Commit 4ea39116 authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

manual merge

parents 20128cae d8011adf
......@@ -58,6 +58,16 @@ struct parse_loop : op_parser<parse_loop>
}
}
// cap max_iter because loop uses static shapes with max_iter size and huge numbers
// here can cause overflow
if(max_iterations > parser.limit_max_iterations)
{
std::cerr << "WARNING: PARSE_LOOP max_iterations exceeds the maximum loop "
"iterations limit, it will be changed from "
<< max_iterations << " to " << parser.limit_max_iterations << ".\n";
max_iterations = parser.limit_max_iterations;
}
// condition input is empty
if(args.at(1)->name() == "undefined")
{
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
struct parse_mean_variance_normalization : op_parser<parse_mean_variance_normalization>
{
std::vector<op_desc> operators() const { return {{"MeanVarianceNormalization"}}; }
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& /*parser*/,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
auto&& data = args.front();
auto data_rank = data->get_shape().ndim();
std::vector<int64_t> axes{0, 2, 3};
if(contains(info.attributes, "axes"))
{
const auto& axes_attr = info.attributes["axes"].ints();
axes.assign(axes_attr.begin(), axes_attr.end());
}
else if(data_rank != 4)
{
MIGRAPHX_THROW(
"Input tensor needs to be rank 4 when axes is not specified. Instead it is rank " +
std::to_string(data_rank));
}
if(axes.size() != data_rank - 1)
{
MIGRAPHX_THROW("Length of axes array needs to be equal to input tensor rank - 1");
}
auto data_mean = info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), data);
auto data_mean_squared = info.add_common_op("mul", data_mean, data_mean);
auto data_squared = info.add_common_op("mul", data, data);
auto data_squared_mean =
info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), data_squared);
auto mean_sub = info.add_common_op("sub", data_squared_mean, data_mean_squared);
auto std = info.add_common_op("sqrt", mean_sub);
auto dividend = info.add_common_op("sub", data, data_mean);
auto epsilon =
info.add_literal({data->get_shape().type(),
{data->get_shape().type() == shape::half_type ? 1e-7 : 1e-9}});
auto divisor = info.add_common_op("add", std, epsilon);
return info.add_common_op("div", dividend, divisor);
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -41,6 +41,9 @@ struct parse_multinomial : op_parser<parse_multinomial>
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
if(args.empty())
MIGRAPHX_THROW("PARSE_MULTINOMIAL: no arguments given");
int dtype = 6;
if(contains(info.attributes, "dtype"))
dtype = info.attributes.at("dtype").i();
......@@ -49,35 +52,90 @@ struct parse_multinomial : op_parser<parse_multinomial>
size_t sample_size = 1;
if(contains(info.attributes, "sample_size"))
sample_size = info.attributes.at("sample_size").i();
else
MIGRAPHX_THROW("PARSE_MULTINOMIAL: sample_size not given");
// Use logarithmic math to scale probabilities while avoiding division by very
// small numbers. Scaling by the maximum makes very tiny ranges more
// tractable; any constant factor gives equivalent distr. since the Multinomial op.
// normalizes at runtime.
// Subtract the per-batch maximum log-probability, making the per-batch max 0
auto maxes =
info.add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), args[0]);
auto mb_maxes = info.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", args[0]->get_shape().lens()}}),
maxes);
auto cdf = info.add_instruction(migraphx::make_op("sub"), args[0], mb_maxes);
auto cdf = info.add_common_op("sub", args[0], maxes);
// Take the element-wise exponent to get probabilities in the range (0, 1]
cdf = info.add_instruction(migraphx::make_op("exp"), cdf);
// Compute the cumulative density function
// Compute the cumulative distribution function
cdf = info.add_instruction(
migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf);
// Pre-compute random distribution
std::mt19937 gen(std::chrono::high_resolution_clock::now().time_since_epoch().count());
instruction_ref seed_input;
if(contains(info.attributes, "seed"))
gen.seed(info.attributes.at("seed").f());
{
float seed = info.attributes.at("seed").f();
migraphx::shape s{migraphx::shape::float_type, {1}};
std::vector<float> data = {seed};
seed_input = info.add_literal(migraphx::literal(s, data));
}
else
{
seed_input = info.add_instruction(migraphx::make_op("random_seed"));
}
instruction_ref randoms;
shape s0 = args[0]->get_shape();
if(s0.dynamic())
{
// Dynamic batch_size will be taken from args[0]. The input argument to this should
// have a second dimension of sample_size.
std::vector<shape::dynamic_dimension> dyn_dim_set;
dyn_dim_set.emplace_back(s0.dyn_dims().front());
dyn_dim_set.emplace_back(shape::dynamic_dimension{sample_size, sample_size});
// read the input dimensions
auto dim_of =
info.add_instruction(migraphx::make_op("dimensions_of", {{"end", 2}}), args[0]);
// The next two operations insert the value sample_size into the second array position
// make an argument of (1, 0)
shape s(shape::int64_type, {2});
std::vector<int64_t> data1{1, 0};
auto l1 = info.add_literal(s, data1);
auto batch_arg = info.add_instruction(migraphx::make_op("mul"), dim_of, l1);
std::vector<int64_t> data2(2, 0);
// make an argument of (0, sample_size)
data2[1] = sample_size;
auto l2 = info.add_literal(s, data2);
auto alloc_shape = info.add_instruction(migraphx::make_op("add"), batch_arg, l2);
// alloc_shape should contain the input-based shape dimensions as its values at runtime,
// and its own shape is {2}
// compile_shape is the shape used when compiling the Allocate op, and may be dynamic
migraphx::shape compile_shape =
migraphx::shape(s0.type(), {s0.dyn_dims().front(), {sample_size, sample_size}});
std::uniform_real_distribution<> dis(0.0, 1.0);
size_t batch_size = args[0]->get_shape().lens().front();
migraphx::shape dist_shape{migraphx::shape::float_type, {batch_size, sample_size}};
// Allocate on-device storage for the random values
auto alloc = info.add_instruction(
migraphx::make_op("allocate", {{"shape", to_value(compile_shape)}}), alloc_shape);
randoms = info.add_instruction(migraphx::make_op("random_uniform"), seed_input, alloc);
}
else
{
// use literal. The array populated by random_uniform may have any shape, as long its
// number of elements is batch_size * sample_size .
size_t batch_size = s0.lens().front();
auto rand_dummy = info.add_literal(
migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}});
std::vector<float> random_dist(batch_size * sample_size);
std::generate(random_dist.begin(), random_dist.end(), [&]() { return dis(gen); });
auto dist_lit = info.add_literal(migraphx::literal{dist_shape, random_dist});
randoms =
info.add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
}
return info.add_instruction(
migraphx::make_op("multinomial", {{"dtype", output_type}}), cdf, dist_lit);
migraphx::make_op("multinomial", {{"dtype", output_type}}), cdf, randoms);
}
};
......
......@@ -115,34 +115,9 @@ struct parse_pad : op_parser<parse_pad>
{
std::vector<op_desc> operators() const { return {{"Pad"}}; }
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
std::string parse_mode(const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
std::vector<int64_t> pads{};
if(args.size() >= 2)
{
auto pad_arg = args.at(1)->eval();
check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
}
else if(contains(info.attributes, "pads"))
{
auto&& pad_vals = info.attributes["pads"].ints();
pads = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
}
else
{
MIGRAPHX_THROW("PARSE_PAD: pad must be available");
}
// check if padding is actually being done (at least one value is nonzero)
if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
{
return info.add_instruction(make_op("identity"), args.front());
}
if(contains(info.attributes, "mode"))
{
auto mode = info.attributes.at("mode").s();
......@@ -152,28 +127,59 @@ struct parse_pad : op_parser<parse_pad>
{
MIGRAPHX_THROW("PARSE_PAD: reflect padding with dynamic shape not supported");
}
return reflect_pad(info, pads, args.front());
}
if(mode != "constant")
else if(mode != "constant")
{
MIGRAPHX_THROW(
"PARSE_PAD: migraphx currently only supports constant and reflect padding");
}
return mode;
}
else
{
// default mode
return "constant";
}
}
std::vector<int64_t> parse_pads(const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
std::vector<int64_t> pads{};
if(args.size() >= 2)
{
auto pad_arg = args.at(1)->eval();
check_arg_empty(pad_arg, "PARSE_PAD: `pads` input must be constant");
pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
}
else if(contains(info.attributes, "pads"))
{
auto&& pad_vals = info.attributes.at("pads").ints();
pads = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
}
else
{
MIGRAPHX_THROW("PARSE_PAD: `pads` must be available");
}
return pads;
}
float parse_constant_value(const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
float value = 0.0f;
// third input is the value
if(args.size() == 3)
if(args.size() >= 3 and args.at(2)->get_shape().scalar())
{
auto val_ins = args.at(2);
if(not val_ins->can_eval())
{
MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
MIGRAPHX_THROW("PARSE_PAD: input `value` must be constant");
}
auto val_arg = val_ins->eval();
if(val_arg.get_shape().elements() != 1)
{
MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
MIGRAPHX_THROW("PARSE_PAD: `value` should contain only one element");
}
value = val_arg.at<float>();
}
......@@ -181,6 +187,81 @@ struct parse_pad : op_parser<parse_pad>
{
value = parser.parse_value(info.attributes.at("value")).at<float>();
}
return value;
}
std::vector<int64_t> parse_axes(const std::vector<instruction_ref>& args,
bool is_constant_mode) const
{
std::vector<int64_t> axes{};
// axes is 3rd or 4th, depending on constant mode
auto pos = is_constant_mode ? 4 : 3;
if(args.size() >= pos)
{
auto axes_arg = args.at(pos - 1)->eval();
check_arg_empty(axes_arg, "PARSE_PAD: variable `axes` input not supported");
axes_arg.visit([&](auto v) { axes.assign(v.begin(), v.end()); });
}
return axes;
}
std::vector<int64_t> calculate_pads_with_axes(const std::vector<int64_t>& pads,
const std::vector<int64_t>& axes,
size_t input_rank) const
{
size_t num_axes = axes.size();
if(num_axes * 2 != pads.size())
{
MIGRAPHX_THROW("PARSE_PAD: number of elements of pads should be equal to 2 * "
"number of elements of axes");
}
std::vector<int64_t> new_pads(input_rank * 2);
for(size_t idx{0}; idx < num_axes; ++idx)
{
// axis can be negative
int64_t axis = axes[idx] < 0 ? input_rank + axes[idx] : axes[idx];
// pad format is x1_begin, x2_begin, ... , x3_end, x4_end
new_pads[axis] = pads[idx];
new_pads[axis + input_rank] = pads[idx + num_axes];
}
return new_pads;
}
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
std::vector<int64_t> pads = parse_pads(info, args);
// check if padding is actually being done (at least one value is nonzero)
if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
{
return info.add_instruction(make_op("identity"), args.front());
}
std::string mode = parse_mode(info, args);
bool is_constant_mode = mode == "constant";
float value = is_constant_mode ? parse_constant_value(parser, info, args) : 0.0f;
std::vector<int64_t> axes = parse_axes(args, is_constant_mode);
size_t input_rank = args.front()->get_shape().ndim();
if(not axes.empty())
{
pads = calculate_pads_with_axes(pads, axes, input_rank);
}
if(pads.size() != input_rank * 2)
{
MIGRAPHX_THROW("PARSE_PAD: number of elements of pads should be equal to 2 * "
"input rank");
}
if(mode == "reflect")
{
return reflect_pad(info, pads, args.front());
}
return info.add_instruction(migraphx::make_op("pad", {{"pads", pads}, {"value", value}}),
args.front());
......
......@@ -97,7 +97,7 @@ struct parse_pooling : op_parser<parse_pooling>
values["lp_order"] = info.attributes.at("p").i();
}
// ensure pads availabe only when auto_pad is "NOT_SET"
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode(info, "POOLING");
return values;
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/common.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearAdd in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearAdd
Performs element-wise binary addition on 8 bit data types (with Numpy-style broadcasting support).
C = (A_scale * (A - A_zero_point) + B_scale * (B - B_zero_point))/C_scale + C_zero_point
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
Inputs (7 - 8)
A : T
First operand.
A_scale : tensor(float)
Input A's scale. It's a scalar, which means a per-tensor/layer quantization.
A_zero_point (optional) : T
Input A zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
B : T
Second operand.
B_scale : tensor(float)
Input B's scale. It's a scalar, which means a per-tensor/layer quantization.
B_zero_point (optional) : T
Input B zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
C_scale : tensor(float)
Output scale. It's a scalar, which means a per-tensor/layer quantization.
C_zero_point (optional) : T
Output zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
Outputs
C : T
Result, has same element type as two inputs
Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to 8 bit signed and unsigned tensors.
*/
struct parse_qlinearadd : op_parser<parse_qlinearadd>
{
std::vector<op_desc> operators() const { return {{"QLinearAdd"}}; }
// basic type checking for QLinearAdd Operator
void check_inputs(const std::vector<instruction_ref>& args) const
{
if(args.size() < 7)
MIGRAPHX_THROW("QLINEARADD: missing inputs");
const auto& in_a = args[0];
const auto& in_b = args[3];
auto sh_a = in_a->get_shape();
auto sh_b = in_b->get_shape();
auto type_a = sh_a.type();
auto type_b = sh_b.type();
if(type_a != migraphx::shape::int8_type and type_a != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARADD: unsupported input type");
if(type_b != migraphx::shape::int8_type and type_b != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARADD: unsupported input type");
if(type_a != type_b)
MIGRAPHX_THROW("QLINEARADD: mismatched input types");
}
instruction_ref parse(const op_desc& /* opd */,
const onnx_parser& /*parser*/,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
check_inputs(args);
// A
const auto& in_a = args[0];
const auto& in_scale_a = args[1];
const auto& in_zero_pt_a = args[2];
auto dquant_a = bcast_qdq_instr("dequantizelinear", in_a, in_scale_a, in_zero_pt_a, info);
// B
const auto& in_b = args[3];
const auto& in_scale_b = args[4];
const auto& in_zero_pt_b = args[5];
auto dquant_b = bcast_qdq_instr("dequantizelinear", in_b, in_scale_b, in_zero_pt_b, info);
// C = A + B
auto out_c = info.add_common_op("add", dquant_a, dquant_b);
const auto& in_scale_c = args[6];
// zero_pt for C is supplied as the last optional argument..
if(args.size() == 8)
return (bcast_qdq_instr("quantizelinear", out_c, in_scale_c, args[7], info));
// if no zero_pt: just broadcast the scale..
auto bcast_scale_c = bcast_scalar_instr(out_c->get_shape(), in_scale_c, info);
return (info.add_instruction(migraphx::make_op("quantizelinear"), out_c, bcast_scale_c));
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/onnx/conv.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/stringutils.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearConv in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearConv
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
ATTRIBUTES:
auto_pad : string
channels_last : int
dilations : list of ints
group : int
kernel_shape : list of ints
pads : list of ints
strides : list of ints
INPUTS (8 - 9):
x : T1
x_scale : tensor(float)
x_zero_point : T1
w : T2
w_scale : tensor(float)
w_zero_point : T2
y_scale : tensor(float)
y_zero_point : T3
B (optional) : T4
OUTPUTS:
y : T3
Type Constraints:
T1 : tensor(int8), tensor(uint8)
T2 : tensor(int8), tensor(uint8)
T3 : tensor(int8), tensor(uint8)
T4 : tensor(int32)
More details also at:
https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__QLinearConv.html
*/
struct parse_qlinearconv : op_parser<parse_qlinearconv>
{
std::vector<op_desc> operators() const { return {{"QLinearConv"}}; }
// basic type checking for QLinearConv Operator
void check_inputs(const std::vector<instruction_ref>& inp_arg) const
{
if(inp_arg.size() < 8)
MIGRAPHX_THROW("QLINEARCONV: missing inputs");
const instruction_ref& in_x = inp_arg[0];
const instruction_ref& in_scale_x = inp_arg[1];
const instruction_ref& in_w = inp_arg[3];
const instruction_ref& in_scale_w = inp_arg[4];
const instruction_ref& in_scale_y = inp_arg[6];
auto sh_x = in_x->get_shape();
auto sh_w = in_w->get_shape();
auto type_x = sh_x.type();
auto type_w = sh_w.type();
assert(in_x->get_shape().ndim() > 2);
if(type_x != shape::int8_type and type_x != shape::uint8_type)
MIGRAPHX_THROW("QLINEARCONV: unsupported input type");
if(type_w != shape::int8_type and type_w != shape::uint8_type)
MIGRAPHX_THROW("QLINEARCONV: unsupported weight type");
if(in_scale_x->get_shape().type() != shape::float_type)
MIGRAPHX_THROW("QLINEARCONV x scale type should be float");
if(in_scale_w->get_shape().type() != shape::float_type)
MIGRAPHX_THROW("QLINEARCONV: wt scale type should be float");
if(in_scale_y->get_shape().type() != shape::float_type)
MIGRAPHX_THROW("QLINEARCONV: y scale type should be float");
if(inp_arg.size() > 8 and inp_arg[8]->get_shape().type() != shape::int32_type)
MIGRAPHX_THROW("QLINEARCONV y bias should be int32");
}
// process all attributes of QLinearConv Operator..
value process_attributes(const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
value values;
const auto& in_x = args[0];
const auto& wt = args[3];
size_t kdims = in_x->get_shape().ndim() - 2;
check_padding_mode(info, "QLINEARCONV");
values["stride"] = std::vector<int>(kdims, 1);
values["dilation"] = std::vector<int>(kdims, 1);
values["padding"] = std::vector<int>(kdims, 0);
values["group"] = 1;
if(contains(info.attributes, "group"))
values["group"] = parser.parse_value(info.attributes.at("group")).template at<int>();
if(contains(info.attributes, "strides"))
{
std::vector<int> st;
copy(info.attributes.at("strides").ints(), std::back_inserter(st));
check_attr_sizes(kdims, st.size(), "QLINEARCONV: inconsistent strides");
values["stride"] = st;
}
if(contains(info.attributes, "dilations"))
{
std::vector<int> dil;
copy(info.attributes.at("dilations").ints(), std::back_inserter(dil));
check_attr_sizes(kdims, dil.size(), "QLINEARCONV: inconsistent dilations");
values["dilation"] = dil;
}
if(contains(info.attributes, "pads"))
{
std::vector<int> pads;
copy(info.attributes.at("pads").ints(), std::back_inserter(pads));
check_attr_sizes(kdims, pads.size() / 2, "QLINEARCONV: inconsistent padding");
values["padding"] = pads;
}
else if(contains(info.attributes, "auto_pad"))
{
auto in_lens = in_x->get_shape().lens();
auto wt_lens = wt->get_shape().lens();
std::vector<std::size_t> k_lens(wt_lens.begin() + 2, wt_lens.end());
std::vector<int64_t> pads = values["padding"].to_vector<std::int64_t>();
cal_auto_padding_size(
info, values, k_lens, values["dilation"].to_vector<std::size_t>(), in_lens, pads);
values["padding"] = pads;
}
recalc_conv_attributes(values, kdims);
return values;
}
instruction_ref add_bias_to_conv(const instruction_ref bias_arg,
const instruction_ref conv_instr,
const onnx_parser::node_info& info) const
{
auto conv_sh = conv_instr->get_shape();
auto conv_lens = conv_sh.lens();
auto conv_type = conv_sh.type();
auto broadcast_bias = info.add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", conv_lens}}), bias_arg);
auto f_bias =
info.add_instruction(make_op("convert", {{"target_type", conv_type}}), broadcast_bias);
return info.add_instruction(migraphx::make_op("add"), conv_instr, f_bias);
};
instruction_ref parse(const op_desc& /* opd */,
const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
check_inputs(args);
auto values = process_attributes(parser, info, args);
// input: quantized x, scale, zero_pt
const instruction_ref& in_x = args[0];
const instruction_ref& in_scale_x = args[1];
const instruction_ref& in_zero_pt_x = args[2];
// input: quantized weights, scale, zero_pt
const instruction_ref& in_w = args[3];
const instruction_ref& in_scale_w = args[4];
const instruction_ref& in_zero_pt_w = args[5];
// for the dequantized output y: scale & zero_pt
const instruction_ref& in_scale_y = args[6];
const instruction_ref& in_zero_pt_y = args[7];
auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, in_scale_x, in_zero_pt_x, info);
auto dquant_w = bcast_qdq_instr("dequantizelinear", in_w, in_scale_w, in_zero_pt_w, info);
auto conv_op = migraphx::make_op("convolution", values);
auto conv_x_w = info.add_instruction(conv_op, dquant_x, dquant_w);
// Biases, if any.. : is an optional argument.
if(args.size() > 8)
conv_x_w = add_bias_to_conv(args[8], conv_x_w, info);
auto quant_conv =
bcast_qdq_instr("quantizelinear", conv_x_w, in_scale_y, in_zero_pt_y, info);
return quant_conv;
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearGlobalAveragePool in *
* github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
QLinearGlobalAveragePool consumes an input tensor X and applies
Average pooling across the values in the same channel. This is
equivalent to AveragePool with kernel size equal to the spatial
dimension of input tensor. Input is of type uint8_t or int8_t.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
channels_last : int
Inputs
X : T
Input data tensor from the previous operator; According to channels_last, dimensions for image case
are (N x C x H x W), or (N x H x W x C) where N is the batch size, C is the number of channels, and
H and W are the height and the width of the data. For non image case, the dimensions are in the form
of (N x C x D1 x D2 ... Dn), or (N x D1 X D2 ... Dn x C) where N is the batch size.
x_scale : tensor(float)
Scale of quantized input 'X'. It must be a scalar.
x_zero_point : T
Zero point tensor for input 'X'. It must be a scalar.
y_scale : tensor(float)
Scale of quantized output 'Y'. It must be a scalar.
y_zero_point : T
Zero point tensor for output 'Y'. It must be a scalar.
Outputs
Y : T
Output data tensor from pooling across the input tensor. The output tensor has the same rank as the
input. with the N and C value keep it value, while the other dimensions are all 1. Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to signed/unsigned int8 tensors.
*/
struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool>
{
std::vector<op_desc> operators() const { return {{"QLinearGlobalAveragePool"}}; }
// basic type checking for QLinearGlobalAveragePool Operator
void check_inputs(const std::vector<instruction_ref>& args) const
{
if(args.size() < 5)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: missing inputs");
const auto& in_x = args[0];
const auto& zero_pt_x = args[2];
const auto& zero_pt_y = args[4];
if(in_x->get_shape().ndim() <= 2)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: input dimensions too small");
auto type_x = in_x->get_shape().type();
if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: unsupported input type");
if(type_x != zero_pt_x->get_shape().type())
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: mismatched type: input zero point");
if(type_x != zero_pt_y->get_shape().type())
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: mismatched type: output zero point");
}
instruction_ref parse(const op_desc& /* opd */,
const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
int channels_last =
parser.parse_value(info.attributes.at("channels_last")).template at<int>();
if(channels_last != 0)
MIGRAPHX_THROW(
"QLINEARGLOBALAVERAGEPOOL: channels_last (N x D1..Dn x C) is not supported");
check_inputs(args);
// Input: X
const auto& in_x = args[0];
const auto& scale_x = args[1];
const auto& zero_pt_x = args[2];
auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, scale_x, zero_pt_x, info);
// Output Y = globalaveragepool(X)
auto op = migraphx::op::pooling{migraphx::op::pooling_mode::average};
auto lens = in_x->get_shape().lens();
std::vector<size_t> lengths(lens.begin() + 2, lens.end());
op.lengths = lengths;
op.padding = std::vector<size_t>(lens.size());
auto out_y = info.add_instruction(op, dquant_x);
const auto& scale_y = args[3];
const auto& zero_pt_y = args[4];
auto out_quant_y = bcast_qdq_instr("quantizelinear", out_y, scale_y, zero_pt_y, info);
return out_quant_y;
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearMatMul in *
* https://onnx.ai/onnx/operators/onnx__QLinearMatMul.html *
*********************************************************************************
Matrix product that behaves like numpy.matmul:
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html. It consumes two
quantized input tensors, their scales and zero points, scale and zero point of output, and computes
the quantized output. The quantization formula is y = saturate((x / y_scale) + y_zero_point). For (x
/ y_scale), it is rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding
for details. Scale and zero point must have same shape. They must be either scalar (per tensor) or
N-D tensor (per row for ‘a’ and per column for ‘b’). Scalar refers to per tensor quantization
whereas N-D refers to per row or per column quantization. If the input is 2D of shape [M, K] then
zero point and scale tensor may be an M element vector [v_1, v_2, …, v_M] for per row quantization
and K element vector of shape [v_1, v_2, …, v_K] for per column quantization. If the input is N-D
tensor with shape [D1, D2, M, K] then zero point and scale tensor may have shape [D1, D2, M, 1] for
per row quantization and shape [D1, D2, 1, K] for per column quantization. Production must never
overflow, and accumulation may overflow if and only if in 32 bits.
Inputs
a (heterogeneous) - T1: N-dimensional quantized matrix a
a_scale (heterogeneous) - tensor(float): scale of quantized input a
a_zero_point (heterogeneous) - T1: zero point of quantized input a
b (heterogeneous) - T2: N-dimensional quantized matrix b
b_scale (heterogeneous) - tensor(float): scale of quantized input b
b_zero_point (heterogeneous) - T2: zero point of quantized input b
y_scale (heterogeneous) - tensor(float): scale of quantized output y
y_zero_point (heterogeneous) - T3: zero point of quantized output y
Outputs
y (heterogeneous) - T3: Quantized matrix multiply results from a * b
Type Constraints
T1 in ( tensor(int8), tensor(uint8) ): Constrain input a and its zero point data type to 8-bit
integer tensor.
T2 in ( tensor(int8), tensor(uint8) ): Constrain input b and its zero point data type to 8-bit
integer tensor.
T3 in ( tensor(int8), tensor(uint8) ): Constrain output y and its zero point data type to 8-bit
integer tensor.
*/
struct parse_qlinearmatmul : op_parser<parse_qlinearmatmul>
{
std::vector<op_desc> operators() const { return {{"QLinearMatMul"}}; }
// basic type checking for QLinearMatMul Operator
void check_inputs(const std::vector<instruction_ref>& args) const
{
if(args.size() < 8)
MIGRAPHX_THROW("QLINEARMATMUL: missing inputs");
const auto& in_a = args[0];
const auto& in_b = args[3];
auto sh_a = in_a->get_shape();
auto sh_b = in_b->get_shape();
auto type_a = sh_a.type();
auto type_b = sh_b.type();
if(type_a != migraphx::shape::int8_type and type_a != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARMATMUL: unsupported input type");
if(type_b != migraphx::shape::int8_type and type_b != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARMATMUL: unsupported input type");
auto lens_a = sh_a.lens();
auto lens_b = sh_b.lens();
size_t dim_a = lens_a.size();
size_t dim_b = lens_b.size();
if(dim_a == 0 or dim_b == 0)
MIGRAPHX_THROW("QLINEARMATMUL: empty input");
// broadcast supported if either is 1-D -- the other can be a 2-D tensor.
// if it is 1-D, just prepend/append that lens and check further constraints..
if(dim_a == 1)
{
lens_a.insert(lens_a.begin(), 1);
dim_a++;
}
if(dim_b == 1)
{
lens_b.push_back(1);
dim_b++;
}
// 2-D or higher-order mat mul
if(dim_a != dim_b or *lens_a.rbegin() != *(lens_b.rbegin() + 1) or
not std::equal(lens_a.rbegin() + 2, lens_a.rend(), lens_b.rbegin() + 2, lens_b.rend()))
MIGRAPHX_THROW("QLINEARMATMUL: mismatched input dimensions");
if(migraphx::any_of({args[1], args[2], args[4], args[5]},
[](auto arg) { return not arg->get_shape().scalar(); }))
MIGRAPHX_THROW("QLINEARMATMUL: unsupported row/column quantization");
}
instruction_ref parse(const op_desc& /* opd */,
const onnx_parser& /*parser*/,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
check_inputs(args);
// A
const auto& in_a = args[0];
const auto& in_scale_a = args[1];
const auto& in_zero_pt_a = args[2];
auto dquant_a = bcast_qdq_instr("dequantizelinear", in_a, in_scale_a, in_zero_pt_a, info);
// B
const auto& in_b = args[3];
const auto& in_scale_b = args[4];
const auto& in_zero_pt_b = args[5];
auto dquant_b = bcast_qdq_instr("dequantizelinear", in_b, in_scale_b, in_zero_pt_b, info);
bool is_a_prepended = false;
bool is_b_appended = false;
// un-squeeze either tensor if 1-D.
if(in_a->get_shape().ndim() == 1)
{
is_a_prepended = true;
dquant_a = info.add_instruction(make_op("unsqueeze", {{"axes", {0}}}), dquant_a);
}
if(in_b->get_shape().ndim() == 1)
{
is_b_appended = true;
dquant_b = info.add_instruction(make_op("unsqueeze", {{"axes", {1}}}), dquant_b);
}
// Y = A * B
auto out_y = info.add_instruction(migraphx::make_op("dot"), dquant_a, dquant_b);
// squeeze just once if necessary.. not twice.
if(is_a_prepended)
out_y = info.add_instruction(make_op("squeeze", {{"axes", {0}}}), out_y);
else if(is_b_appended)
out_y = info.add_instruction(make_op("squeeze", {{"axes", {1}}}), out_y);
const auto& scale_y = args[6];
const auto& zero_pt_y = args[7];
return bcast_qdq_instr("quantizelinear", out_y, scale_y, zero_pt_y, info);
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -45,16 +45,25 @@ struct parse_reshape : op_parser<parse_reshape>
{
literal s = parser.parse_value(info.attributes.at("shape"));
s.visit([&](auto v) { copy(v, std::back_inserter(dims)); });
return info.add_instruction(make_op("reshape", {{"dims", dims}}), args[0]);
}
if(args.size() == 2)
else
{
// 2 inputs
auto s = args[1]->eval();
check_arg_empty(s, "Reshape: non-constant shape input is not supported");
s.visit([&](auto v) { copy(v, std::back_inserter(dims)); });
if(s.empty())
{
// arg[1] not eval-able
auto alloc_ins = info.add_instruction(
make_op("allocate", {{"buf_type", args[0]->get_shape().type()}}), args[1]);
return info.add_instruction(make_op("reshape"), args[0], alloc_ins);
}
else
{
s.visit([&](auto v) { copy(v, std::back_inserter(dims)); });
return info.add_instruction(make_op("reshape", {{"dims", dims}}), args[0]);
}
}
auto cont = info.add_instruction(make_op("contiguous"), args[0]);
return info.add_instruction(make_op("reshape", {{"dims", dims}}), cont);
}
};
......
......@@ -181,6 +181,76 @@ static std::string get_nearest_mode(const onnx_parser::attribute_map& attr)
return nearest_mode;
}
static std::vector<double> get_scales(const onnx_parser::attribute_map& attr)
{
std::vector<double> scales;
if(contains(attr, "scales"))
{
copy(attr.at("scales").floats(), std::back_inserter(scales));
}
return scales;
}
static void parse_args(const std::vector<instruction_ref>& args,
const std::vector<size_t>& in_lens,
const std::string& op_name,
std::vector<double>& vec_scale,
std::vector<std::size_t>& out_lens)
{
for(const auto& arg : args)
{
if(arg->name() == "undefined" or arg == args.front())
{
continue;
}
// skipped empty input
auto lens = arg->get_shape().lens();
if(lens.empty())
{
continue;
}
auto type = arg->get_shape().type();
// output size
if(type == shape::int64_type)
{
auto arg_out_s = arg->eval();
check_arg_empty(arg_out_s,
"PARSE_" + op_name + ": dynamic output size is not supported!");
arg_out_s.visit([&](const auto& ol) { out_lens.assign(ol.begin(), ol.end()); });
if(out_lens.size() != in_lens.size())
{
MIGRAPHX_THROW("PARSE_" + op_name +
": specified output size does not match input size");
}
// compute the scale
vec_scale.resize(in_lens.size());
std::transform(in_lens.begin(),
in_lens.end(),
out_lens.begin(),
vec_scale.begin(),
[](auto iss, auto oss) { return 1.0 * oss / iss; });
}
else
{
// scale input
if(lens[0] == in_lens.size())
{
auto arg_scale = arg->eval();
check_arg_empty(arg_scale,
"PARSE_" + op_name + ": dynamic input scale is not supported!");
arg_scale.visit([&](const auto& v) { vec_scale.assign(v.begin(), v.end()); });
}
}
}
}
struct parse_resize : op_parser<parse_resize>
{
std::vector<op_desc> operators() const { return {{"Resize"}, {"Upsample"}}; }
......@@ -214,72 +284,30 @@ struct parse_resize : op_parser<parse_resize>
std::vector<std::size_t> out_lens(in_lens.size());
// scale
std::vector<double> vec_scale;
std::vector<double> vec_scale = get_scales(info.attributes);
for(const auto& arg : args)
// If `scales` was not an attribute, it must be an input
if(vec_scale.empty())
{
if(arg->name() == "undefined" or arg == args.front())
{
continue;
}
// skipped empty input
auto lens = arg->get_shape().lens();
if(lens.empty())
{
continue;
}
auto type = arg->get_shape().type();
// output size
if(type == shape::int64_type)
{
auto arg_out_s = arg->eval();
check_arg_empty(arg_out_s,
"PARSE_" + opd.op_name + ": dynamic output size is not supported!");
arg_out_s.visit([&](const auto& ol) { out_lens.assign(ol.begin(), ol.end()); });
if(out_lens.size() != in_lens.size())
{
MIGRAPHX_THROW("PARSE_" + opd.op_name +
": specified output size does not match input size");
}
// Depending on the args, it *must* populate the `vec_scale`, and might populate
// `out_lens`
parse_args(args, in_lens, opd.op_name, vec_scale, out_lens);
}
// compute the scale
vec_scale.resize(in_lens.size());
std::transform(in_lens.begin(),
in_lens.end(),
out_lens.begin(),
vec_scale.begin(),
[](auto iss, auto oss) { return 1.0 * oss / iss; });
}
else
{
if(in_lens.size() != vec_scale.size())
{
MIGRAPHX_THROW("PARSE_" + opd.op_name + ": ranks of input and scale are different!");
}
// scale input
if(lens[0] == in_lens.size())
{
auto arg_scale = arg->eval();
check_arg_empty(arg_scale,
"PARSE_" + opd.op_name +
": dynamic input scale is not supported!");
arg_scale.visit([&](const auto& v) { vec_scale.assign(v.begin(), v.end()); });
if(in_lens.size() != vec_scale.size())
{
MIGRAPHX_THROW("PARSE_" + opd.op_name +
": ranks of input and scale are different!");
}
std::transform(in_lens.begin(),
in_lens.end(),
vec_scale.begin(),
out_lens.begin(),
[&](auto idx, auto scale) {
return static_cast<std::size_t>(idx * scale);
});
}
}
// if the output was not calculated yet, we update it based on the scales
if(all_of(out_lens.cbegin(), out_lens.cend(), [](auto o) { return o == 0; }))
{
std::transform(
in_lens.begin(),
in_lens.end(),
vec_scale.begin(),
out_lens.begin(),
[&](auto idx, auto scale) { return static_cast<std::size_t>(idx * scale); });
}
shape out_s{in_s.type(), out_lens};
......@@ -288,7 +316,6 @@ struct parse_resize : op_parser<parse_resize>
// reshape input to one-dimension
std::vector<int64_t> rsp_lens = {static_cast<int64_t>(in_s.elements())};
args[0] = info.make_contiguous(args[0]);
auto rsp = info.add_instruction(make_op("reshape", {{"dims", rsp_lens}}), args[0]);
if(mode == "nearest")
......
This diff is collapsed.
......@@ -46,6 +46,9 @@ struct parse_slice : op_parser<parse_slice>
void always_insert(instruction_ref arg) { op_args.insert(op_args.begin(), arg); }
/**
* Either insert argument into `this->op_args` or return the constant value of the argument
*/
std::vector<int64_t> insert(instruction_ref arg)
{
std::vector<int64_t> result;
......@@ -137,23 +140,22 @@ struct parse_slice : op_parser<parse_slice>
sd.always_insert(args.at(0));
// If axes arg is not given, the default is all of them.
if(sd.op.axes.empty() and sd.op_args.size() < 3)
if(sd.op.axes.empty() and sd.op_args.size() <= 3)
{
std::vector<int64_t> axes(args[0]->get_shape().ndim());
std::iota(axes.begin(), axes.end(), int64_t{0});
sd.op.axes = axes;
}
if(not sd.steps.empty())
if(std::any_of(sd.steps.begin(), sd.steps.end(), [](auto s) { return s != 1; }))
{
if(sd.op.starts.empty() or sd.op.ends.empty())
MIGRAPHX_THROW("PARSE_SLICE: steps and variable starts and ends is not supported");
MIGRAPHX_THROW(
"PARSE_SLICE: steps and variable starts and/or ends is not supported");
if(sd.op.axes.empty())
MIGRAPHX_THROW("PARSE_SLICE: steps and variable axes is not supported");
}
assert(sd.steps.empty() or sd.steps.size() == sd.op.axes.size());
// If any axes have negative step, prepare to add a "reverse" op
for(auto i : range(sd.steps.size()))
{
......
......@@ -73,8 +73,7 @@ struct parse_spacetodepth : op_parser<parse_spacetodepth>
std::vector<int64_t> perm = {0, 3, 5, 1, 2, 4};
auto temp1 = info.add_instruction(make_op("reshape", {{"dims", trans_lens}}), args[0]);
auto temp2 = info.add_instruction(make_op("transpose", {{"permutation", perm}}), temp1);
return info.add_instruction(make_op("reshape", {{"dims", res_lens}}),
info.make_contiguous(temp2));
return info.add_instruction(make_op("reshape", {{"dims", res_lens}}), temp2);
}
};
......
This diff is collapsed.
......@@ -56,9 +56,6 @@ struct parse_trilu : op_parser<parse_trilu>
k = arg_k.at<int>();
}
if(k < 0)
MIGRAPHX_THROW("PARSE_TRILU: negative k values not supported");
if(contains(info.attributes, "upper"))
{
upper = static_cast<bool>(info.attributes.at("upper").i());
......@@ -69,9 +66,12 @@ struct parse_trilu : op_parser<parse_trilu>
// when creating the mask, if upper == 1,
// the inner triangle will have values set to 0
std::vector<bool> mask_mat(num_rows * num_cols, upper);
// if upper == 0, kth diagonal must also be masked
if(not upper)
k++;
for(size_t i = 0; i < num_rows; i++)
{
for(size_t j = 0; j < std::min(k, static_cast<int>(num_cols)); j++)
for(int j = 0; j < std::min(k, static_cast<int>(num_cols)); j++)
{
mask_mat[i * num_cols + j] = not upper;
}
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment