Commit 4ea39116 authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

manual merge

parents 20128cae d8011adf
......@@ -317,4 +317,59 @@ TEST_CASE(loop_test)
}
}
TEST_CASE(loop_test_limit_max_iter)
{
auto run_prog = [&](int64_t limit_max_iterations) {
migraphx::onnx_options parse_options;
parse_options.set_limit_loop_iterations(limit_max_iterations);
auto p = migraphx::parse_onnx("loop_test_implicit_tripcnt.onnx", parse_options);
auto shapes_before = p.get_output_shapes();
migraphx::compile_options options;
options.set_offload_copy();
p.compile(migraphx::target("gpu"), options);
auto shapes_after = p.get_output_shapes();
CHECK(shapes_before.size() == 2);
CHECK(bool{shapes_before.front() == shapes_after.front()});
migraphx::program_parameters pp;
auto param_shapes = p.get_parameter_shapes();
auto aas = param_shapes["a"];
std::vector<float> xd = {1.0f};
pp.add("a", migraphx::argument(aas, xd.data()));
auto bbs = param_shapes["b"];
std::vector<float> yd = {2.0};
pp.add("b", migraphx::argument(bbs, yd.data()));
auto cs = param_shapes["keep_going_cond"];
bool cond = true;
pp.add("keep_going_cond", migraphx::argument(cs, &cond));
auto outputs = p.eval(pp);
auto output = outputs[0];
std::vector<std::vector<float>> ret;
ret.push_back(output.as_vector<float>());
output = outputs[1];
ret.push_back(output.as_vector<float>());
return ret;
};
{
auto result_vector = run_prog(5);
std::vector<float> gold0 = {2.0f};
EXPECT(result_vector.at(0) == gold0);
std::vector<float> gold1 = {-2, 4, 0, 0, 0};
EXPECT(result_vector.at(1) == gold1);
}
{
auto result_vector = run_prog(20);
std::vector<float> gold0 = {2.0f};
EXPECT(result_vector.at(0) == gold0);
std::vector<float> gold1 = {-2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
EXPECT(result_vector.at(1) == gold1);
}
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -55,7 +55,7 @@ struct allocate
const migraphx::shape& output_shape,
const std::vector<migraphx::argument>&) const
{
return {output_shape};
return migraphx::argument{output_shape};
}
};
......
......@@ -60,7 +60,7 @@ struct concat
const migraphx::shape& output_shape,
const std::vector<migraphx::argument>&) const
{
return {output_shape};
return migraphx::argument{output_shape};
}
};
......@@ -104,7 +104,7 @@ struct allocate
const migraphx::shape& output_shape,
const std::vector<migraphx::argument>&) const
{
return {output_shape};
return migraphx::argument{output_shape};
}
};
......
......@@ -64,7 +64,7 @@ TEST_CASE(mul_literal_round_test)
auto l1 = mm->add_literal(1 / 0.00787402f);
auto mul = mm->add_instruction(migraphx::make_op("mul"), l0, l1);
auto round = mm->add_instruction(migraphx::make_op("round"), mul);
auto round = mm->add_instruction(migraphx::make_op("nearbyint"), mul);
mm->add_return({round});
......
......@@ -34,7 +34,8 @@
void run_pass(migraphx::program& p)
{
migraphx::run_passes(p, {migraphx::gpu::fuse_mlir{}, migraphx::dead_code_elimination{}});
migraphx::run_passes(
p, {migraphx::gpu::fuse_mlir{.enable_extra = true}, migraphx::dead_code_elimination{}});
}
template <class F>
......@@ -152,6 +153,8 @@ TEST_CASE(int_quant_dot_tanh_fails)
int main(int argc, const char* argv[])
{
if(migraphx::gpu::mlir_enabled())
{
test::run(argc, argv);
}
return 0;
}
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <iostream>
#include <vector>
#include <migraphx/gpu/gemm.hpp>
#include <hip/hip_runtime_api.h>
#include <migraphx/gpu/target.hpp>
#include <migraphx/verify.hpp>
#include <test.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/iterator_for.hpp>
// includes needed for run_lowering
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/auto_contiguous.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pass_manager.hpp>
// Abbreviated lowering; we don't need the usual cleanup passes for this test
void run_lowering(migraphx::program& p, bool offload_copy = false)
{
auto ctx = migraphx::gpu::context{};
migraphx::run_passes(
*p.get_main_module(),
{migraphx::auto_contiguous{}, migraphx::gpu::lowering{&ctx, offload_copy}});
}
/**
* Tests the automatic GEMM tuning feature. In the finalize() method of the gemm op,
* rocBLAS API functions are called to quickly benchmark all the GEMM solutions
* available in the currently installed rocBLAS library and choose the index of the fastest.
*/
TEST_CASE(gemm_tune_with_rocblas)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sa{migraphx::shape::float_type, {4, 2}};
migraphx::shape sb{migraphx::shape::float_type, {2, 3}};
auto a = mm->add_parameter("a", sa);
auto b = mm->add_parameter("b", sb);
migraphx::operation dot_op = migraphx::make_op("dot");
mm->add_instruction(dot_op, a, b);
// lowering adds gemm implementation for dot operator
run_lowering(p);
migraphx::target gpu_t = migraphx::gpu::target{};
migraphx::compile_options options;
options.exhaustive_tune = true;
p.compile(gpu_t, options);
migraphx::value solution_idx(0);
for(auto ins : iterator_for(*p.get_main_module()))
{
if(ins->name() == "gpu::gemm")
{
auto gemm_op = migraphx::get_operation(ins);
// tuned solution index is not deterministic, but anything other than 0
// (default, invalid, or not available) is good.
// gemm_op.to_value().debug_print();
solution_idx = gemm_op.to_value()["solution_idx"];
break;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT(0 != solution_idx.to<std::size_t>());
#else
EXPECT(0 == solution_idx.to<std::size_t>());
#endif
}
// GEMM tuning of a strided-batch matrix; invokes rocblas_gemm_strided_batched_ex
TEST_CASE(gemm_tune_strided)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sa{migraphx::shape::float_type, {4, 2, 2}};
migraphx::shape sb{migraphx::shape::float_type, {4, 2, 2}};
migraphx::shape s_output{migraphx::shape::float_type, {4, 2, 2}};
auto a = mm->add_parameter("a", sa);
auto b = mm->add_parameter("b", sb);
auto output = mm->add_parameter("out", s_output);
auto gemm_oper = migraphx::make_op("gpu::gemm", {{"beta", 2}});
mm->add_instruction(gemm_oper, a, b, output);
migraphx::target gpu_t = migraphx::gpu::target{};
migraphx::compile_options options;
options.exhaustive_tune = true;
p.compile(gpu_t, options);
migraphx::value solution_idx(0);
for(auto ins : iterator_for(*p.get_main_module()))
{
if(ins->name() == "gpu::gemm")
{
auto gemm_op = migraphx::get_operation(ins);
auto gemmv = gemm_op.to_value();
// tuned solution index is not deterministic, but anything other than 0
// (default, invalid, or not available) is good.
solution_idx = gemm_op.to_value()["solution_idx"];
break;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT(0 != solution_idx.to<std::size_t>());
#else
EXPECT(0 == solution_idx.to<std::size_t>());
#endif
}
// GEMM tuning of a strided-batch matrix; created by lowering
TEST_CASE(gemm_tune_strided_lowered)
{
migraphx::program p;
auto* mm = p.get_main_module();
// At time of writing this test, gemm_impl considers a shape is strided if it has
// at least three dimensions and the 3rd-to-last is nonzero, invoking
// rocblas_gemm_strided_batched_ex. Also, DOT operator requires all dimensions except the last
// two to be equal.
migraphx::shape sa{migraphx::shape::float_type, {4, 2, 5}};
migraphx::shape sb{migraphx::shape::float_type, {4, 5, 3}};
auto a = mm->add_parameter("a", sa);
auto b = mm->add_parameter("b", sb);
migraphx::operation dot_op = migraphx::make_op("dot");
mm->add_instruction(dot_op, a, b);
// lowering adds gemm implementation for dot operator
run_lowering(p);
migraphx::target gpu_t = migraphx::gpu::target{};
migraphx::compile_options options;
options.exhaustive_tune = true;
p.compile(gpu_t, options);
migraphx::value solution_idx(0);
for(auto ins : iterator_for(*p.get_main_module()))
{
if(ins->name() == "gpu::gemm")
{
auto gemm_op = migraphx::get_operation(ins);
// tuned solution index is not deterministic, but anything other than 0
// (default, invalid, or not available) is good.
solution_idx = gemm_op.to_value()["solution_idx"];
break;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT(0 != solution_idx.to<std::size_t>());
#else
EXPECT(0 == solution_idx.to<std::size_t>());
#endif
}
TEST_CASE(gemm_tune_invalid_sol_index)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sa{migraphx::shape::float_type, {4, 2}};
migraphx::shape sb{migraphx::shape::float_type, {2, 3}};
migraphx::shape s_output{migraphx::shape::float_type, {4, 3}};
auto a = mm->add_parameter("a", sa);
auto b = mm->add_parameter("b", sb);
auto output = mm->add_parameter("out", s_output);
auto gemm_oper = migraphx::make_op("gpu::gemm", {{"solution_idx", 987654321}});
mm->add_instruction(gemm_oper, a, b, output);
migraphx::target gpu_t = migraphx::gpu::target{};
migraphx::compile_options options;
options.exhaustive_tune = true;
p.compile(gpu_t, options);
migraphx::value solution_idx(0);
for(auto ins : iterator_for(*p.get_main_module()))
{
if(ins->name() == "gpu::gemm")
{
auto gemm_op = migraphx::get_operation(ins);
auto gemmv = gemm_op.to_value();
// given invalid starting index, should return default 0
solution_idx = gemm_op.to_value()["solution_idx"];
break;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT(0 == solution_idx.to<std::size_t>());
#else
EXPECT(0 != solution_idx.to<std::size_t>());
#endif
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -155,7 +155,7 @@ int main() {}
migraphx::src_file make_src_file(const std::string& name, const std::string& content)
{
return {name, std::make_pair(content.data(), content.data() + content.size())};
return {name, content};
}
TEST_CASE(simple_compile_hip)
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/instruction_ref.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/gpu/allocation_model.hpp>
#include <migraphx/apply_alpha_beta.hpp>
#include <migraphx/adjust_allocation.hpp>
#include <migraphx/gpu/pack_int8_args.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/auto_contiguous.hpp>
#include <migraphx/eliminate_contiguous.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/replace_allocate.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <test.hpp>
#include "make_precompile_op.hpp"
// Treat some operators as compilable to enable lowering
MIGRAPHX_GPU_TEST_PRECOMPILE("add", "mul", "convert")
void run_passes(migraphx::module& m, migraphx::gpu::context& ctx)
{
migraphx::run_passes(m,
{migraphx::auto_contiguous{},
migraphx::gpu::lowering{&ctx, false},
migraphx::eliminate_contiguous{"gpu::contiguous"},
migraphx::dead_code_elimination{},
migraphx::replace_allocate{migraphx::gpu::gpu_allocation_model{}},
migraphx::dead_code_elimination{},
migraphx::gpu::pack_int8_args{},
migraphx::dead_code_elimination{}});
}
TEST_CASE(quant_dot)
{
auto create_module = [] {
migraphx::module m("test");
migraphx::shape m1_shape{migraphx::shape::int8_type, {5, 8}};
migraphx::shape m2_shape{migraphx::shape::int8_type, {8, 7}};
migraphx::shape m3_shape{migraphx::shape::int32_type, {5, 7}};
auto l1 = m.add_parameter("a", m1_shape);
auto l2 = m.add_parameter("b", m2_shape);
auto l3 = m.add_parameter("c", m3_shape);
auto r =
migraphx::add_apply_alpha_beta(m, {l1, l2, l3}, migraphx::make_op("quant_dot"), 1, 1);
m.add_return({r});
return m;
};
auto create_optimized_int8_x4 = [](bool int8_x4) {
migraphx::module m("test");
migraphx::shape m1_shape{migraphx::shape::int8_type, {5, 8}};
migraphx::shape m2_shape{migraphx::shape::int8_type, {8, 7}};
migraphx::shape m3_shape{migraphx::shape::int32_type, {5, 7}};
auto l1 = m.add_parameter("a", m1_shape);
auto l2 = m.add_parameter("b", m2_shape);
auto l3 = m.add_parameter("c", m3_shape);
auto beta = m.add_literal(1);
auto output = m.add_parameter("test:#output_0", m3_shape);
auto gemm_alloc = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(m3_shape)}}));
auto packa = l2;
if(int8_x4)
{
auto alloc = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(m2_shape)}}));
packa = m.add_instruction(migraphx::make_op("gpu::int8_gemm_pack_a"), l2, alloc);
}
auto gemm = m.add_instruction(
migraphx::make_op("gpu::quant_gemm",
{{"int8_x4_format", int8_x4},
{"compute_fp32", migraphx::gpu::get_compute_fp32_flag()}}),
l1,
packa,
gemm_alloc);
auto beta_broadcast = m.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", m3_shape.lens()}}), beta);
auto mul_alloc = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(m3_shape)}}));
auto m3_beta = m.add_instruction(make_precompile_op("mul"), l3, beta_broadcast, mul_alloc);
auto gemm_add = m.add_instruction(make_precompile_op("add"), gemm, m3_beta, output);
m.add_return({gemm_add});
return m;
};
auto m1 = create_module();
auto ctx = migraphx::gpu::context{};
run_passes(m1, ctx);
bool int8_x4 = migraphx::gpu::get_int8_x4_format(ctx);
auto m2 = create_optimized_int8_x4(int8_x4);
EXPECT(m1 == m2);
}
TEST_CASE(quant_dot_trans)
{
auto create_module = [] {
migraphx::module m("test");
migraphx::shape s1{migraphx::shape::int8_type, {3, 2, 8, 5}};
migraphx::shape s2{migraphx::shape::int8_type, {3, 2, 7, 8}};
auto l1 = m.add_parameter("a", s1);
auto tl1 =
m.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), l1);
auto l2 = m.add_parameter("b", s2);
auto tl2 =
m.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), l2);
auto r = migraphx::add_apply_alpha_beta(m, {tl1, tl2}, migraphx::make_op("quant_dot"), 3);
m.add_return({r});
return m;
};
auto create_optimized_int8_x4 = [](bool int8_x4) {
migraphx::module m("test");
migraphx::shape s1{migraphx::shape::int8_type, {3, 2, 8, 5}};
migraphx::shape s2{migraphx::shape::int8_type, {3, 2, 7, 8}};
migraphx::shape s3{migraphx::shape::int32_type, {3, 2, 5, 7}};
auto l1 = m.add_parameter("a", s1);
auto l2 = m.add_parameter("b", s2);
auto alpha = m.add_literal(3);
auto output = m.add_parameter("test:#output_0", s3);
auto tl1 =
m.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), l1);
migraphx::shape ts1{migraphx::shape::int8_type, {3, 2, 5, 8}};
auto tl2 =
m.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), l2);
migraphx::shape ts2{migraphx::shape::int8_type, {3, 2, 8, 7}};
auto alpha_broadcast = m.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", tl1->get_shape().lens()}}), alpha);
auto alpha_alloc = m.add_instruction(migraphx::make_op(
"hip::allocate",
{{"shape",
migraphx::to_value(migraphx::shape(migraphx::shape::int32_type, {3, 2, 5, 8}))}}));
// alpha = int32 and tl1 = int8, convert tl1 to int32 for multiplication and then convert
// back result to int8
auto tl1_convert =
m.add_instruction(make_precompile_op(migraphx::make_op(
"convert", {{"target_type", alpha->get_shape().type()}})),
tl1,
alpha_alloc);
auto mul_alloc = m.add_instruction(migraphx::make_op(
"hip::allocate", {{"shape", migraphx::to_value(alpha_alloc->get_shape())}}));
auto tl1_alpha_int32 =
m.add_instruction(make_precompile_op("mul"), alpha_broadcast, tl1_convert, mul_alloc);
// convert mul_res to int8
auto tl1_alpha_int8_alloc = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(ts1)}}));
auto tl1_alpha_int8 =
m.add_instruction(make_precompile_op(migraphx::make_op(
"convert", {{"target_type", tl1->get_shape().type()}})),
tl1_alpha_int32,
tl1_alpha_int8_alloc);
auto packb = tl2;
if(int8_x4)
{
auto allocpb = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(ts2)}}));
packb = m.add_instruction(migraphx::make_op("gpu::int8_gemm_pack_a"), tl2, allocpb);
}
auto gemm = m.add_instruction(
migraphx::make_op("gpu::quant_gemm",
{{"int8_x4_format", int8_x4},
{"compute_fp32", migraphx::gpu::get_compute_fp32_flag()}}),
tl1_alpha_int8,
packb,
output);
m.add_return({gemm});
return m;
};
auto m1 = create_module();
auto ctx = migraphx::gpu::context{};
run_passes(m1, ctx);
bool int8_x4 = migraphx::gpu::get_int8_x4_format(ctx);
auto m2 = create_optimized_int8_x4(int8_x4);
EXPECT(m1 == m2);
}
TEST_CASE(quant_dot_pad)
{
auto create_module = [] {
migraphx::module m("test");
migraphx::shape s1{migraphx::shape::int8_type, {5, 6}};
migraphx::shape s2{migraphx::shape::int8_type, {6, 7}};
migraphx::shape s3{migraphx::shape::int32_type, {5, 7}};
auto l1 = m.add_parameter("a", s1);
auto l2 = m.add_parameter("b", s2);
auto l3 = m.add_parameter("c", s3);
auto r =
migraphx::add_apply_alpha_beta(m, {l1, l2, l3}, migraphx::make_op("quant_dot"), 1, 1);
m.add_return({r});
return m;
};
auto create_optimized_int8_x4 = [](bool int8_x4) {
migraphx::module m("test");
migraphx::shape s1{migraphx::shape::int8_type, {5, 6}};
migraphx::shape ps1{migraphx::shape::int8_type, {5, 8}};
migraphx::shape s2{migraphx::shape::int8_type, {6, 7}};
migraphx::shape ps2{migraphx::shape::int8_type, {8, 7}};
migraphx::shape s3{migraphx::shape::int32_type, {5, 7}};
auto l1 = m.add_parameter("a", s1);
auto l2 = m.add_parameter("b", s2);
auto l3 = m.add_parameter("c", s3);
auto beta = m.add_literal(1);
auto output = m.add_parameter("test:#output_0", s3);
auto pl1 = l1;
auto packa = l2;
migraphx::instruction_ref pl2{};
if(int8_x4)
{
auto po1 = m.insert_instruction(
l1, migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(ps1)}}));
pl1 = m.add_instruction(
migraphx::make_op("gpu::pad", {{"mode", 0}, {"pads", {0, 2, 0, 0}}, {"value", 0}}),
l1,
po1);
auto po2 = m.insert_instruction(
l2, migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(ps2)}}));
pl2 = m.insert_instruction(
std::next(l2),
migraphx::make_op("gpu::pad", {{"mode", 0}, {"pads", {2, 0, 0, 0}}, {"value", 0}}),
l2,
po2);
}
auto gemm_alloc = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(s3)}}));
if(int8_x4)
{
auto alloc = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(ps2)}}));
packa = m.add_instruction(migraphx::make_op("gpu::int8_gemm_pack_a"), pl2, alloc);
}
auto gemm = m.add_instruction(
migraphx::make_op("gpu::quant_gemm",
{{"int8_x4_format", int8_x4},
{"compute_fp32", migraphx::gpu::get_compute_fp32_flag()}}),
pl1,
packa,
gemm_alloc);
auto beta_broadcast =
m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s3.lens()}}), beta);
auto mul_alloc = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(s3)}}));
auto m3_beta = m.add_instruction(make_precompile_op("mul"), l3, beta_broadcast, mul_alloc);
auto gemm_add = m.add_instruction(make_precompile_op("add"), gemm, m3_beta, output);
m.add_return({gemm_add});
return m;
};
auto m1 = create_module();
auto ctx = migraphx::gpu::context{};
run_passes(m1, ctx);
bool int8_x4 = migraphx::gpu::get_int8_x4_format(ctx);
auto m2 = create_optimized_int8_x4(int8_x4);
EXPECT(m1 == m2);
}
TEST_CASE(quant_dot_trans_pad)
{
auto create_module = [] {
migraphx::module m("test");
migraphx::shape s1{migraphx::shape::int8_type, {3, 2, 9, 5}};
migraphx::shape s2{migraphx::shape::int8_type, {3, 2, 7, 9}};
auto l1 = m.add_parameter("a", s1);
auto tl1 =
m.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), l1);
auto l2 = m.add_parameter("b", s2);
auto tl2 =
m.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), l2);
auto r = migraphx::add_apply_alpha_beta(m, {tl1, tl2}, migraphx::make_op("quant_dot"), 3);
m.add_return({r});
return m;
};
auto create_optimized_int8_x4 = [](bool int8_x4) {
migraphx::module m("test");
migraphx::shape s1{migraphx::shape::int8_type, {3, 2, 9, 5}};
migraphx::shape ps1{migraphx::shape::int8_type, {3, 2, 5, 12}};
migraphx::shape s2{migraphx::shape::int8_type, {3, 2, 7, 9}};
migraphx::shape ps2{migraphx::shape::int8_type, {3, 2, 12, 7}};
migraphx::shape s3{migraphx::shape::int32_type, {3, 2, 5, 7}};
auto l1 = m.add_parameter("a", s1);
auto l2 = m.add_parameter("b", s2);
auto alpha = m.add_literal(3);
auto output = m.add_parameter("test:#output_0", s3);
auto tl1 =
m.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), l1);
migraphx::shape ts1{migraphx::shape::int8_type, {3, 2, 5, 9}};
auto tl2 =
m.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), l2);
migraphx::shape ts2{migraphx::shape::int8_type, {3, 2, 9, 7}};
migraphx::instruction_ref ptb{};
if(int8_x4)
{
ptb = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(ps2)}}));
}
auto pb = tl2;
if(int8_x4)
{
pb = m.add_instruction(
migraphx::make_op("gpu::pad", {{"mode", 0}, {"pads", {0, 0, 3, 0, 0, 0, 0, 0}}}),
tl2,
ptb);
}
auto alpha_broadcast = m.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", tl1->get_shape().lens()}}), alpha);
auto alpha_alloc = m.add_instruction(
migraphx::make_op("hip::allocate",
{{"shape",
migraphx::to_value(migraphx::shape(migraphx::shape::int32_type,
tl1->get_shape().lens()))}}));
// alpha = int32 and tl1 = int8, convert tl1 to int32 for multiplication and then convert
// back result to int8
auto tl1_convert =
m.add_instruction(make_precompile_op(migraphx::make_op(
"convert", {{"target_type", alpha->get_shape().type()}})),
tl1,
alpha_alloc);
auto mul_alloc = m.add_instruction(migraphx::make_op(
"hip::allocate", {{"shape", migraphx::to_value(alpha_alloc->get_shape())}}));
auto tl1_alpha_int32 =
m.add_instruction(make_precompile_op("mul"), alpha_broadcast, tl1_convert, mul_alloc);
// convert mul_res to int8
auto tl1_alpha_int8_alloc = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(ts1)}}));
migraphx::instruction_ref pta{};
if(int8_x4)
{
pta = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(ps1)}}));
}
auto tl1_alpha_int8 = m.add_instruction(
make_precompile_op(migraphx::make_op("convert", {{"target_type", ts1.type()}})),
tl1_alpha_int32,
tl1_alpha_int8_alloc);
auto pa = tl1_alpha_int8;
if(int8_x4)
{
pa = m.add_instruction(
migraphx::make_op("gpu::pad", {{"mode", 0}, {"pads", {0, 0, 0, 3, 0, 0, 0, 0}}}),
tl1_alpha_int8,
pta);
}
auto packb = pb;
if(int8_x4)
{
auto allocpb = m.add_instruction(
migraphx::make_op("hip::allocate", {{"shape", migraphx::to_value(ps2)}}));
packb = m.add_instruction(migraphx::make_op("gpu::int8_gemm_pack_a"), pb, allocpb);
}
auto gemm = m.add_instruction(
migraphx::make_op("gpu::quant_gemm",
{{"int8_x4_format", int8_x4},
{"compute_fp32", migraphx::gpu::get_compute_fp32_flag()}}),
pa,
packb,
output);
m.add_return({gemm});
return m;
};
auto m1 = create_module();
auto ctx = migraphx::gpu::context{};
run_passes(m1, ctx);
bool int8_x4 = migraphx::gpu::get_int8_x4_format(ctx);
auto m2 = create_optimized_int8_x4(int8_x4);
EXPECT(m1 == m2);
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -64,7 +64,7 @@ int main() {}
migraphx::src_file make_src_file(const std::string& name, const std::string& content)
{
return {name, std::make_pair(content.data(), content.data() + content.size())};
return {name, content};
}
hip_stream_ptr get_stream()
......
......@@ -339,6 +339,8 @@ inline std::ostream& operator<<(std::ostream& os, const color& c)
static const bool use_color = isatty(STDOUT_FILENO) != 0;
if(use_color)
return os << "\033[" << static_cast<std::size_t>(c) << "m";
#else
(void)c;
#endif
return os;
}
......
......@@ -48,9 +48,7 @@ compile_function(const std::string& src, const std::string& flags, const std::st
migraphx::src_compiler compiler;
compiler.flags = flags + "-std=c++14 -fPIC -shared";
compiler.output = "libsimple.so";
migraphx::src_file f;
f.path = "main.cpp";
f.content = std::make_pair(src.data(), src.data() + src.size());
migraphx::src_file f{"main.cpp", src};
auto image = compiler.compile({f});
return migraphx::dynamic_loader{image}.get_function<F>(fname);
}
......
......@@ -55,7 +55,7 @@ struct allocate
const migraphx::shape& output_shape,
const std::vector<migraphx::argument>&) const
{
return {output_shape};
return migraphx::argument{output_shape};
}
};
......
......@@ -97,9 +97,12 @@ TEST_CASE(test_msgpack_bool)
TEST_CASE(test_msgpack_float)
{
migraphx::value v = 3.0;
// changed all double values in this code to not end with .0 because on msgpack for Windows if
// input type is double and ends with .0 it could be converted to uint64_t or int64_t and the
// goal of these functions is to test double without conversions
migraphx::value v = 3.01;
auto buffer = migraphx::to_msgpack(v);
EXPECT(buffer == msgpack_buffer(3.0));
EXPECT(buffer == msgpack_buffer(3.01));
EXPECT(migraphx::from_msgpack(buffer) == v);
}
......@@ -129,10 +132,10 @@ TEST_CASE(test_msgpack_empty_array)
TEST_CASE(test_msgpack_object)
{
migraphx::value v = {{"one", 1.0}, {"three", 3.0}, {"two", 2.0}};
migraphx::value v = {{"one", 1.01}, {"three", 3.01}, {"two", 2.01}};
auto buffer = migraphx::to_msgpack(v);
EXPECT(buffer == msgpack_buffer(std::map<std::string, double>{
{"one", 1.0}, {"three", 3.0}, {"two", 2.0}}));
{"one", 1.01}, {"three", 3.01}, {"two", 2.01}}));
EXPECT(migraphx::from_msgpack(buffer) == v);
}
......@@ -157,17 +160,17 @@ struct foo
TEST_CASE(test_msgpack_object_class)
{
migraphx::value v = {{"a", 1.0}, {"b", "abc"}};
migraphx::value v = {{"a", 1.01}, {"b", "abc"}};
auto buffer = migraphx::to_msgpack(v);
EXPECT(buffer == msgpack_buffer(foo{1.0, "abc"}));
EXPECT(buffer == msgpack_buffer(foo{1.01, "abc"}));
EXPECT(migraphx::from_msgpack(buffer) == v);
}
TEST_CASE(test_msgpack_array_class)
{
migraphx::value v = {{{"a", 1.0}, {"b", "abc"}}, {{"a", 3.0}, {"b", "xyz"}}};
migraphx::value v = {{{"a", 1.01}, {"b", "abc"}}, {{"a", 3.01}, {"b", "xyz"}}};
auto buffer = migraphx::to_msgpack(v);
EXPECT(buffer == msgpack_buffer(std::vector<foo>{foo{1.0, "abc"}, foo{3.0, "xyz"}}));
EXPECT(buffer == msgpack_buffer(std::vector<foo>{foo{1.01, "abc"}, foo{3.01, "xyz"}}));
EXPECT(migraphx::from_msgpack(buffer) == v);
}
......
......@@ -37,7 +37,6 @@
#include <migraphx/make_op.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/functional.hpp>
#include <basic_ops.hpp>
#include <migraphx/compile_options.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/generate.hpp>
......
......@@ -57,7 +57,7 @@ struct normalize_test_op
const migraphx::shape& output_shape,
const std::vector<migraphx::argument>&) const
{
return {output_shape};
return migraphx::argument{output_shape};
}
};
......
6d7bc2a097a1a08541cd0d4628831c79ab8092d5
b7b8b5b2ce80edb33990c7ae0fedac6ae3c623f4
......@@ -149,6 +149,21 @@ def argmax_test():
return ([node], [x], [y])
@onnx_test()
def argmax_select_last_index_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
node = onnx.helper.make_node('ArgMax',
inputs=['x'],
outputs=['y'],
axis=2,
keepdims=0,
select_last_index=1)
return ([node], [x], [y])
@onnx_test()
def argmax_dyn_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 4, 5, 6])
......@@ -177,6 +192,21 @@ def argmin_test():
return ([node], [x], [y])
@onnx_test()
def argmin_select_last_index_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
node = onnx.helper.make_node('ArgMin',
inputs=['x'],
outputs=['y'],
axis=3,
keepdims=0,
select_last_index=1)
return ([node], [x], [y])
@onnx_test()
def asin_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
......@@ -2722,6 +2752,119 @@ def group_conv_test():
return ([node], [x, y], [z])
def group_norm_test(x_dims,
scale_dims,
bias_dims,
y_dims,
num_groups,
eps_value=1e-5,
dtype=TensorProto.FLOAT):
x = helper.make_tensor_value_info('x', dtype, x_dims)
scale = helper.make_tensor_value_info('scale', dtype, scale_dims)
bias = helper.make_tensor_value_info('bias', dtype, bias_dims)
y = helper.make_tensor_value_info('y', dtype, y_dims)
node = onnx.helper.make_node('GroupNormalization',
inputs=['x', 'scale', 'bias'],
outputs=['y'],
num_groups=num_groups,
epsilon=eps_value)
return ([node], [x, scale, bias], [y])
@onnx_test()
def group_norm_3d_test():
return group_norm_test([1, 4, 2], [2], [2], [1, 4, 2], 2)
@onnx_test()
def group_norm_3d_half_test():
return group_norm_test([1, 4, 2], [2], [2], [1, 4, 2],
2,
dtype=TensorProto.FLOAT16)
@onnx_test()
def group_norm_4d_test():
return group_norm_test([1, 4, 3, 3], [2], [2], [1, 4, 3, 3], 2)
@onnx_test()
def group_norm_4d_half_test():
return group_norm_test([1, 4, 3, 3], [2], [2], [1, 4, 3, 3],
2,
dtype=TensorProto.FLOAT16)
@onnx_test()
def group_norm_5d_test():
return group_norm_test([3, 3, 3, 3, 3], [1], [1], [3, 3, 3, 3, 3], 1)
@onnx_test()
def group_norm_5d_half_test():
return group_norm_test([3, 3, 3, 3, 3], [1], [1], [3, 3, 3, 3, 3],
1,
dtype=TensorProto.FLOAT16)
@onnx_test()
def group_norm_small_eps_half_test():
return group_norm_test([1, 4, 2], [2], [2], [1, 4, 2],
2,
eps_value=1e-12,
dtype=TensorProto.FLOAT16)
@onnx_test()
def group_norm_invalid_num_groups_error_test():
return group_norm_test([1, 4, 3, 3], [2], [2], [1, 4, 3, 3], 3)
@onnx_test()
def group_norm_missing_attribute_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [2])
bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])
node = onnx.helper.make_node('GroupNormalization',
inputs=['x', 'scale', 'bias'],
outputs=['y'])
return ([node], [x, scale, bias], [y])
@onnx_test()
def group_norm_invalid_input_count_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4, 3, 3])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4, 3, 3])
node = onnx.helper.make_node('GroupNormalization',
inputs=['x', 'scale'],
outputs=['y'],
num_groups=2)
return ([node], [x, scale], [y])
@onnx_test()
def group_norm_invalid_input_shape_error_test():
return group_norm_test([1, 4], [2], [2], [1, 4], 2)
@onnx_test()
def group_norm_invalid_scale_shape_test():
return group_norm_test([1, 4, 3, 3], [1], [2], [1, 4, 3, 3], 2)
@onnx_test()
def group_norm_invalid_bias_shape_test():
return group_norm_test([1, 4, 3, 3], [2], [3], [1, 4, 3, 3], 2)
@onnx_test()
def hardsigmoid_default_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
......@@ -3715,6 +3858,64 @@ def instance_norm_val_3d_test():
return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])
@onnx_test()
def isinf_half_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])
node = onnx.helper.make_node(
'IsInf',
inputs=['t1'],
outputs=['t2'],
)
return ([node], [t1], [t2])
@onnx_test()
def isinf_neg_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])
node = onnx.helper.make_node(
'IsInf',
detect_negative=[1],
detect_positive=[0],
inputs=['t1'],
outputs=['t2'],
)
return ([node], [t1], [t2])
@onnx_test()
def isinf_double_pos_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.DOUBLE, [2, 3])
t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])
node = onnx.helper.make_node(
'IsInf',
detect_negative=[0],
detect_positive=[1],
inputs=['t1'],
outputs=['t2'],
)
return ([node], [t1], [t2])
@onnx_test()
def isinf_no_detect_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])
node = onnx.helper.make_node(
'IsInf',
detect_negative=[0],
detect_positive=[0],
inputs=['t1'],
outputs=['t2'],
)
return ([node], [t1], [t2])
@onnx_test()
def isnan_float_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
......@@ -3804,6 +4005,110 @@ def layernorm_test():
bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])
def make_layer_norm(shape, axis, dtype=TensorProto.FLOAT):
norm_axis = axis + len(shape) if axis < 0 else axis
x = helper.make_tensor_value_info('x', dtype, shape)
scale = helper.make_tensor_value_info('scale', dtype, shape[norm_axis:])
bias = helper.make_tensor_value_info('bias', dtype, shape[norm_axis:])
y = helper.make_tensor_value_info('y', dtype, shape)
node = onnx.helper.make_node('LayerNormalization',
inputs=['x', 'scale', 'bias'],
outputs=['y'],
axis=axis)
return ([node], [x, scale, bias], [y])
@onnx_test()
def layer_norm_invalid_shape_error_test():
return make_layer_norm([3], 0)
@onnx_test()
def layer_norm_2d_axis_zero_test():
return make_layer_norm([3, 4], 0)
@onnx_test()
def layer_norm_2d_axis_one_test():
return make_layer_norm([3, 4], 1)
@onnx_test()
def layer_norm_2d_axis_minus_one_test():
return make_layer_norm([3, 4], -1)
@onnx_test()
def layer_norm_3d_test():
return make_layer_norm([1, 4, 2], -1)
@onnx_test()
def layer_norm_3d_half_test():
return make_layer_norm([1, 4, 2], -1, TensorProto.FLOAT16)
@onnx_test()
def layer_norm_4d_test():
return make_layer_norm([3, 3, 3, 3], -1)
@onnx_test()
def layer_norm_4d_half_test():
return make_layer_norm([3, 3, 3, 3], -1, TensorProto.FLOAT16)
@onnx_test()
def layer_norm_invalid_axis_error_test():
return make_layer_norm([1, 4, 2], 1000)
@onnx_test()
def layer_norm_invalid_minus_axis_error_test():
return make_layer_norm([1, 4, 2], -1000)
@onnx_test()
def layer_norm_invalid_input_count_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node('LayerNormalization',
inputs=['x'],
outputs=['y'])
return ([node], [x], [y])
@onnx_test()
def layer_norm_without_bias_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node('LayerNormalization',
inputs=['x', 'scale'],
outputs=['y'])
return ([node], [x, scale], [y])
@onnx_test()
def layer_norm_small_eps_half_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 2])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT16, [2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 2])
node = onnx.helper.make_node('LayerNormalization',
inputs=['x', 'scale'],
outputs=['y'],
epsilon=1e-12)
return ([node], [x, scale], [y])
@onnx_test()
def leaky_relu_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
......@@ -4029,6 +4334,50 @@ def loop_test():
return ([node], [iter, cond, a, b], [b_loop, uout])
@onnx_test()
def loop_test_implicit_tripcnt():
body = helper.make_graph([
helper.make_node("Add", ["a", "b_in"], ["my_local"]),
helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
helper.make_node("Greater", ["my_local", "a_sub_b_in"],
["keep_going"]),
helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
["user_defined_vals"]),
], "body", [
helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
], [
helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
[1]),
])
iter = helper.make_tensor(name='max_trip_count',
data_type=TensorProto.INT64,
dims=[1],
vals=[15])
node = helper.make_node(
"Loop",
inputs=["max_trip_count", "keep_going_cond", "b"],
outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
body=body)
a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
[1])
b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
uout = helper.make_tensor_value_info('user_defined_vals_loop',
TensorProto.FLOAT, [2, 1])
return ([node], [cond, a, b], [b_loop, uout], [iter])
@onnx_test()
def lpnormalization_axis_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
......@@ -4464,6 +4813,77 @@ def mean_integral_test():
return ([node], data, [mean])
def mvn_default_axes_test_base(dims, type=TensorProto.FLOAT):
data = helper.make_tensor_value_info("data", type, dims)
out = helper.make_tensor_value_info("out", type, dims)
node = helper.make_node("MeanVarianceNormalization",
inputs=["data"],
outputs=["out"])
return ([node], [data], [out])
@onnx_test()
def mvn_default_axes_test():
return mvn_default_axes_test_base([2, 2, 2, 2])
@onnx_test()
def mvn_default_axes_fp16_test():
return mvn_default_axes_test_base([2, 2, 2, 2], TensorProto.FLOAT16)
@onnx_test()
def mvn_default_axes_rank_too_small_test():
return mvn_default_axes_test_base([2, 2, 2])
@onnx_test()
def mvn_default_axes_rank_too_big_test():
return mvn_default_axes_test_base([2, 2, 2, 2, 2])
def mvn_n_rank_test_base(axes, dims, type=TensorProto.FLOAT):
data = helper.make_tensor_value_info("data", type, dims)
out = helper.make_tensor_value_info("out", type, dims)
node = helper.make_node("MeanVarianceNormalization",
inputs=["data"],
outputs=["out"],
axes=axes)
return ([node], [data], [out])
@onnx_test()
def mvn_rank_2_test():
return mvn_n_rank_test_base([1], [2, 2])
@onnx_test()
def mvn_rank_2_fp16_test():
return mvn_n_rank_test_base([1], [2, 2], TensorProto.FLOAT16)
@onnx_test()
def mvn_rank_3_test():
return mvn_n_rank_test_base([0, 1], [2, 2, 2])
@onnx_test()
def mvn_rank_3_fp16_test():
return mvn_n_rank_test_base([0, 1], [2, 2, 2], TensorProto.FLOAT16)
@onnx_test()
def mvn_axes_rank_too_small_test():
return mvn_n_rank_test_base([0, 1, 2], [2, 2, 2])
@onnx_test()
def mvn_axes_rank_too_big_test():
return mvn_n_rank_test_base([0], [2, 2, 2])
@onnx_test()
def min_test():
a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
......@@ -4565,9 +4985,9 @@ def mod_test_fmod_different_dtypes():
@onnx_test()
def multinomial_test():
sample_size = 10
seed = 0.0
input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
sample_size = 13
seed = 0.
input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [3, 10])
output = helper.make_tensor_value_info("output", TensorProto.INT32,
[1, 10])
......@@ -4581,9 +5001,47 @@ def multinomial_test():
@onnx_test()
def multinomial_generated_seed_test():
sample_size = 10
input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
def multinomial_dyn_test():
sample_size = 100000
seed = 1.3
categories = 5
input = helper.make_tensor_value_info("input", TensorProto.FLOAT,
[None, categories])
output = helper.make_tensor_value_info("output", TensorProto.FLOAT,
[None, categories])
node = onnx.helper.make_node(
'Multinomial',
inputs=['input'],
sample_size=sample_size,
dtype=1, # shape::float_type
seed=seed,
outputs=['output'])
return ([node], [input], [output])
@onnx_test()
def multinomial_autoseed_dyn_test():
# If seed attribute is not given, device should auto generate one at runtime
sample_size = 12
input = helper.make_tensor_value_info("input", TensorProto.FLOAT,
[None, 10])
output = helper.make_tensor_value_info("output", TensorProto.INT32,
[None, 10])
node = onnx.helper.make_node('Multinomial',
inputs=['input'],
sample_size=sample_size,
outputs=['output'])
return ([node], [input], [output])
@onnx_test()
def multinomial_generated_seed_test():
sample_size = 10
input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
output = helper.make_tensor_value_info("output", TensorProto.INT32,
[1, 10])
......@@ -4890,6 +5348,32 @@ def pad_test():
return ([node], [x], [y])
@onnx_test()
def pad_asym_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])
node = onnx.helper.make_node('Pad',
inputs=['0'],
pads=[0, 1, 0, 3, 0, 2, 0, 4],
outputs=['1'])
return ([node], [x], [y])
@onnx_test()
def pad_asym_invalid_pads_error_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])
node = onnx.helper.make_node('Pad',
inputs=['0'],
pads=[0, 1, 0, 3, 0, 2],
outputs=['1'])
return ([node], [x], [y])
@onnx_test()
def pad_3arg_test():
values = np.array([1])
......@@ -4922,6 +5406,129 @@ def pad_3arg_test():
return ([arg_val, arg_pad, node], [x], [y])
@onnx_test()
def pad_4arg_axes_test():
values = np.array([1])
val_tensor = helper.make_tensor(name='val',
data_type=TensorProto.FLOAT,
dims=values.reshape(()).shape,
vals=values.astype(float))
arg_val = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_val'],
value=val_tensor)
sizes = np.array([1, 3, 2, 4])
pad_tensor = helper.make_tensor(name='pad_size',
data_type=TensorProto.INT32,
dims=sizes.shape,
vals=sizes.astype(int))
arg_pad = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_pad'],
value=pad_tensor)
axes = np.array([1, 3])
axes_tensor = helper.make_tensor(name='pad_axes',
data_type=TensorProto.INT32,
dims=axes.shape,
vals=axes.astype(int))
arg_axes = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_axes'],
value=axes_tensor)
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])
node = onnx.helper.make_node(
'Pad', inputs=['0', 'arg_pad', 'arg_val', 'arg_axes'], outputs=['1'])
return ([arg_axes, arg_val, arg_pad, node], [x], [y])
@onnx_test()
def pad_4arg_invalid_axes_error_test():
values = np.array([1])
val_tensor = helper.make_tensor(name='val',
data_type=TensorProto.FLOAT,
dims=values.reshape(()).shape,
vals=values.astype(float))
arg_val = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_val'],
value=val_tensor)
sizes = np.array([1, 3, 2, 4])
pad_tensor = helper.make_tensor(name='pad_size',
data_type=TensorProto.INT32,
dims=sizes.shape,
vals=sizes.astype(int))
arg_pad = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_pad'],
value=pad_tensor)
axes = np.array([1, 2, 3])
axes_tensor = helper.make_tensor(name='pad_axes',
data_type=TensorProto.INT32,
dims=axes.shape,
vals=axes.astype(int))
arg_axes = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_axes'],
value=axes_tensor)
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])
node = onnx.helper.make_node(
'Pad', inputs=['0', 'arg_pad', 'arg_val', 'arg_axes'], outputs=['1'])
return ([arg_axes, arg_val, arg_pad, node], [x], [y])
@onnx_test()
def pad_4arg_neg_axes_test():
values = np.array([1])
val_tensor = helper.make_tensor(name='val',
data_type=TensorProto.FLOAT,
dims=values.reshape(()).shape,
vals=values.astype(float))
arg_val = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_val'],
value=val_tensor)
sizes = np.array([1, 3, 2, 4])
pad_tensor = helper.make_tensor(name='pad_size',
data_type=TensorProto.INT32,
dims=sizes.shape,
vals=sizes.astype(int))
arg_pad = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_pad'],
value=pad_tensor)
axes = np.array([-3, -1])
axes_tensor = helper.make_tensor(name='pad_axes',
data_type=TensorProto.INT32,
dims=axes.shape,
vals=axes.astype(int))
arg_axes = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_axes'],
value=axes_tensor)
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])
node = onnx.helper.make_node(
'Pad', inputs=['0', 'arg_pad', 'arg_val', 'arg_axes'], outputs=['1'])
return ([arg_axes, arg_val, arg_pad, node], [x], [y])
@onnx_test()
def pad_reflect_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
......@@ -4945,6 +5552,39 @@ def pad_reflect_test():
return ([arg_pad, node], [x], [y])
@onnx_test()
def pad_reflect_with_axes_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
sizes = np.array([2, 1])
pad_tensor = helper.make_tensor(name='pad_size',
data_type=TensorProto.INT32,
dims=sizes.shape,
vals=sizes.astype(int))
arg_pad = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_pad'],
value=pad_tensor)
axes = np.array([1])
axes_tensor = helper.make_tensor(name='pad_axes',
data_type=TensorProto.INT32,
dims=axes.shape,
vals=axes.astype(int))
arg_axes = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_axes'],
value=axes_tensor)
node = onnx.helper.make_node('Pad',
mode='reflect',
inputs=['0', 'arg_pad', 'arg_axes'],
outputs=['1'])
return ([arg_axes, arg_pad, node], [x], [y])
@onnx_test()
def pad_reflect_multiaxis_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
......@@ -5096,6 +5736,278 @@ def prelu_brcst_test():
return ([node], [arg0, arg1], [arg_out])
@onnx_test()
def qlinearadd_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [64])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])
b = helper.make_tensor_value_info('B', TensorProto.UINT8, [64])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
[128])
sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [], [64])
c = helper.make_tensor_value_info('C', TensorProto.UINT8, [64])
node = onnx.helper.make_node(
'QLinearAdd',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearadd_bcast_test():
a = helper.make_tensor_value_info('A', TensorProto.INT8, [64])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.INT8, [], [0])
b = helper.make_tensor_value_info('B', TensorProto.INT8, [1, 1, 64])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.INT8, [], [32])
sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.INT8, [], [-64])
c = helper.make_tensor_value_info('C', TensorProto.INT8, [1, 1, 64])
node = onnx.helper.make_node(
'QLinearAdd',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearconv_test():
# https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__QLinearConv.html
x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 7, 7])
sc_x = helper.make_tensor('1', TensorProto.FLOAT, [], [0.00369204697])
zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [132])
wt = helper.make_tensor('3', TensorProto.UINT8, [1, 1, 1, 1], [0])
sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [], [0.00172794575])
zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [], [255])
sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.00162681262])
zero_pt_y = helper.make_tensor('7', TensorProto.UINT8, [], [123])
out = helper.make_tensor_value_info('out', TensorProto.UINT8, [1, 1, 7, 7])
node = onnx.helper.make_node(
'QLinearConv',
inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
outputs=['out'],
)
return ([node], [x], [out],
[sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])
@onnx_test()
def qlinearconv_pad_1_test():
# https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 5, 5])
sc_x = helper.make_tensor('1', TensorProto.FLOAT, [],
[0.09411764705882353])
zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [0])
wt = helper.make_tensor('3', TensorProto.UINT8, [1, 1, 3, 3],
[1, 1, 1, 1, 1, 1, 1, 1, 1])
sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [], [1.0])
zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [], [0])
sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.6352941176470588])
zero_pt_y = helper.make_tensor('7', TensorProto.UINT8, [], [0])
out = helper.make_tensor_value_info('out', TensorProto.UINT8, [1, 1, 5, 5])
node = onnx.helper.make_node(
'QLinearConv',
inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
outputs=['out'],
pads=[1, 1, 1, 1],
)
return ([node], [x], [out],
[sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])
@onnx_test()
def qlinearconv_pad_0_test():
# https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 5, 5])
sc_x = helper.make_tensor('1', TensorProto.FLOAT, [],
[0.09411764705882353])
zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [0])
wt = helper.make_tensor('3', TensorProto.UINT8, [1, 1, 3, 3],
[1, 1, 1, 1, 1, 1, 1, 1, 1])
sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [], [1.0])
zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [], [0])
sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.6352941176470588])
zero_pt_y = helper.make_tensor('7', TensorProto.INT8, [], [-128])
out = helper.make_tensor_value_info('out', TensorProto.INT8, [1, 1, 3, 3])
node = onnx.helper.make_node(
'QLinearConv',
inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
outputs=['out'],
pads=[0, 0, 0, 0],
)
return ([node], [x], [out],
[sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])
@onnx_test()
def qlinearconv_scale_1D_test():
# https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 5, 5])
sc_x = helper.make_tensor('1', TensorProto.FLOAT, [],
[0.09411764705882353])
zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [0])
wt = helper.make_tensor(
'3', TensorProto.UINT8, [2, 1, 3, 3],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2])
sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [2], [1.0, 0.5])
zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [2], [0, 0])
sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.6352941176470588])
zero_pt_y = helper.make_tensor('7', TensorProto.INT8, [], [-128])
out = helper.make_tensor_value_info('out', TensorProto.INT8, [1, 2, 3, 3])
node = onnx.helper.make_node(
'QLinearConv',
inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
outputs=['out'],
pads=[0, 0, 0, 0],
)
return ([node], [x], [out],
[sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])
@onnx_test()
def qlinearglobalavgpool_test():
x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 3, 4, 4])
sc_x = helper.make_tensor('X_scale', TensorProto.FLOAT, [], [0.05])
z_pt_x = helper.make_tensor('X_zero_point', TensorProto.UINT8, [], [128])
y = helper.make_tensor_value_info('Y', TensorProto.UINT8, [1, 3, 1, 1])
sc_y = helper.make_tensor('Y_scale', TensorProto.FLOAT, [], [0.025])
z_pt_y = helper.make_tensor('Y_zero_point', TensorProto.UINT8, [], [64])
n = onnx.helper.make_node(
'QLinearGlobalAveragePool',
inputs=['X', 'X_scale', 'X_zero_point', 'Y_scale', 'Y_zero_point'],
outputs=['Y'],
channels_last=0,
)
return ([n], [x], [y], [sc_x, z_pt_x, sc_y, z_pt_y])
def qlinearmatmul_1D_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [8])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])
b = helper.make_tensor_value_info('B', TensorProto.UINT8, [8])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
[128])
sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [], [64])
c = helper.make_tensor_value_info('C', TensorProto.UINT8, [1])
node = onnx.helper.make_node(
'QLinearMatMul',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearmatmul_2D_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [1, 8])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])
b = helper.make_tensor_value_info('B', TensorProto.UINT8, [8, 1])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
[128])
sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [], [64])
c = helper.make_tensor_value_info('C', TensorProto.UINT8, [1, 1])
node = onnx.helper.make_node(
'QLinearMatMul',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearmatmul_3D_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [2, 2, 4])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.0066])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [],
[113])
b = helper.make_tensor_value_info('B', TensorProto.UINT8, [2, 4, 3])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.00705])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
[114])
sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.0107])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [],
[118])
c = helper.make_tensor_value_info('C', TensorProto.UINT8, [2, 2, 3])
node = onnx.helper.make_node(
'QLinearMatMul',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def quantizelinear_test():
arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
......@@ -5793,6 +6705,24 @@ def reshape_non_standard_test():
return ([trans, res], [x], [y])
@onnx_test()
def reshape_variable_input_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
return ([node], [x, x_shape], [y])
@onnx_test()
def reshape_variable_input_dyn_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 2, 3])
x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None, 6])
node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
return ([node], [x, x_shape], [y])
@onnx_test()
def resize_downsample_f_test():
scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
......@@ -6157,6 +7087,16 @@ def roialign_test():
return ([node], [x, roi, bi], [y])
@onnx_test()
def round_half_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [4, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [4, 4])
node = onnx.helper.make_node('Round', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test()
def scatter_add_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
......@@ -6446,6 +7386,101 @@ def shape_gather_test():
return ([node_const, node_shape, node_gather], [x], [z])
@onnx_test()
def shrink_hard_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=1.5,
)
return ([node], [x], [y])
@onnx_test()
def shrink_soft_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=1.5,
bias=1.5,
)
return ([node], [x], [y])
@onnx_test()
def shrink_verify_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [5])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=-5.0,
bias=1.0,
)
return ([node], [x], [y])
@onnx_test()
def shrink_verify2_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [5])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=-6.0,
bias=5.0,
)
return ([node], [x], [y])
@onnx_test()
def shrink_int8_test():
x = helper.make_tensor_value_info('x', TensorProto.INT8, [3, 3])
y = helper.make_tensor_value_info('y', TensorProto.INT8, [3, 3])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=1.5,
bias=1.5,
)
return ([node], [x], [y])
@onnx_test()
def shrink_uint8_test():
x = helper.make_tensor_value_info('x', TensorProto.UINT8, [3, 3])
y = helper.make_tensor_value_info('y', TensorProto.UINT8, [3, 3])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=5.0,
bias=-4.5,
)
return ([node], [x], [y])
@onnx_test()
def sign_test():
x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
......@@ -6981,6 +8016,32 @@ def slice_var_input_dyn1():
return ([node], [data, starts, ends, axes], [output])
@onnx_test()
def slice_var_input_default_steps():
step = np.array([1, 1])
step_tensor = helper.make_tensor(name="step",
data_type=TensorProto.INT64,
dims=step.shape,
vals=step.astype(int))
arg_step = helper.make_node("Constant",
inputs=[],
outputs=['arg_step'],
value=step_tensor)
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
starts = helper.make_tensor_value_info('starts', TensorProto.INT64, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.INT64, [2])
axes = helper.make_tensor_value_info('axes', TensorProto.INT64, [2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node(
'Slice',
inputs=['data', 'starts', 'ends', 'axes', 'arg_step'],
outputs=['output'])
return ([arg_step, node], [data, starts, ends, axes], [output])
@onnx_test()
def slice_var_input_steps_error():
step = np.array([2, 1])
......@@ -6994,9 +8055,9 @@ def slice_var_input_steps_error():
value=step_tensor)
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
starts = helper.make_tensor_value_info('starts', TensorProto.FLOAT, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.FLOAT, [2])
axes = helper.make_tensor_value_info('axes', TensorProto.FLOAT, [2])
starts = helper.make_tensor_value_info('starts', TensorProto.INT64, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.INT64, [2])
axes = helper.make_tensor_value_info('axes', TensorProto.INT64, [2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node(
......@@ -7157,6 +8218,42 @@ def split_test_no_attribute():
return ([const_node, node], [x], [y1, y2, y3, y4])
@onnx_test()
def split_test_uneven():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [12, 15])
y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [3, 15])
y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [3, 15])
y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [3, 15])
y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [3, 15])
y5 = helper.make_tensor_value_info('y5', TensorProto.FLOAT, [0, 15])
node = onnx.helper.make_node(
'Split',
inputs=['x'],
outputs=['y1', 'y2', 'y3', 'y4', 'y5'],
)
return ([node], [x], [y1, y2, y3, y4, y5])
@onnx_test()
def split_test_uneven_num_outputs():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [11, 15])
y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [3, 15])
y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [3, 15])
y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [3, 15])
y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [2, 15])
node = onnx.helper.make_node(
'Split',
inputs=['x'],
outputs=['y1', 'y2', 'y3', 'y4'],
num_outputs=4,
)
return ([node], [x], [y1, y2, y3, y4])
@onnx_test()
def split_test_no_attribute_invalid_split():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15])
......@@ -7216,6 +8313,24 @@ def split_test_no_attribute_invalid_input_split():
return ([node], [x], [y1, y2, y3])
@onnx_test()
def split_test_invalid_num_outputs():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [11, 15])
y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [3, 15])
y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [3, 15])
y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [3, 15])
y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [2, 15])
node = onnx.helper.make_node(
'Split',
inputs=['x'],
outputs=['y1', 'y2', 'y3', 'y4'],
num_outputs=5,
)
return ([node], [x], [y1, y2, y3, y4])
@onnx_test()
def sqrt_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
......@@ -7718,7 +8833,7 @@ def transpose_gather_test():
@onnx_test()
def trilu_test():
def triu_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
......@@ -7731,7 +8846,7 @@ def trilu_test():
@onnx_test()
def trilu_batch_diff_k_test():
def triu_batch_diff_k_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
k = np.array([2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
......@@ -7749,7 +8864,24 @@ def trilu_batch_diff_k_test():
@onnx_test()
def trilu_lower_test():
def tril_batch_diff_k_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
k = np.array([2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
k_tensor = helper.make_tensor(name='k',
data_type=TensorProto.INT64,
dims=k.shape,
vals=k.astype(np.int64))
node = onnx.helper.make_node('Trilu',
inputs=['x', 'k'],
outputs=['y'],
upper=0)
return ([node], [x], [y], [k_tensor])
@onnx_test()
def tril_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
......@@ -7758,7 +8890,7 @@ def trilu_lower_test():
@onnx_test()
def trilu_neg_k_test():
def triu_neg_k_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
k = np.array([-1])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
......@@ -7772,7 +8904,23 @@ def trilu_neg_k_test():
@onnx_test()
def trilu_out_k_test():
def tril_neg_k_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
k = np.array([-1])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
k_tensor = helper.make_tensor(name='k',
data_type=TensorProto.INT64,
dims=k.shape,
vals=k.astype(np.int64))
node = onnx.helper.make_node('Trilu',
inputs=['x', 'k'],
outputs=['y'],
upper=0)
return ([node], [x], [y], [k_tensor])
@onnx_test()
def triu_out_k_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
k = np.array([5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
......@@ -7786,7 +8934,23 @@ def trilu_out_k_test():
@onnx_test()
def trilu_row_one_test():
def tril_out_k_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
k = np.array([5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
k_tensor = helper.make_tensor(name='k',
data_type=TensorProto.INT64,
dims=k.shape,
vals=k.astype(np.int64))
node = onnx.helper.make_node('Trilu',
inputs=['x', 'k'],
outputs=['y'],
upper=0)
return ([node], [x], [y], [k_tensor])
@onnx_test()
def triu_row_one_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
k = np.array([1])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])
......@@ -7803,6 +8967,23 @@ def trilu_row_one_test():
return ([node], [x], [y], [k_tensor])
@onnx_test()
def tril_row_one_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
k = np.array([1])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])
k_tensor = helper.make_tensor(name='k',
data_type=TensorProto.INT64,
dims=k.shape,
vals=k.astype(np.int64))
node = onnx.helper.make_node('Trilu',
inputs=['x', 'k'],
outputs=['y'],
upper=0)
return ([node], [x], [y], [k_tensor])
@onnx_test()
def undefined_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
......@@ -7886,6 +9067,20 @@ def upsample_test():
return ([node], [X], [Y], [scale_tensor])
@onnx_test()
def upsample_ver7_test():
X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])
node = onnx.helper.make_node('Upsample',
inputs=['X'],
outputs=['Y'],
mode='nearest',
scales=[1.0, 1.0, 2.0, 3.0])
return ([node], [X], [Y])
@onnx_test()
def variable_batch_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
......
group_norm_3d_half_test:
M
x
scale
biasy"GroupNormalization*
epsilon'7*
num_groupsgroup_norm_3d_half_testZ
x




Z
scale


Z
bias


b
y




B
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment