}
// namespace device
}
// namespace gpu
...
...
src/targets/gpu/include/migraphx/gpu/device/logsoftmax.hpp
View file @
511c8d8f
...
...
@@ -10,10 +10,7 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace
gpu
{
namespace
device
{
argument
logsoftmax
(
hipStream_t
stream
,
const
migraphx
::
shape
&
output_shape
,
std
::
vector
<
migraphx
::
argument
>
args
,
int
axis
);
argument
logsoftmax
(
hipStream_t
stream
,
argument
result
,
argument
arg
,
int
axis
);
}
// namespace device
}
// namespace gpu
...
...
src/targets/gpu/include/migraphx/gpu/device/softmax.hpp
0 → 100644
View file @
511c8d8f
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_SOFTMAX_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_SOFTMAX_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
argument
softmax
(
hipStream_t
stream
,
argument
result
,
argument
arg
,
int
axis
);
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/softmax.hpp
View file @
511c8d8f
#ifndef MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP
#define MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP
#include <migraphx/shape.hpp>
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op/softmax.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/contiguous.hpp>
#include <migraphx/gpu/device/add.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/context.hpp>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -20,6 +34,26 @@ struct miopen_softmax
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"miopen::softmax"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
;
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
{
return
shapes
.
size
()
-
1
;
}
};
struct
hip_softmax
{
op
::
softmax
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::softmax"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/logsoftmax.cpp
View file @
511c8d8f
...
...
@@ -15,11 +15,10 @@ shape hip_logsoftmax::compute_shape(const std::vector<shape>& inputs) const
return
op
.
compute_shape
({
inputs
.
at
(
0
)});
}
argument
hip_logsoftmax
::
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
argument
hip_logsoftmax
::
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
return
device
::
logsoftmax
(
ctx
.
get_stream
().
get
(),
output_shape
,
args
,
op
.
axis
);
return
device
::
logsoftmax
(
ctx
.
get_stream
().
get
(),
args
[
1
]
,
args
[
0
]
,
op
.
axis
);
}
}
// namespace gpu
...
...
src/targets/gpu/lowering.cpp
View file @
511c8d8f
...
...
@@ -99,7 +99,7 @@ struct miopen_apply
add_extend_op
<
miopen_gemm
,
op
::
dot
>
(
"dot"
);
add_extend_op
<
miopen_contiguous
,
op
::
contiguous
>
(
"contiguous"
);
add_extend_op
<
hip_concat
,
op
::
concat
>
(
"concat"
);
add_extend_op
<
miopen
_softmax
,
op
::
softmax
>
(
"softmax"
);
add_extend_op
<
hip
_softmax
,
op
::
softmax
>
(
"softmax"
);
add_extend_op
<
hip_logsoftmax
,
op
::
logsoftmax
>
(
"logsoftmax"
);
add_extend_op
<
hip_gather
,
op
::
gather
>
(
"gather"
);
add_extend_op
<
hip_pad
,
op
::
pad
>
(
"pad"
);
...
...
src/targets/gpu/softmax.cpp
View file @
511c8d8f
#include <migraphx/gpu/softmax.hpp>
#include <migraphx/gpu/device/softmax.hpp>
#include <migraphx/gpu/context.hpp>
namespace
migraphx
{
...
...
@@ -30,6 +31,17 @@ argument miopen_softmax::compute(context& ctx,
return
args
[
1
];
}
shape
hip_softmax
::
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
standard
();
return
op
.
compute_shape
({
inputs
.
at
(
0
)});
}
argument
hip_softmax
::
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
return
device
::
softmax
(
ctx
.
get_stream
().
get
(),
args
[
1
],
args
[
0
],
op
.
axis
);
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/tf/CMakeLists.txt
View file @
511c8d8f
...
...
@@ -31,7 +31,7 @@ rocm_install_targets(
add_executable
(
read_tf read_tf.cpp
)
rocm_clang_tidy_check
(
read_tf
)
target_link_libraries
(
read_tf migraphx_tf
)
target_link_libraries
(
read_tf migraphx_tf
migraphx_cpu
)
if
(
MIGRAPHX_ENABLE_GPU
)
add_executable
(
verify_tf verify_tf.cpp
)
...
...
src/tf/tf.cpp
View file @
511c8d8f
...
...
@@ -17,6 +17,7 @@
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
#include <migraphx/pad_calc.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -321,12 +322,64 @@ struct tf_parser
parse_conv
(
const
std
::
string
&
,
attribute_map
attributes
,
std
::
vector
<
instruction_ref
>
args
)
{
op
::
convolution
op
;
if
(
contains
(
attributes
,
"strides"
))
{
std
::
vector
<
size_t
>
stride
;
copy
(
attributes
.
at
(
"strides"
).
list
().
i
(),
std
::
back_inserter
(
stride
));
reorder_data
(
stride
);
if
(
stride
.
size
()
!=
4
)
{
MIGRAPHX_THROW
(
"strides should have 4 values"
);
}
op
.
stride
[
0
]
=
stride
[
2
];
op
.
stride
[
1
]
=
stride
[
3
];
}
if
(
contains
(
attributes
,
"dilations"
))
{
std
::
vector
<
size_t
>
dilation
;
copy
(
attributes
.
at
(
"dilations"
).
list
().
i
(),
std
::
back_inserter
(
dilation
));
reorder_data
(
dilation
);
if
(
dilation
.
size
()
!=
4
)
{
MIGRAPHX_THROW
(
"dilation should have 4 values"
);
}
op
.
dilation
[
0
]
=
dilation
[
2
];
op
.
dilation
[
1
]
=
dilation
[
3
];
}
auto
weights
=
to_kcxy
(
args
[
1
]);
auto
l0
=
args
[
0
];
if
(
contains
(
attributes
,
"padding"
))
{
const
std
::
string
&
pad_mode
=
attributes
.
at
(
"padding"
).
s
();
if
(
pad_mode
.
find
(
"SAME"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
same
;
std
::
vector
<
size_t
>
weight_dims
=
weights
->
get_shape
().
lens
();
size_t
weight_h
=
weight_dims
[
2
];
size_t
weight_w
=
weight_dims
[
3
];
auto
input_dims
=
l0
->
get_shape
().
lens
();
size_t
input_h
=
input_dims
[
2
];
size_t
input_w
=
input_dims
[
3
];
std
::
vector
<
int64_t
>
pads
(
input_dims
.
size
());
calculate_padding
(
0
,
pads
,
input_h
,
op
.
stride
[
0
],
op
.
dilation
[
0
],
weight_h
);
calculate_padding
(
1
,
pads
,
input_w
,
op
.
stride
[
1
],
op
.
dilation
[
1
],
weight_w
);
if
(
pads
[
0
]
!=
pads
[
2
]
||
pads
[
1
]
!=
pads
[
3
])
{
std
::
vector
<
int64_t
>
padding
=
{
0
,
0
,
pads
[
0
],
pads
[
1
],
0
,
0
,
pads
[
2
],
pads
[
3
]};
l0
=
prog
.
add_instruction
(
migraphx
::
op
::
pad
{
padding
},
l0
);
}
else
{
op
.
padding
[
0
]
=
pads
[
0
];
op
.
padding
[
1
]
=
pads
[
1
];
}
}
else
if
(
pad_mode
.
find
(
"VALID"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
valid
;
}
else
if
(
pad_mode
.
find
(
"EXPLICIT"
)
!=
std
::
string
::
npos
)
{
...
...
@@ -344,6 +397,17 @@ struct tf_parser
op
.
padding
[
1
]
=
padding
[
1
];
}
}
return
prog
.
add_instruction
(
op
,
{
l0
,
to_kcxy
(
args
[
1
])});
}
instruction_ref
parse_depthwiseconv
(
const
std
::
string
&
,
attribute_map
attributes
,
std
::
vector
<
instruction_ref
>
args
)
{
op
::
convolution
op
;
size_t
num_channels
=
args
[
0
]
->
get_shape
().
lens
()[
1
];
op
.
group
=
num_channels
;
if
(
contains
(
attributes
,
"strides"
))
{
std
::
vector
<
size_t
>
stride
;
...
...
@@ -356,6 +420,8 @@ struct tf_parser
op
.
stride
[
0
]
=
stride
[
2
];
op
.
stride
[
1
]
=
stride
[
3
];
}
auto
weights
=
to_kcxy
(
args
[
1
]);
if
(
contains
(
attributes
,
"dilations"
))
{
std
::
vector
<
size_t
>
dilation
;
...
...
@@ -368,37 +434,42 @@ struct tf_parser
op
.
dilation
[
0
]
=
dilation
[
2
];
op
.
dilation
[
1
]
=
dilation
[
3
];
}
return
prog
.
add_instruction
(
op
,
{
args
[
0
],
to_kcxy
(
args
[
1
])});
}
instruction_ref
parse_depthwiseconv
(
const
std
::
string
&
,
attribute_map
attributes
,
std
::
vector
<
instruction_ref
>
args
)
{
op
::
convolution
op
;
size_t
num_channels
=
args
[
0
]
->
get_shape
().
lens
()[
1
];
op
.
group
=
num_channels
;
auto
l0
=
args
[
0
];
if
(
contains
(
attributes
,
"padding"
))
{
const
std
::
string
&
pad_mode
=
attributes
.
at
(
"padding"
).
s
();
if
(
pad_mode
.
find
(
"SAME"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
same
;
std
::
vector
<
size_t
>
weight_dims
=
weights
->
get_shape
().
lens
();
size_t
weight_h
=
weight_dims
[
2
];
size_t
weight_w
=
weight_dims
[
3
];
auto
input_dims
=
l0
->
get_shape
().
lens
();
size_t
input_h
=
input_dims
[
2
];
size_t
input_w
=
input_dims
[
3
];
std
::
vector
<
int64_t
>
pads
(
input_dims
.
size
());
calculate_padding
(
0
,
pads
,
input_h
,
op
.
stride
[
0
],
op
.
dilation
[
0
],
weight_h
);
calculate_padding
(
1
,
pads
,
input_w
,
op
.
stride
[
1
],
op
.
dilation
[
1
],
weight_w
);
if
(
pads
[
0
]
!=
pads
[
2
]
||
pads
[
1
]
!=
pads
[
3
])
{
std
::
vector
<
int64_t
>
padding
=
{
0
,
0
,
pads
[
0
],
pads
[
1
],
0
,
0
,
pads
[
2
],
pads
[
3
]};
l0
=
prog
.
add_instruction
(
migraphx
::
op
::
pad
{
padding
},
l0
);
}
}
if
(
contains
(
attributes
,
"strides"
))
else
{
std
::
vector
<
size_t
>
stride
;
copy
(
attributes
.
at
(
"strides"
).
list
().
i
(),
std
::
back_inserter
(
stride
));
reorder_data
(
stride
);
if
(
stride
.
size
()
!=
4
)
op
.
padding
[
0
]
=
pads
[
0
];
op
.
padding
[
1
]
=
pads
[
1
];
}
}
else
if
(
pad_mode
.
find
(
"VALID"
)
!=
std
::
string
::
npos
)
{
MIGRAPHX_THROW
(
"strides should have 4 values"
)
;
op
.
padding_mode
=
op
::
padding_mode_t
::
valid
;
}
op
.
stride
[
0
]
=
stride
[
2
];
op
.
stride
[
1
]
=
stride
[
3
];
}
auto
weights
=
to_kcxy
(
args
[
1
]);
std
::
vector
<
int64_t
>
new_weights_shape
;
copy
(
weights
->
get_shape
().
lens
(),
std
::
back_inserter
(
new_weights_shape
));
...
...
@@ -414,7 +485,7 @@ struct tf_parser
auto
new_weights
=
prog
.
add_instruction
(
op
::
reshape
{
new_weights_shape
},
make_contiguous
(
weights
));
return
prog
.
add_instruction
(
op
,
{
args
[
0
]
,
new_weights
});
return
prog
.
add_instruction
(
op
,
{
l0
,
new_weights
});
}
instruction_ref
...
...
@@ -523,18 +594,6 @@ struct tf_parser
{
op
::
pooling
op
{
starts_with
(
name
,
"Max"
)
?
"max"
:
"average"
};
if
(
contains
(
attributes
,
"padding"
))
{
const
std
::
string
&
pad_mode
=
attributes
.
at
(
"padding"
).
s
();
if
(
pad_mode
.
find
(
"SAME"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
same
;
}
else
if
(
pad_mode
.
find
(
"VALID"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
valid
;
}
}
if
(
contains
(
attributes
,
"strides"
))
{
std
::
vector
<
size_t
>
stride
;
...
...
@@ -559,7 +618,39 @@ struct tf_parser
op
.
lengths
[
0
]
=
ksize
[
2
];
op
.
lengths
[
1
]
=
ksize
[
3
];
}
return
prog
.
add_instruction
(
op
,
args
[
0
]);
auto
l0
=
args
[
0
];
if
(
contains
(
attributes
,
"padding"
))
{
const
std
::
string
&
pad_mode
=
attributes
.
at
(
"padding"
).
s
();
if
(
pad_mode
.
find
(
"SAME"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
same
;
auto
input_dims
=
l0
->
get_shape
().
lens
();
size_t
input_h
=
input_dims
[
2
];
size_t
input_w
=
input_dims
[
3
];
std
::
vector
<
int64_t
>
pads
(
input_dims
.
size
());
calculate_padding
(
0
,
pads
,
input_h
,
op
.
stride
[
0
],
1
,
op
.
lengths
[
0
]);
calculate_padding
(
1
,
pads
,
input_w
,
op
.
stride
[
1
],
1
,
op
.
lengths
[
1
]);
if
(
pads
[
0
]
!=
pads
[
2
]
||
pads
[
1
]
!=
pads
[
3
])
{
std
::
vector
<
int64_t
>
padding
=
{
0
,
0
,
pads
[
0
],
pads
[
1
],
0
,
0
,
pads
[
2
],
pads
[
3
]};
l0
=
prog
.
add_instruction
(
migraphx
::
op
::
pad
{
padding
,
std
::
numeric_limits
<
float
>::
lowest
()},
l0
);
}
else
{
op
.
padding
[
0
]
=
pads
[
0
];
op
.
padding
[
1
]
=
pads
[
1
];
}
}
else
if
(
pad_mode
.
find
(
"VALID"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
padding_mode_t
::
valid
;
}
}
return
prog
.
add_instruction
(
op
,
l0
);
}
instruction_ref
...
...
test/CMakeLists.txt
View file @
511c8d8f
...
...
@@ -119,7 +119,7 @@ foreach(ONNX_TEST ${ONNX_TESTS})
set
(
TEST_NAME test_
${
BASE_NAME
}
)
add_executable
(
${
TEST_NAME
}
${
TES_ONNX_DIR
}
/
${
ONNX_TEST
}
)
rocm_clang_tidy_check
(
${
TEST_NAME
}
)
target_link_libraries
(
${
TEST_NAME
}
migraphx_onnx
)
target_link_libraries
(
${
TEST_NAME
}
migraphx_onnx
migraphx_cpu
)
target_include_directories
(
${
TEST_NAME
}
PUBLIC include
)
add_test
(
NAME
${
TEST_NAME
}
COMMAND $<TARGET_FILE:
${
TEST_NAME
}
> WORKING_DIRECTORY
${
CMAKE_CURRENT_SOURCE_DIR
}
/onnx
)
add_dependencies
(
tests
${
TEST_NAME
}
)
...
...
@@ -129,7 +129,7 @@ endforeach()
# tf test
add_executable
(
test_tf tf/tf_test.cpp
)
rocm_clang_tidy_check
(
test_tf
)
target_link_libraries
(
test_tf migraphx_tf
)
target_link_libraries
(
test_tf migraphx_tf
migraphx_cpu
)
target_include_directories
(
test_tf PUBLIC include
)
add_test
(
NAME test_tf COMMAND $<TARGET_FILE:test_tf> WORKING_DIRECTORY
${
CMAKE_CURRENT_SOURCE_DIR
}
/tf
)
add_dependencies
(
tests test_tf
)
...
...
test/cpu_ops_test.cpp
View file @
511c8d8f
...
...
@@ -929,6 +929,24 @@ TEST_CASE(maxpool_test)
EXPECT
(
migraphx
::
verify_range
(
results_vector
,
c
));
}
TEST_CASE
(
softmax_simple_test
)
{
migraphx
::
program
p
;
std
::
vector
<
float
>
a
=
{
0.25
,
0.75
};
std
::
vector
<
float
>
s
=
{
0.377541
,
0.622459
};
migraphx
::
shape
a_shape
{
migraphx
::
shape
::
float_type
,
{
1
,
2
}};
auto
al
=
p
.
add_literal
(
migraphx
::
literal
{
a_shape
,
a
});
p
.
add_instruction
(
migraphx
::
op
::
softmax
{
1
},
al
);
p
.
compile
(
migraphx
::
cpu
::
target
{});
auto
result
=
p
.
eval
({});
std
::
vector
<
float
>
results_vector
(
2
);
result
.
visit
([
&
](
auto
output
)
{
results_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
for
(
auto
v
:
results_vector
)
std
::
cout
<<
v
<<
"
\t
"
;
std
::
cout
<<
std
::
endl
;
EXPECT
(
migraphx
::
verify_range
(
results_vector
,
s
));
}
TEST_CASE
(
softmax_test
)
{
migraphx
::
program
p
;
...
...
@@ -1002,14 +1020,13 @@ TEST_CASE(logsoftmax_test_axis_0)
-
0.99628491
,
1.04314606
,
-
1.22943315
,
0.76930403
,
0.31106618
};
std
::
vector
<
float
>
s
=
{
-
2.71138556
,
-
5.85030702
,
-
3.74063578
,
-
4.22915517
,
-
6.15821977
,
-
5.96072346
,
-
3.57208097
,
-
5.78313166
,
-
5.51435497
,
-
3.67224195
,
-
3.88393048
,
-
2.57061599
,
-
5.54431083
,
-
6.27880025
,
-
5.1878749
,
-
6.1318955
,
-
5.29178545
,
-
4.22537886
,
-
3.75693516
,
-
7.07047099
,
-
4.45763333
,
-
4.66281846
,
-
6.18290503
,
-
4.11886536
,
-
6.17408292
,
-
4.18030052
,
-
4.64570814
,
-
4.64354473
,
-
3.06629525
,
-
3.80807681
,
-
4.69162374
,
-
5.53605222
,
-
3.20969275
,
-
4.82645674
,
-
6.63942356
,
-
4.73634471
,
-
3.86003866
,
-
5.32738981
,
-
4.22249802
,
-
4.51258693
,
-
2.41455206
,
-
3.48343199
,
-
5.86215889
,
-
4.93435935
,
-
4.83713408
,
-
2.97471885
,
-
2.16666459
,
-
3.69133151
,
-
4.71640968
,
-
5.64652924
,
-
3.60709827
,
-
5.87967748
,
-
3.8809403
,
-
4.33917815
};
-
0.135261
,
-
2.843968
,
-
0.659995
,
-
0.488413
,
-
1.051857
,
-
2.812936
,
-
0.250956
,
-
0.353985
,
-
1.155980
,
-
0.603651
,
-
0.211969
,
-
0.175371
,
-
1.336552
,
-
3.885010
,
-
1.871544
,
-
0.837083
,
-
0.887745
,
-
0.433338
,
-
1.158864
,
-
4.911197
,
-
1.147972
,
-
0.666711
,
-
0.996874
,
-
0.981418
,
-
0.851145
,
-
0.853988
,
-
0.858112
,
-
2.067420
,
-
0.059956
,
-
0.727436
,
-
0.950881
,
-
0.429689
,
-
0.061906
,
-
1.505332
,
-
1.210277
,
-
0.377970
,
-
0.791448
,
-
1.655428
,
-
1.827253
,
-
0.304828
,
-
0.020762
,
-
0.167101
,
-
0.567346
,
-
0.530319
,
-
1.045094
,
-
0.376648
,
-
0.007391
,
-
0.381670
,
-
0.720302
,
-
0.460499
,
-
0.469651
,
-
0.556740
,
-
0.554628
,
-
0.551582
};
migraphx
::
shape
a_shape
{
migraphx
::
shape
::
float_type
,
{
2
,
3
,
3
,
3
}};
auto
al
=
p
.
add_literal
(
migraphx
::
literal
{
a_shape
,
a
});
...
...
@@ -1036,14 +1053,13 @@ TEST_CASE(logsoftmax_test_axis_1)
-
0.99628491
,
1.04314606
,
-
1.22943315
,
0.76930403
,
0.31106618
};
std
::
vector
<
float
>
s
=
{
-
1.77931988
,
-
4.91824134
,
-
2.80857010
,
-
3.29708949
,
-
5.22615409
,
-
5.02865778
,
-
2.64001529
,
-
4.85106598
,
-
4.58228929
,
-
2.74017627
,
-
2.95186480
,
-
1.63855031
,
-
4.61224515
,
-
5.34673457
,
-
4.25580922
,
-
5.19982982
,
-
4.35971977
,
-
3.29331318
,
-
2.82486948
,
-
6.13840531
,
-
3.52556765
,
-
3.73075278
,
-
5.25083935
,
-
3.18679968
,
-
5.24201724
,
-
3.24823484
,
-
3.71364246
,
-
4.14309917
,
-
2.56584969
,
-
3.30763125
,
-
4.19117818
,
-
5.03560666
,
-
2.70924719
,
-
4.32601118
,
-
6.13897800
,
-
4.23589915
,
-
3.35959310
,
-
4.82694425
,
-
3.72205246
,
-
4.01214137
,
-
1.91410650
,
-
2.98298643
,
-
5.36171333
,
-
4.43391379
,
-
4.33668852
,
-
2.47427329
,
-
1.66621903
,
-
3.19088595
,
-
4.21596412
,
-
5.14608368
,
-
3.10665271
,
-
5.37923192
,
-
3.38049474
,
-
3.83873259
};
-
0.550468
,
-
2.132973
,
-
1.549746
,
-
0.650533
,
-
1.051529
,
-
2.248570
,
-
0.141017
,
-
2.028357
,
-
1.947730
,
-
1.511324
,
-
0.166597
,
-
0.379726
,
-
1.965689
,
-
1.172109
,
-
1.475721
,
-
2.700831
,
-
1.537011
,
-
0.658754
,
-
1.596017
,
-
3.353137
,
-
2.266743
,
-
1.084197
,
-
1.076214
,
-
0.406712
,
-
2.743019
,
-
0.425526
,
-
1.079083
,
-
2.139486
,
-
1.270584
,
-
1.024088
,
-
1.154231
,
-
3.201762
,
-
0.888957
,
-
0.532855
,
-
3.103583
,
-
1.221339
,
-
1.355980
,
-
3.531678
,
-
1.438510
,
-
0.975194
,
-
0.080261
,
-
1.162697
,
-
1.568557
,
-
1.398519
,
-
1.322129
,
-
0.470660
,
-
0.370953
,
-
0.907343
,
-
1.179017
,
-
3.312239
,
-
1.286363
,
-
1.586076
,
-
0.345100
,
-
0.824173
};
migraphx
::
shape
a_shape
{
migraphx
::
shape
::
float_type
,
{
2
,
3
,
3
,
3
}};
auto
al
=
p
.
add_literal
(
migraphx
::
literal
{
a_shape
,
a
});
...
...
@@ -1070,14 +1086,13 @@ TEST_CASE(logsoftmax_test_axis_2)
-
0.99628491
,
1.04314606
,
-
1.22943315
,
0.76930403
,
0.31106618
};
std
::
vector
<
float
>
s
=
{
-
0.79763715
,
-
3.93655861
,
-
1.82688737
,
-
2.31540676
,
-
4.24447136
,
-
4.04697505
,
-
1.65833256
,
-
3.86938325
,
-
3.60060656
,
-
1.81223672
,
-
2.02392525
,
-
0.71061076
,
-
3.68430560
,
-
4.41879502
,
-
3.32786967
,
-
4.27189027
,
-
3.43178022
,
-
2.36537363
,
-
1.35498658
,
-
4.66852241
,
-
2.05568475
,
-
2.26086988
,
-
3.78095645
,
-
1.71691678
,
-
3.77213434
,
-
1.77835194
,
-
2.24375956
,
-
2.74631770
,
-
1.16906822
,
-
1.91084978
,
-
2.79439671
,
-
3.63882519
,
-
1.31246572
,
-
2.92922971
,
-
4.74219653
,
-
2.83911768
,
-
2.19738500
,
-
3.66473615
,
-
2.55984436
,
-
2.84993327
,
-
0.75189840
,
-
1.82077833
,
-
4.19950523
,
-
3.27170569
,
-
3.17448042
,
-
1.65286841
,
-
0.84481415
,
-
2.36948107
,
-
3.39455924
,
-
4.32467880
,
-
2.28524783
,
-
4.55782704
,
-
2.55908986
,
-
3.01732771
};
-
0.495957
,
-
1.031212
,
-
0.245531
,
-
2.013726
,
-
1.339125
,
-
2.465619
,
-
1.356652
,
-
0.964037
,
-
2.019250
,
-
0.214522
,
-
0.289569
,
-
0.234392
,
-
2.086591
,
-
2.684439
,
-
2.851651
,
-
2.674176
,
-
1.697424
,
-
1.889155
,
-
0.401029
,
-
3.064586
,
-
1.173030
,
-
1.306912
,
-
2.177020
,
-
0.834262
,
-
2.818177
,
-
0.174415
,
-
1.361105
,
-
1.024571
,
-
0.106766
,
-
1.167645
,
-
1.072650
,
-
2.576522
,
-
0.569261
,
-
1.207483
,
-
3.679894
,
-
2.095913
,
-
0.504264
,
-
3.039291
,
-
1.290559
,
-
1.156812
,
-
0.126453
,
-
0.551493
,
-
2.506384
,
-
2.646261
,
-
1.905195
,
-
0.206994
,
-
0.191369
,
-
0.959754
,
-
1.948685
,
-
3.671233
,
-
0.875521
,
-
3.111952
,
-
1.905644
,
-
1.6076011
};
migraphx
::
shape
a_shape
{
migraphx
::
shape
::
float_type
,
{
2
,
3
,
3
,
3
}};
auto
al
=
p
.
add_literal
(
migraphx
::
literal
{
a_shape
,
a
});
...
...
@@ -1104,14 +1119,13 @@ TEST_CASE(logsoftmax_test_axis_3)
-
0.99628491
,
1.04314606
,
-
1.22943315
,
0.76930403
,
0.31106618
};
std
::
vector
<
float
>
s
=
{
-
0.33690375
,
-
3.47582521
,
-
1.36615397
,
-
0.27936556
,
-
2.20843016
,
-
2.01093385
,
-
0.22551114
,
-
2.43656183
,
-
2.16778514
,
-
1.57241522
,
-
1.78410375
,
-
0.47078926
,
-
1.06745881
,
-
1.80194823
,
-
0.71102288
,
-
2.30719726
,
-
1.46708721
,
-
0.40068062
,
-
0.42698261
,
-
3.74051844
,
-
1.12768078
,
-
1.07891856
,
-
2.59900513
,
-
0.53496546
,
-
2.56139951
,
-
0.56761711
,
-
1.03302473
,
-
2.09771276
,
-
0.52046328
,
-
1.26224484
,
-
1.76322959
,
-
2.60765807
,
-
0.28129860
,
-
0.81424303
,
-
2.62720985
,
-
0.72413100
,
-
0.65570381
,
-
2.12305496
,
-
1.01816317
,
-
2.48063402
,
-
0.38259915
,
-
1.45147908
,
-
1.84310238
,
-
0.91530284
,
-
0.81807757
,
-
1.31692881
,
-
0.50887455
,
-
2.03354147
,
-
1.48767160
,
-
2.41779116
,
-
0.37836019
,
-
2.56853147
,
-
0.56979429
,
-
1.02803214
};
-
0.336904
,
-
3.475825
,
-
1.366154
,
-
0.279366
,
-
2.208430
,
-
2.010934
,
-
0.225511
,
-
2.436562
,
-
2.167785
,
-
1.572415
,
-
1.784104
,
-
0.470789
,
-
1.067459
,
-
1.801948
,
-
0.711023
,
-
2.307197
,
-
1.467087
,
-
0.400681
,
-
0.426983
,
-
3.740518
,
-
1.127681
,
-
1.078919
,
-
2.599005
,
-
0.534965
,
-
2.561400
,
-
0.567617
,
-
1.033025
,
-
2.097713
,
-
0.520463
,
-
1.262245
,
-
1.763230
,
-
2.607658
,
-
0.281299
,
-
0.814243
,
-
2.627210
,
-
0.724131
,
-
0.655704
,
-
2.123055
,
-
1.018163
,
-
2.480634
,
-
0.382599
,
-
1.451479
,
-
1.843102
,
-
0.915303
,
-
0.818078
,
-
1.316929
,
-
0.508875
,
-
2.033541
,
-
1.487672
,
-
2.417791
,
-
0.378360
,
-
2.568531
,
-
0.569794
,
-
1.028032
};
migraphx
::
shape
a_shape
{
migraphx
::
shape
::
float_type
,
{
2
,
3
,
3
,
3
}};
auto
al
=
p
.
add_literal
(
migraphx
::
literal
{
a_shape
,
a
});
...
...
@@ -1124,40 +1138,6 @@ TEST_CASE(logsoftmax_test_axis_3)
EXPECT
(
migraphx
::
verify_range
(
results_vector
,
s
));
}
TEST_CASE
(
logsoftmax_test_axis_4
)
{
migraphx
::
program
p
;
std
::
vector
<
float
>
a
=
{
1.93885877
,
-
1.20006269
,
0.90960855
,
0.42108916
,
-
1.50797544
,
-
1.31047913
,
1.07816336
,
-
1.13288733
,
-
0.86411064
,
0.97800238
,
0.76631385
,
2.07962834
,
-
0.8940665
,
-
1.62855592
,
-
0.53763057
,
-
1.48165117
,
-
0.64154112
,
0.42486547
,
0.89330917
,
-
2.42022666
,
0.192611
,
-
0.01257413
,
-
1.5326607
,
0.53137897
,
-
1.52383859
,
0.46994381
,
0.00453619
,
0.0066996
,
1.58394908
,
0.84216752
,
-
0.04137941
,
-
0.88580789
,
1.44055158
,
-
0.17621241
,
-
1.98917923
,
-
0.08610038
,
0.79020567
,
-
0.67714548
,
0.42774631
,
0.1376574
,
2.23569227
,
1.16681234
,
-
1.21191456
,
-
0.28411502
,
-
0.18688975
,
1.67552548
,
2.48357974
,
0.95891282
,
-
0.06616535
,
-
0.99628491
,
1.04314606
,
-
1.22943315
,
0.76930403
,
0.31106618
};
std
::
vector
<
float
>
s
=
{
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
,
0.00000000
};
migraphx
::
shape
a_shape
{
migraphx
::
shape
::
float_type
,
{
2
,
3
,
3
,
3
}};
auto
al
=
p
.
add_literal
(
migraphx
::
literal
{
a_shape
,
a
});
int
axis
=
4
;
p
.
add_instruction
(
migraphx
::
op
::
logsoftmax
{
axis
},
al
);
p
.
compile
(
migraphx
::
cpu
::
target
{});
auto
result
=
p
.
eval
({});
std
::
vector
<
float
>
results_vector
;
result
.
visit
([
&
](
auto
output
)
{
results_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
EXPECT
(
migraphx
::
verify_range
(
results_vector
,
s
));
}
TEST_CASE
(
conv2d_test
)
{
migraphx
::
program
p
;
...
...
test/eliminate_pad_test.cpp
View file @
511c8d8f
...
...
@@ -83,23 +83,4 @@ TEST_CASE(rewrite_test_asymmetric)
p
.
begin
(),
p
.
end
(),
[](
const
migraphx
::
instruction
&
ins
)
{
return
ins
.
name
()
==
"pad"
;
}));
}
TEST_CASE
(
rewrite_test_same_padding
)
{
migraphx
::
program
p
;
size_t
img_dim
[
2
]
=
{
2
,
2
};
size_t
channels
=
1
;
std
::
vector
<
int32_t
>
input
(
channels
*
img_dim
[
0
]
*
img_dim
[
1
]);
std
::
iota
(
input
.
begin
(),
input
.
end
(),
0
);
migraphx
::
shape
s_img
{
migraphx
::
shape
::
int32_type
,
{
1
,
channels
,
img_dim
[
0
],
img_dim
[
1
]}};
auto
l_img
=
p
.
add_literal
(
migraphx
::
literal
{
s_img
,
input
});
auto
padded_img
=
p
.
add_instruction
(
migraphx
::
op
::
pad
{{
0
,
0
,
1
,
1
,
0
,
0
,
1
,
1
}},
l_img
);
create_conv
(
padded_img
,
channels
,
p
,
migraphx
::
op
::
padding_mode_t
::
same
);
p
.
compile
(
eliminate_pad_target
{});
EXPECT
(
std
::
any_of
(
p
.
begin
(),
p
.
end
(),
[](
const
migraphx
::
instruction
&
ins
)
{
return
ins
.
name
()
==
"pad"
;
}));
}
int
main
(
int
argc
,
const
char
*
argv
[])
{
test
::
run
(
argc
,
argv
);
}
test/gpu/miopen.cpp
View file @
511c8d8f
...
...
@@ -569,13 +569,13 @@ struct test_sub2 : verify_program<test_sub2>
}
};
struct
test_softmax
:
verify_program
<
test_softmax
>
struct
test_softmax
1
:
verify_program
<
test_softmax
1
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
x
=
p
.
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
5
,
3
,
4
,
2
}});
p
.
add_instruction
(
migraphx
::
op
::
softmax
{},
x
);
auto
x
=
p
.
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
5
,
3
,
3
,
4
}});
p
.
add_instruction
(
migraphx
::
op
::
softmax
{
0
},
x
);
return
p
;
}
};
...
...
@@ -592,6 +592,25 @@ struct test_softmax2 : verify_program<test_softmax2>
}
};
template
<
int
Axis
>
struct
test_softmax
:
verify_program
<
test_softmax
<
Axis
>>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
5
,
6
}};
auto
param
=
p
.
add_parameter
(
"0"
,
s
);
p
.
add_instruction
(
migraphx
::
op
::
softmax
{
Axis
},
param
);
return
p
;
}
};
template
struct
test_softmax
<
0
>;
template
struct
test_softmax
<
1
>;
template
struct
test_softmax
<
2
>;
template
struct
test_softmax
<
3
>;
struct
test_conv
:
verify_program
<
test_conv
>
{
migraphx
::
program
create_program
()
const
...
...
@@ -1441,6 +1460,22 @@ struct test_pad : verify_program<test_pad>
}
};
struct
test_pad_int8
:
verify_program
<
test_pad_int8
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
std
::
vector
<
int8_t
>
data0
=
{
0
,
1
,
2
,
3
};
migraphx
::
shape
s0
{
migraphx
::
shape
::
float_type
,
{
2
,
2
}};
auto
l0
=
p
.
add_literal
(
migraphx
::
literal
{
s0
,
data0
});
migraphx
::
op
::
pad
op
{};
op
.
value
=
std
::
numeric_limits
<
int8_t
>::
lowest
();
op
.
pads
=
{
0
,
0
,
1
,
1
};
p
.
add_instruction
(
op
,
l0
);
return
p
;
}
};
struct
test_pooling_autopad
:
verify_program
<
test_pooling_autopad
>
{
migraphx
::
program
create_program
()
const
...
...
@@ -2631,7 +2666,8 @@ struct test_lstm_forward_last : verify_program<test_lstm_forward_last>
auto
und
=
p
.
add_instruction
(
migraphx
::
op
::
undefined
{});
auto
output
=
p
.
add_instruction
(
migraphx
::
op
::
gru
{
hidden_size
,
migraphx
::
op
::
lstm
{
hidden_size
,
{
migraphx
::
op
::
sigmoid
{},
migraphx
::
op
::
tanh
{},
migraphx
::
op
::
tanh
{}},
migraphx
::
op
::
rnn_direction
::
forward
,
clip
},
...
...
@@ -3326,7 +3362,6 @@ template struct test_logsoftmax<0>;
template
struct
test_logsoftmax
<
1
>;
template
struct
test_logsoftmax
<
2
>;
template
struct
test_logsoftmax
<
3
>;
template
struct
test_logsoftmax
<
4
>;
template
<
int
Axis
>
struct
test_logsoftmax_1
:
verify_program
<
test_logsoftmax_1
<
Axis
>>
...
...
@@ -3343,7 +3378,6 @@ struct test_logsoftmax_1 : verify_program<test_logsoftmax_1<Axis>>
};
template
struct
test_logsoftmax_1
<
0
>;
template
struct
test_logsoftmax_1
<
1
>;
struct
test_fp32_fp16_lall
:
verify_program
<
test_fp32_fp16_lall
>
{
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment