Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
4ea39116
Commit
4ea39116
authored
Nov 10, 2023
by
Khalique Ahmed
Browse files
manual merge
parents
20128cae
d8011adf
Changes
315
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
973 additions
and
407 deletions
+973
-407
src/targets/gpu/fuse_mlir.cpp
src/targets/gpu/fuse_mlir.cpp
+101
-83
src/targets/gpu/gemm_impl.cpp
src/targets/gpu/gemm_impl.cpp
+474
-157
src/targets/gpu/hiprtc/main.cpp
src/targets/gpu/hiprtc/main.cpp
+1
-0
src/targets/gpu/include/migraphx/gpu/ck.hpp
src/targets/gpu/include/migraphx/gpu/ck.hpp
+165
-0
src/targets/gpu/include/migraphx/gpu/compile_hip.hpp
src/targets/gpu/include/migraphx/gpu/compile_hip.hpp
+1
-4
src/targets/gpu/include/migraphx/gpu/compile_miopen.hpp
src/targets/gpu/include/migraphx/gpu/compile_miopen.hpp
+1
-1
src/targets/gpu/include/migraphx/gpu/context.hpp
src/targets/gpu/include/migraphx/gpu/context.hpp
+3
-20
src/targets/gpu/include/migraphx/gpu/convolution.hpp
src/targets/gpu/include/migraphx/gpu/convolution.hpp
+12
-34
src/targets/gpu/include/migraphx/gpu/device/arg_op.hpp
src/targets/gpu/include/migraphx/gpu/device/arg_op.hpp
+39
-3
src/targets/gpu/include/migraphx/gpu/device/argmax.hpp
src/targets/gpu/include/migraphx/gpu/device/argmax.hpp
+3
-2
src/targets/gpu/include/migraphx/gpu/device/argmin.hpp
src/targets/gpu/include/migraphx/gpu/device/argmin.hpp
+3
-2
src/targets/gpu/include/migraphx/gpu/device/int8_gemm_pack.hpp
...argets/gpu/include/migraphx/gpu/device/int8_gemm_pack.hpp
+0
-49
src/targets/gpu/include/migraphx/gpu/fuse_mlir.hpp
src/targets/gpu/include/migraphx/gpu/fuse_mlir.hpp
+1
-0
src/targets/gpu/include/migraphx/gpu/fuse_ops.hpp
src/targets/gpu/include/migraphx/gpu/fuse_ops.hpp
+1
-2
src/targets/gpu/include/migraphx/gpu/gemm.hpp
src/targets/gpu/include/migraphx/gpu/gemm.hpp
+37
-14
src/targets/gpu/include/migraphx/gpu/gemm_impl.hpp
src/targets/gpu/include/migraphx/gpu/gemm_impl.hpp
+51
-15
src/targets/gpu/include/migraphx/gpu/gemm_softmax_gemm.hpp
src/targets/gpu/include/migraphx/gpu/gemm_softmax_gemm.hpp
+75
-0
src/targets/gpu/include/migraphx/gpu/miopen.hpp
src/targets/gpu/include/migraphx/gpu/miopen.hpp
+2
-16
src/targets/gpu/include/migraphx/gpu/prefuse_ops.hpp
src/targets/gpu/include/migraphx/gpu/prefuse_ops.hpp
+2
-2
src/targets/gpu/include/migraphx/gpu/rocblas.hpp
src/targets/gpu/include/migraphx/gpu/rocblas.hpp
+1
-3
No files found.
src/targets/gpu/fuse_mlir.cpp
View file @
4ea39116
...
...
@@ -36,24 +36,14 @@ struct module;
namespace
gpu
{
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_ENABLE_MLIR
);
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_ENABLE_EXTRA_MLIR
);
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_DISABLE_MLIR
);
bool
mlir_enabled
()
{
#ifdef MIGRAPHX_MLIR
const
bool
mlir_enabled
=
enabled
(
MIGRAPHX_ENABLE_MLIR
{});
if
(
mlir_enabled
)
{
return
true
;
}
else
{
std
::
cerr
<<
"WARNING: MIGraphX built with MLIR but it is not enabled. Please set the env "
"var MIGRAPHX_ENABLE_MLIR to use MLIR kernel generator."
<<
std
::
endl
;
return
false
;
}
const
bool
mlir_disabled
=
enabled
(
MIGRAPHX_DISABLE_MLIR
{});
return
not
mlir_disabled
;
#else
return
false
;
#endif
...
...
@@ -131,9 +121,16 @@ fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op)
for
(
instruction_ref
input
:
gemm_based_op
->
inputs
())
{
std
::
vector
<
operation
>
op_stream
;
while
(
contains
({
"slice"
,
"transpose"
,
"contiguous"
,
"reshape"
},
input
->
name
()))
while
(
contains
(
{
"slice"
,
"transpose"
,
"contiguous"
,
"reshape"
,
"squeeze"
,
"flatten"
,
"unsqueeze"
},
input
->
name
()))
{
op_stream
.
push_back
(
input
->
get_operator
());
operation
op
=
input
->
get_operator
();
if
(
contains
({
"squeeze"
,
"flatten"
,
"unsqueeze"
},
input
->
name
()))
{
op
=
migraphx
::
make_op
(
"reshape"
,
{{
"dims"
,
input
->
get_shape
().
lens
()}});
}
op_stream
.
push_back
(
op
);
input
=
input
->
inputs
().
at
(
0
);
}
top_inputs
.
push_back
(
input
);
...
...
@@ -150,27 +147,72 @@ fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op)
return
{
new_gemm_based_op
,
top_inputs
};
}
MIGRAPHX_PRED_MATCHER
(
is_mlir_conv
,
instruction_ref
ins
)
enum
class
mlir_mode
{
if
(
ins
->
name
()
!=
"convolution"
and
ins
->
name
()
!=
"quant_convolution"
)
return
false
;
value
v
=
ins
->
get_operator
().
to_value
();
auto
group
=
v
.
at
(
"group"
).
to
<
int
>
();
if
(
group
!=
1
)
return
false
;
// Avoid MLIR assertion: Index < Length && "Invalid index!"
if
(
ins
->
get_shape
().
lens
().
size
()
!=
4
)
return
false
;
return
true
;
all
,
fast
,
int8
,
none
};
auto
is_mlir_dot
(
mlir_mode
mode
)
{
return
match
::
make_basic_pred_matcher
([
=
](
instruction_ref
ins
)
{
if
(
mode
==
mlir_mode
::
none
)
return
false
;
if
(
ins
->
name
()
!=
"dot"
and
ins
->
name
()
!=
"quant_dot"
)
return
false
;
if
(
mode
!=
mlir_mode
::
fast
)
return
true
;
auto
a
=
ins
->
inputs
().
front
()
->
get_shape
();
auto
b
=
ins
->
inputs
().
back
()
->
get_shape
();
// auto m = a.lens()[a.lens().size() - 2];
// auto n = b.lens().back();
auto
k
=
a
.
lens
().
back
();
// Skipping GEMMs with a K dimension greater than 2048 is a course-grained strategy
// to avoid poor-performing GEMM kernels from MLIR
// To-do: Investigate a more precise strategy
return
k
<=
2048
;
});
}
auto
is_mlir_conv
(
mlir_mode
mode
)
{
return
match
::
make_basic_pred_matcher
([
=
](
instruction_ref
ins
)
{
if
(
mode
==
mlir_mode
::
none
)
return
false
;
if
(
ins
->
name
()
!=
"convolution"
and
ins
->
name
()
!=
"quant_convolution"
)
return
false
;
value
v
=
ins
->
get_operator
().
to_value
();
auto
group
=
v
.
at
(
"group"
).
to
<
int
>
();
if
(
group
!=
1
)
return
false
;
// Avoid MLIR assertion: Index < Length && "Invalid index!"
if
(
ins
->
get_shape
().
lens
().
size
()
!=
4
)
return
false
;
if
(
ins
->
get_shape
().
type
()
==
shape
::
int8_type
)
return
true
;
if
(
mode
==
mlir_mode
::
int8
)
return
false
;
if
(
mode
==
mlir_mode
::
all
)
return
true
;
auto
w
=
ins
->
inputs
().
at
(
1
)
->
get_shape
();
if
(
w
.
lens
().
size
()
!=
4
)
return
true
;
if
(
w
.
lens
()[
2
]
!=
w
.
lens
()[
3
])
return
true
;
return
(
w
.
lens
()[
3
]
%
3
)
!=
0
;
});
}
struct
find_mlir_fused_ops
{
mlir_mode
conv_mode
=
mlir_mode
::
none
;
mlir_mode
dot_mode
=
mlir_mode
::
none
;
auto
matcher
()
const
{
auto
dot_or_conv
=
match
::
skip
(
match
::
name
(
"contiguous"
))(
match
::
any_of
(
match
::
name
(
"dot"
),
match
::
name
(
"quant_dot"
),
is_mlir_conv
())
.
bind
(
"gemm_based_op"
));
match
::
any_of
(
is_mlir_dot
(
dot_mode
),
is_mlir_conv
(
conv_mode
)).
bind
(
"gemm_based_op"
));
return
match
::
name
(
"pointwise"
)(
match
::
any_of
[
match
::
inputs
()](
dot_or_conv
.
bind
(
"x"
)));
}
...
...
@@ -302,8 +344,11 @@ struct find_mlir_fused_ops
}
};
template
<
auto
Matcher
>
struct
find_mlir_standalone_op
{
mlir_mode
mode
=
mlir_mode
::
none
;
auto
matcher
()
const
{
return
Matcher
(
mode
);
}
void
apply
(
module_pass_manager
&
mpm
,
const
match
::
matcher_result
&
r
)
const
{
auto
conv_based_op
=
r
.
result
;
...
...
@@ -316,7 +361,8 @@ struct find_mlir_standalone_op
return
;
static
size_t
counter
=
0
;
module_ref
mm
=
mpm
.
create_module
(
"mlir_"
+
std
::
to_string
(
counter
++
));
module_ref
mm
=
mpm
.
create_module
(
"mlir_"
+
conv_based_op
->
name
()
+
std
::
to_string
(
counter
++
));
mm
->
set_bypass
();
auto
[
anchor_op
,
top_inputs
]
=
fuse_input_ops_and_gemm_based_op
(
mm
,
conv_based_op
);
mm
->
add_return
({
anchor_op
});
...
...
@@ -325,15 +371,8 @@ struct find_mlir_standalone_op
}
};
struct
find_mlir_standalone_convolution_op
:
find_mlir_standalone_op
{
auto
matcher
()
const
{
return
is_mlir_conv
;
}
};
struct
find_mlir_standalone_dot_op
:
find_mlir_standalone_op
{
auto
matcher
()
const
{
return
match
::
any_of
(
match
::
name
(
"dot"
),
match
::
name
(
"quant_dot"
));
}
};
using
find_mlir_standalone_convolution_op
=
find_mlir_standalone_op
<&
is_mlir_conv
>
;
using
find_mlir_standalone_dot_op
=
find_mlir_standalone_op
<&
is_mlir_dot
>
;
/**
* @brief Declares a new MIGraphX environment variable which forces to generate
...
...
@@ -347,44 +386,15 @@ struct find_mlir_standalone_dot_op : find_mlir_standalone_op
* intended to be primarily used by rocMLIR developers.
*/
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_MLIR_USE_SPECIFIC_OPS
);
bool
is_self_decide
()
{
return
string_value_of
(
MIGRAPHX_MLIR_USE_SPECIFIC_OPS
{},
""
).
empty
();
}
bool
is_requested
(
std
::
string_view
option
)
bool
is_requested
(
std
::
string_view
option
,
bool
fallback
=
false
)
{
assert
(
not
is_self_decide
());
auto
string_value
=
string_value_of
(
MIGRAPHX_MLIR_USE_SPECIFIC_OPS
{},
""
);
if
(
string_value
.
empty
())
return
fallback
;
const
auto
options
=
split_string
(
string_value
,
','
);
return
contains
(
options
,
option
);
}
bool
is_enabled
(
std
::
string_view
op_name
,
context
*
ctx
)
{
if
(
is_self_decide
())
{
if
(
op_name
==
"fused"
)
{
return
true
;
}
else
if
(
op_name
==
"convolution"
or
op_name
==
"quant_convolution"
)
{
if
(
ctx
==
nullptr
)
{
return
false
;
}
else
{
const
auto
&
device
=
ctx
->
get_current_device
();
const
std
::
string
navi_family
{
"gfx110"
};
return
starts_with
(
device
.
get_gfx_name
(),
navi_family
);
}
}
else
{
return
false
;
}
}
return
is_requested
(
op_name
);
}
}
// namespace
#endif // MIGRAPHX_MLIR
...
...
@@ -392,20 +402,28 @@ bool is_enabled(std::string_view op_name, context* ctx)
void
fuse_mlir
::
apply
(
module_pass_manager
&
mpm
)
const
{
#ifdef MIGRAPHX_MLIR
if
(
is_enabled
(
"fused"
,
this
->
ctx
))
{
match
::
find_matches
(
mpm
,
find_mlir_fused_ops
{});
}
const
auto
&
device_name
=
ctx
==
nullptr
?
""
:
ctx
->
get_current_device
().
get_gfx_name
();
const
bool
is_navi
=
starts_with
(
device_name
,
"gfx110"
);
if
(
is_enabled
(
"convolution"
,
this
->
ctx
))
{
match
::
find_matches
(
mpm
,
find_mlir_standalone_convolution_op
{});
}
auto
get_mode
=
[
&
](
std
::
string_view
option
,
mlir_mode
m1
,
mlir_mode
m2
=
mlir_mode
::
fast
)
{
if
(
is_requested
(
option
))
return
mlir_mode
::
all
;
if
(
is_navi
)
return
mlir_mode
::
all
;
return
std
::
max
(
m1
,
m2
);
};
if
(
is_enabled
(
"dot"
,
this
->
ctx
))
{
match
::
find_matches
(
mpm
,
find_mlir_standalone_dot_op
{});
}
mlir_mode
mode
=
(
enabled
(
MIGRAPHX_ENABLE_EXTRA_MLIR
{})
or
enable_extra
)
?
mlir_mode
::
fast
:
mlir_mode
::
none
;
match
::
find_matches
(
mpm
,
find_mlir_fused_ops
{.
conv_mode
=
get_mode
(
"fused"
,
mlir_mode
::
fast
),
.
dot_mode
=
get_mode
(
"fused"
,
mode
)});
match
::
find_matches
(
mpm
,
find_mlir_standalone_convolution_op
{
get_mode
(
"convolution"
,
mlir_mode
::
int8
)},
find_mlir_standalone_dot_op
{
get_mode
(
"dot"
,
mlir_mode
::
none
)});
#else
(
void
)
mpm
;
#endif
...
...
src/targets/gpu/gemm_impl.cpp
View file @
4ea39116
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -21,15 +21,20 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <rocblas/rocblas.h>
#include <migraphx/gpu/gemm_impl.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/permutation.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/time.hpp>
using
microseconds
=
std
::
chrono
::
duration
<
double
,
std
::
micro
>
;
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
// Convert rocBLAS datatypes to equivalent Migraphx data types
rocblas_datatype
get_type
(
shape
::
type_t
type
)
{
switch
(
type
)
...
...
@@ -81,196 +86,508 @@ shape transpose_batch(const shape& s, unsigned trans_batch)
return
shape
::
from_permutation
(
s
.
type
(),
s
.
lens
(),
perm
);
}
template
<
class
R
,
class
...
Ts
,
class
...
Us
>
R
rocblas_invoke
(
R
(
*
f
)(
Ts
...),
Us
...
xs
)
/**
* Returns results of rocblas_status_success, rocblas_status_perf_degraded,
* or rocblas_status_invalid_value. Caller
* is expected to check for invalid index. Any other result causes an exception.
*
*/
template
<
class
F
,
class
Pack
,
class
...
Ts
>
auto
rocblas_invoke
(
F
f
,
Pack
p
,
Ts
...
xs
)
{
if
constexpr
(
sizeof
...(
Ts
)
==
sizeof
...(
Us
))
return
f
(
xs
...);
else
return
f
(
xs
...,
nullptr
,
nullptr
);
return
p
([
=
](
auto
...
ws
)
{
auto
status
=
f
(
ws
...,
xs
...);
if
(
status
!=
rocblas_status_success
and
status
!=
rocblas_status_invalid_value
)
{
if
(
status
==
rocblas_status_perf_degraded
)
{
std
::
cerr
<<
"WARNING: degraded perf. in rocBLAS call"
<<
std
::
endl
;
}
else
MIGRAPHX_THROW
(
"rocblas_invoke: rocBLAS call failed with status "
+
std
::
to_string
(
status
));
}
return
status
;
});
}
static
bool
is_transposed
(
const
shape
&
s
)
{
if
(
not
s
.
transposed
())
return
false
;
return
s
.
strides
().
back
()
!=
1
;
}
static
bool
is_transposed
(
const
shape
&
s
)
{
return
s
.
transposed
()
and
s
.
strides
().
back
()
!=
1
;
}
static
rocblas_int
get_batch_stride
(
const
argument
&
a
)
static
rocblas_int
get_batch_stride
(
const
shape
&
s
)
{
return
a
.
get_shape
().
strides
()[
a
.
get_shape
().
strides
().
size
()
-
3
];
// This value is not needed for non-strided inputs
if
(
s
.
strides
().
size
()
<
3
)
return
0
;
else
return
s
.
strides
()[
s
.
strides
().
size
()
-
3
];
}
template
<
class
T
>
void
gemm_impl
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
T
alpha
,
T
beta
,
bool
int8_x4_format
,
bool
compute_fp32
)
/**
* Wrapper for multiple rocBLAS calls. The constructor creates parameters for
* these calls based on data shapes and other values contained in the associated
* instruction and operation.
*
* The template parameter T is not the type of the matrix data but of the weighting
* coefficients alpha and beta (these are float in rocBLAS internals)
*/
template
<
typename
T
>
struct
gemm_impl
{
const
bool
is_3inputs
=
(
args
.
size
()
==
4
);
if
(
not
is_3inputs
)
gemm_impl
(
const
shape
&
output_shape
,
const
std
::
vector
<
shape
>&
input_shapes
,
T
alpha_param
,
T
beta_param
,
bool
compute_fp32_flag
)
:
alpha
(
alpha_param
),
beta
(
beta_param
),
is_3inputs
(
input_shapes
.
size
()
==
4
),
compute_fp32
(
compute_fp32_flag
)
{
beta
=
0
;
}
bool
transa
=
is_transposed
(
args
[
0
].
get_shape
());
bool
transb
=
is_transposed
(
args
[
1
].
get_shape
());
auto
n_dim
=
output_shape
.
lens
().
size
();
auto
dim_1
=
n_dim
-
1
;
auto
dim_0
=
n_dim
-
2
;
rocblas_int
lda
=
args
[
0
].
get_shape
().
strides
()[
transa
?
dim_1
:
dim_0
];
rocblas_int
ldb
=
args
[
1
].
get_shape
().
strides
()[
transb
?
dim_1
:
dim_0
];
rocblas_int
ldc
=
args
[
2
].
get_shape
().
strides
()[
dim_0
];
rocblas_int
ldd
=
is_3inputs
?
args
[
3
].
get_shape
().
strides
()[
dim_0
]
:
ldc
;
rocblas_datatype
arg_type
=
get_type
(
args
[
0
].
get_shape
().
type
());
auto
output_type
=
arg_type
;
if
(
output_type
==
rocblas_datatype_i8_r
)
{
output_type
=
rocblas_datatype_i32_r
;
}
auto
compute_type
=
output_type
;
if
(
compute_fp32
)
{
if
(
arg_type
==
rocblas_datatype_f16_r
)
compute_type
=
rocblas_datatype_f32_r
;
}
rocblas_gemm_flags
flag
=
rocblas_gemm_flags_none
;
#if ROCBLAS_VERSION_MAJOR < 3
if
(
int8_x4_format
)
flag
=
rocblas_gemm_flags_pack_int8x4
;
#endif
if
(
not
is_3inputs
)
{
beta
=
0
;
}
auto
a_lens
=
args
[
0
].
get_shape
().
lens
();
auto
b_lens
=
args
[
1
].
get_shape
().
lens
();
output_shape
.
visit_type
([
&
](
auto
as
)
{
auto
alpha_r
=
as
(
alpha
);
auto
beta_r
=
as
(
beta
);
// Create lambdas that will cast alpha, beta to the output shape's type
// and retain the values being pointed to
output_shape
.
visit_type
([
&
](
auto
as
)
{
auto
alpha_r
=
as
(
alpha
);
auto
beta_r
=
as
(
beta
);
if
(
compute_fp32
)
{
get_alpha
=
[
=
]
{
return
&
alpha
;
};
get_beta
=
[
=
]
{
return
&
beta
;
};
}
else
{
get_alpha
=
[
=
]
{
return
&
alpha_r
;
};
get_beta
=
[
=
]
{
return
&
beta_r
;
};
}
});
// use void pointer to select different data type if using fp32 mode
void
*
alpha_v
=
&
alpha_r
;
void
*
beta_v
=
&
beta_r
;
transa
=
is_transposed
(
input_shapes
[
0
]);
transb
=
is_transposed
(
input_shapes
[
1
]);
auto
n_dim
=
output_shape
.
lens
().
size
();
auto
dim_0
=
n_dim
-
2
;
auto
dim_1
=
n_dim
-
1
;
// Leading dimensions of matrices
lda
=
input_shapes
[
0
].
strides
()[
transa
?
dim_1
:
dim_0
];
ldb
=
input_shapes
[
1
].
strides
()[
transb
?
dim_1
:
dim_0
];
ldc
=
input_shapes
[
2
].
strides
()[
dim_0
];
ldd
=
is_3inputs
?
input_shapes
[
3
].
strides
()[
dim_0
]
:
ldc
;
if
(
compute_fp32
)
arg_type
=
get_type
(
input_shapes
[
0
].
type
());
output_type
=
arg_type
;
if
(
output_type
==
rocblas_datatype_i8_r
)
{
alpha_v
=
&
alpha
;
beta_v
=
&
beta
;
output_type
=
rocblas_datatype_i32_r
;
}
auto
out_lens
=
output_shape
.
lens
();
rocblas_int
m
=
out_lens
[
dim_0
];
rocblas_int
n
=
out_lens
[
dim_1
];
rocblas_int
k
=
args
[
0
].
get_shape
().
lens
()[
dim_1
];
auto
to_pointer
=
[
&
](
auto
&&
arg
)
{
return
as
.
from
(
arg
.
data
());
};
if
(
args
[
0
].
get_shape
().
type
()
==
shape
::
int8_type
and
(
k
%
4
)
!=
0
and
int8_x4_format
)
compute_type
=
output_type
;
if
(
compute_fp32
)
{
MIGRAPHX_THROW
(
"ROCBLAS_GEMM: k size of int8 type input must be mutlple of 4!"
);
if
(
arg_type
==
rocblas_datatype_f16_r
)
compute_type
=
rocblas_datatype_f32_r
;
}
auto
num_matrices
=
std
::
accumulate
(
auto
a_lens
=
input_shapes
[
0
].
lens
();
auto
b_lens
=
input_shapes
[
1
].
lens
();
auto
out_lens
=
output_shape
.
lens
();
m
=
out_lens
[
dim_0
];
n
=
out_lens
[
dim_1
];
k
=
input_shapes
[
0
].
lens
()[
dim_1
];
a_stride
=
get_batch_stride
(
input_shapes
[
0
]);
b_stride
=
get_batch_stride
(
input_shapes
[
1
]);
c_stride
=
get_batch_stride
(
input_shapes
[
2
]);
d_stride
=
is_3inputs
?
get_batch_stride
(
input_shapes
[
3
])
:
c_stride
;
num_matrices
=
std
::
accumulate
(
out_lens
.
rbegin
()
+
2
,
out_lens
.
rend
(),
std
::
size_t
{
1
},
std
::
multiplies
<
std
::
size_t
>
());
if
(
num_matrices
==
1
or
(
num_matrices
>
1
and
get_batch_stride
(
args
[
1
])
==
0
))
strided_batched
=
num_matrices
>
1
;
if
(
strided_batched
and
b_stride
==
0
and
input_shapes
[
0
].
standard
())
{
// If the batch dimension of B is broadcasted, then we can
// multiply m by the batch_size and use rocblas_gemm_ex
// instead of rocblas_gemm_strided_batched_ex.
m
*=
num_matrices
;
strided_batched
=
false
;
}
}
// the rocblas_gemm API handles inputs and output matrices as
// column-major format. When doing a C = A * B, we actually do
// C^T = (B^T) * (A^T). That is the reason we input args[1] as
// A and args[0] as B in calling the rocblas_gemm.
void
run
(
context
&
ctx
,
const
std
::
vector
<
argument
>&
input_args
,
int32_t
solution_idx
=
0
)
const
{
if
(
strided_batched
)
{
auto
common_args
=
create_strided_batched_args_common
(
ctx
,
input_args
);
rocblas_invoke
(
&
rocblas_gemm_strided_batched_ex
,
common_args
,
rocblas_gemm_algo_solution_index
,
solution_idx
,
gemm_flags
);
}
else
{
auto
common_args
=
create_gemm_ex_args_common
(
ctx
,
input_args
);
rocblas_invoke
(
&
rocblas_gemm_ex
,
ctx
.
get_stream
().
get_rocblas
(),
transb
?
rocblas_operation_transpose
:
rocblas_operation_none
,
transa
?
rocblas_operation_transpose
:
rocblas_operation_none
,
n
,
m
,
k
,
alpha_v
,
to_pointer
(
args
.
at
(
1
)),
arg_type
,
ldb
,
to_pointer
(
args
.
at
(
0
)),
arg_type
,
lda
,
beta_v
,
to_pointer
(
args
[
2
]),
output_type
,
ldc
,
is_3inputs
?
to_pointer
(
args
[
3
])
:
to_pointer
(
args
[
2
]),
output_type
,
ldd
,
compute_type
,
rocblas_gemm_algo_standard
,
0
,
flag
);
common_args
,
rocblas_gemm_algo_solution_index
,
solution_idx
,
gemm_flags
);
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
auto
validate
(
context
&
ctx
,
const
std
::
vector
<
shape
>&
input_shapes
,
int32_t
solution_idx
)
const
{
// Create dummy arguments for the shapes, and call the overloaded method
std
::
vector
<
argument
>
input_args
;
std
::
transform
(
input_shapes
.
begin
(),
input_shapes
.
end
(),
std
::
back_inserter
(
input_args
),
[](
const
shape
&
x
)
{
return
to_gpu
(
generate_argument
(
x
));
});
return
validate
(
ctx
,
input_args
,
solution_idx
);
}
/**
* Checks a particular solution for validity by running it with the flag
* rocblas_gemm_flags_check_solution_index (could be invalid if this model was
* tuned with a different rocBLAS version)
*
* @return Returns either solution_idx if valid, or else the default value 0
* if not. The default does not mean list index 0, but tells the picker
* to choose a solution.
*/
int32_t
validate
(
context
&
ctx
,
const
std
::
vector
<
argument
>&
input_args
,
int32_t
solution_idx
)
const
{
rocblas_status_
check_valid
(
rocblas_status_success
);
if
(
strided_batched
)
{
auto
common_args
=
create_strided_batched_args_common
(
ctx
,
input_args
);
check_valid
=
rocblas_invoke
(
&
rocblas_gemm_strided_batched_ex
,
common_args
,
rocblas_gemm_algo_solution_index
,
solution_idx
,
rocblas_gemm_flags_check_solution_index
);
}
else
{
auto
a_stride
=
get_batch_stride
(
args
[
0
]);
auto
b_stride
=
get_batch_stride
(
args
[
1
]);
auto
c_stride
=
get_batch_stride
(
args
[
2
]);
auto
d_stride
=
is_3inputs
?
get_batch_stride
(
args
[
3
])
:
c_stride
;
rocblas_invoke
(
&
rocblas_gemm_strided_batched_ex
,
ctx
.
get_stream
().
get_rocblas
(),
transb
?
rocblas_operation_transpose
:
rocblas_operation_none
,
transa
?
rocblas_operation_transpose
:
rocblas_operation_none
,
n
,
m
,
k
,
alpha_v
,
to_pointer
(
args
.
at
(
1
)),
arg_type
,
ldb
,
b_stride
,
to_pointer
(
args
.
at
(
0
)),
arg_type
,
lda
,
a_stride
,
beta_v
,
to_pointer
(
args
[
2
]),
output_type
,
ldc
,
c_stride
,
is_3inputs
?
to_pointer
(
args
[
3
])
:
to_pointer
(
args
[
2
]),
output_type
,
ldd
,
d_stride
,
num_matrices
,
compute_type
,
rocblas_gemm_algo_standard
,
0
,
flag
);
auto
common_args
=
create_gemm_ex_args_common
(
ctx
,
input_args
);
check_valid
=
rocblas_invoke
(
&
rocblas_gemm_ex
,
common_args
,
rocblas_gemm_algo_solution_index
,
solution_idx
,
rocblas_gemm_flags_check_solution_index
);
}
});
if
(
check_valid
==
rocblas_status_invalid_value
)
{
std
::
cerr
<<
"WARNING: tuned solution is invalid; reverting to default"
<<
std
::
endl
;
return
0
;
}
return
solution_idx
;
}
#endif
/**
* Helper method to create that subset of a long rocBLAS argument list that is common
* to multiple "...strided_batched..." calls.
*
* The rocblas_gemm API handles inputs and output matrices as
* column-major format. When doing a C = A * B, we actually do
* C^T = (B^T) * (A^T). That is the reason we input args[1] as
* A and args[0] as B in calling the rocblas_gemm.
*
*/
auto
create_strided_batched_args_common
(
context
&
ctx
,
const
std
::
vector
<
argument
>&
args
)
const
{
return
pack
(
ctx
.
get_stream
().
get_rocblas
(),
transb
?
rocblas_operation_transpose
:
rocblas_operation_none
,
transa
?
rocblas_operation_transpose
:
rocblas_operation_none
,
n
,
m
,
k
,
get_alpha
(),
args
[
1
].
data
(),
arg_type
,
ldb
,
b_stride
,
args
[
0
].
data
(),
arg_type
,
lda
,
a_stride
,
get_beta
(),
args
[
2
].
data
(),
output_type
,
ldc
,
c_stride
,
is_3inputs
?
args
[
3
].
data
()
:
args
[
2
].
data
(),
output_type
,
ldd
,
d_stride
,
num_matrices
,
compute_type
);
}
/**
* Helper method to create that subset of a long rocBLAS argument list that is common
* to multiple "gemm_ex..." calls.
*
* The rocblas_gemm API handles inputs and output matrices as
* column-major format. When doing a C = A * B, we actually do
* C^T = (B^T) * (A^T). That is the reason we input args[1] as
* A and args[0] as B in calling the rocblas_gemm.
*
* */
auto
create_gemm_ex_args_common
(
context
&
ctx
,
const
std
::
vector
<
argument
>&
args
)
const
{
return
pack
(
ctx
.
get_stream
().
get_rocblas
(),
transb
?
rocblas_operation_transpose
:
rocblas_operation_none
,
transa
?
rocblas_operation_transpose
:
rocblas_operation_none
,
n
,
m
,
k
,
get_alpha
(),
args
[
1
].
data
(),
arg_type
,
ldb
,
args
[
0
].
data
(),
arg_type
,
lda
,
get_beta
(),
args
[
2
].
data
(),
output_type
,
ldc
,
is_3inputs
?
args
[
3
].
data
()
:
args
[
2
].
data
(),
output_type
,
ldd
,
compute_type
);
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
/**
* Find best rocBLAS solution: Get list of solutions and try them all, returning the index
* of the fastest one.
*/
int
tune
(
context
&
ctx
,
const
std
::
vector
<
shape
>&
input_shapes
)
const
{
// tuning meta parameters
const
int
hot_calls
=
40
;
std
::
vector
<
argument
>
input_args
;
std
::
transform
(
input_shapes
.
begin
(),
input_shapes
.
end
(),
std
::
back_inserter
(
input_args
),
[](
const
shape
&
x
)
{
return
to_gpu
(
generate_argument
(
x
));
});
// Get the solutions list in 2 rocBLAS steps:
// 1. Find out how many solutions there are and allocate the array
// 2. Get the solutions
//
rocblas_int
list_size
=
0
;
std
::
vector
<
rocblas_int
>
solution_indices
;
if
(
strided_batched
)
{
auto
common_args
=
create_strided_batched_args_common
(
ctx
,
input_args
);
rocblas_invoke
(
&
rocblas_gemm_strided_batched_ex_get_solutions
,
common_args
,
rocblas_gemm_algo_solution_index
,
gemm_flags
,
nullptr
,
&
list_size
);
solution_indices
.
resize
(
list_size
);
auto
common_sol_args
=
create_strided_batched_args_common
(
ctx
,
input_args
);
rocblas_invoke
(
&
rocblas_gemm_strided_batched_ex_get_solutions
,
common_sol_args
,
rocblas_gemm_algo_solution_index
,
gemm_flags
,
solution_indices
.
data
(),
&
list_size
);
}
else
{
auto
common_args
=
create_gemm_ex_args_common
(
ctx
,
input_args
);
rocblas_invoke
(
&
rocblas_gemm_ex_get_solutions
,
common_args
,
rocblas_gemm_algo_solution_index
,
gemm_flags
,
nullptr
,
&
list_size
);
solution_indices
.
resize
(
list_size
);
auto
common_sol_args
=
create_gemm_ex_args_common
(
ctx
,
input_args
);
rocblas_invoke
(
&
rocblas_gemm_ex_get_solutions
,
common_sol_args
,
rocblas_gemm_algo_solution_index
,
gemm_flags
,
solution_indices
.
data
(),
&
list_size
);
}
double
best_time
=
std
::
numeric_limits
<
double
>::
max
();
double
first_time
=
-
1
;
// Initialize to default solution index
rocblas_int
best_sol
=
0
;
for
(
auto
sol
:
solution_indices
)
{
// Warmup: the first call to an op. may not be representative since there is
// more time taken initializing caches, etc. so we won't time it.
run
(
ctx
,
input_args
,
sol
);
double
host_time
=
time
<
milliseconds
>
([
&
]
{
for
([[
maybe_unused
]]
int
hc
:
range
(
hot_calls
))
run
(
ctx
,
input_args
,
sol
);
ctx
.
finish
();
});
host_time
/=
hot_calls
;
// dev/evaluation only: track time for first solution.
if
(
first_time
<
0
)
first_time
=
host_time
;
// track current best
if
(
host_time
<
best_time
)
{
best_sol
=
sol
;
best_time
=
host_time
;
}
}
std
::
cout
<<
"Winning GEMM solution: "
<<
best_sol
<<
" in "
<<
best_time
<<
" ms, beats "
<<
first_time
<<
"ms"
<<
std
::
endl
;
return
best_sol
;
}
#endif
private:
size_t
num_matrices
=
0
;
rocblas_int
m
=
0
;
rocblas_int
n
=
0
;
rocblas_int
k
=
0
;
bool
transa
=
false
;
bool
transb
=
false
;
T
alpha
=
0
;
T
beta
=
0
;
std
::
function
<
const
void
*
()
>
get_alpha
{};
std
::
function
<
const
void
*
()
>
get_beta
{};
rocblas_gemm_flags
gemm_flags
=
rocblas_gemm_flags_none
;
rocblas_int
lda
=
0
;
rocblas_int
ldb
=
0
;
rocblas_int
ldc
=
0
;
rocblas_int
ldd
=
0
;
rocblas_int
a_stride
=
0
;
rocblas_int
b_stride
=
0
;
rocblas_int
c_stride
=
0
;
rocblas_int
d_stride
=
0
;
rocblas_datatype
compute_type
=
rocblas_datatype_f32_r
;
rocblas_datatype
arg_type
=
rocblas_datatype_f32_r
;
rocblas_datatype
output_type
=
rocblas_datatype_f32_r
;
bool
strided_batched
=
true
;
bool
is_3inputs
=
true
;
bool
compute_fp32
=
true
;
};
// gemm_impl
void
gemm_compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
float
alpha
,
float
beta
,
bool
compute_fp32
,
int32_t
solution_idx
)
{
std
::
vector
<
shape
>
input_shapes
;
std
::
transform
(
args
.
begin
(),
args
.
end
(),
std
::
back_inserter
(
input_shapes
),
[](
const
argument
&
x
)
{
return
x
.
get_shape
();
});
auto
gemm_item
=
gemm_impl
<
float
>
(
output_shape
,
input_shapes
,
alpha
,
beta
,
compute_fp32
);
gemm_item
.
run
(
ctx
,
args
,
solution_idx
);
}
void
gemm_compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
int32_t
alpha
,
int32_t
beta
,
bool
compute_fp32
,
int32_t
solution_idx
)
{
std
::
vector
<
shape
>
input_shapes
;
std
::
transform
(
args
.
begin
(),
args
.
end
(),
std
::
back_inserter
(
input_shapes
),
[](
const
argument
&
x
)
{
return
x
.
get_shape
();
});
auto
gemm_item
=
gemm_impl
<
int32_t
>
(
output_shape
,
input_shapes
,
alpha
,
beta
,
compute_fp32
);
gemm_item
.
run
(
ctx
,
args
,
solution_idx
);
}
void
gemm
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
float
alpha
,
float
beta
,
bool
int8_x4_format
,
bool
compute_fp32
)
/**
* Decides if the tune() or validate() method is appropriate and calls it.
* Return value is the chosen solution index, or 0 to let picker choose it.
*/
int32_t
gemm_finalize
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
shape
>&
input_shapes
,
float
alpha
,
float
beta
,
bool
compute_fp32
,
int32_t
solution_idx
)
{
gemm_impl
(
ctx
,
output_shape
,
args
,
alpha
,
beta
,
int8_x4_format
,
compute_fp32
);
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
// This code should be called only if either the environment var.
// MIGRAPHX_ENABLE_GEMM_TUNING, or option --exhaustive-tune, is set
if
(
solution_idx
==
0
)
{
auto
gemm_item
=
gemm_impl
<
float
>
(
output_shape
,
input_shapes
,
alpha
,
beta
,
compute_fp32
);
solution_idx
=
gemm_item
.
tune
(
ctx
,
input_shapes
);
}
else
{
// If a tuned solution index is already given, don't tune again but validate
// in case the data was tuned with a different rocBLAS version
auto
gemm_item
=
gemm_impl
<
float
>
(
output_shape
,
input_shapes
,
alpha
,
beta
,
compute_fp32
);
solution_idx
=
gemm_item
.
validate
(
ctx
,
input_shapes
,
solution_idx
);
}
#else
(
void
)
ctx
,
(
void
)
output_shape
,
(
void
)
input_shapes
;
(
void
)
alpha
,
(
void
)
beta
,
(
void
)
compute_fp32
;
#endif
return
solution_idx
;
}
void
gemm
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
int32_t
alpha
,
int32_t
beta
,
bool
int8_x4_format
,
bool
compute_fp32
)
/**
* Decides if the tune() or validate() method is appropriate and calls it.
* Return value is the chosen solution index, or 0 to let picker choose it.
*/
int32_t
gemm_finalize
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
shape
>&
input_shapes
,
int32_t
alpha
,
int32_t
beta
,
bool
compute_fp32
,
int32_t
solution_idx
)
{
gemm_impl
(
ctx
,
output_shape
,
args
,
alpha
,
beta
,
int8_x4_format
,
compute_fp32
);
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
if
(
solution_idx
==
0
)
{
auto
gemm_item
=
gemm_impl
<
int32_t
>
(
output_shape
,
input_shapes
,
alpha
,
beta
,
compute_fp32
);
solution_idx
=
gemm_item
.
tune
(
ctx
,
input_shapes
);
}
else
{
// If a tuned solution index is already given, don't tune again but validate
// in case the data was tuned with a different rocBLAS version
auto
gemm_item
=
gemm_impl
<
int32_t
>
(
output_shape
,
input_shapes
,
alpha
,
beta
,
compute_fp32
);
solution_idx
=
gemm_item
.
validate
(
ctx
,
input_shapes
,
solution_idx
);
}
#else
(
void
)
ctx
,
(
void
)
output_shape
,
(
void
)
input_shapes
;
(
void
)
alpha
,
(
void
)
beta
,
(
void
)
compute_fp32
;
#endif
return
solution_idx
;
}
}
// namespace gpu
...
...
src/targets/gpu/hiprtc/main.cpp
View file @
4ea39116
...
...
@@ -27,6 +27,7 @@
#include <migraphx/msgpack.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/ranges.hpp>
#include <array>
#include <iostream>
#include <cstring>
...
...
src/targets/gpu/include/migraphx/gpu/ck.hpp
0 → 100644
View file @
4ea39116
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_GPU_CK_HPP
#define MIGRAPHX_GUARD_GPU_CK_HPP
#include <migraphx/compile_src.hpp>
#include <migraphx/env.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/stringutils.hpp>
#include <string_view>
#include "ck/host/device_gemm_multiple_d.hpp"
#include "ck/host/device_batched_gemm_softmax_gemm.hpp"
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
#ifndef _WIN32
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_ENABLE_CK
);
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_LOG_CK_GEMM
);
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_CK_DEBUG
);
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_TUNE_CK
);
#endif
// NOLINTNEXTLINE
const
char
*
const
disable_warning_pragma
=
R"__migraphx__(
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Weverything"
${content}
#pragma clang diagnostic pop
)__migraphx__"
;
template
<
class
P
>
std
::
string
ck_disable_warnings
(
P
p
)
{
return
interpolate_string
(
disable_warning_pragma
,
{{
"content"
,
std
::
string
{
p
.
data
(),
p
.
size
()}}});
}
static
std
::
unordered_map
<
std
::
string
,
std
::
string
>
create_ck_header_strings
()
{
std
::
unordered_map
<
std
::
string
,
std
::
string
>
result
;
auto
ck_headers
=
ck
::
host
::
GetHeaders
();
std
::
transform
(
ck_headers
.
begin
(),
ck_headers
.
end
(),
std
::
inserter
(
result
,
result
.
begin
()),
[
&
](
auto
&
p
)
{
return
std
::
pair
<
std
::
string
,
std
::
string
>
(
p
.
first
,
ck_disable_warnings
(
p
.
second
));
});
return
result
;
}
static
std
::
vector
<
src_file
>
create_ck_headers
()
{
static
const
auto
&
header_strings
=
create_ck_header_strings
();
std
::
vector
<
src_file
>
srcs
;
std
::
transform
(
header_strings
.
begin
(),
header_strings
.
end
(),
std
::
back_inserter
(
srcs
),
[
&
](
auto
&
p
)
{
return
src_file
{
p
};
});
return
srcs
;
}
static
inline
const
std
::
vector
<
src_file
>&
ck_headers
()
{
static
const
auto
&
headers
=
create_ck_headers
();
return
headers
;
}
inline
bool
transposed_matrix
(
const
shape
&
s
)
{
return
s
.
strides
().
back
()
!=
1
;
}
inline
ck
::
host
::
DataType
get_type
(
const
shape
&
s
)
{
if
(
s
.
type
()
==
shape
::
half_type
)
return
ck
::
host
::
DataType
::
Half
;
else
if
(
s
.
type
()
==
shape
::
float_type
)
return
ck
::
host
::
DataType
::
Float
;
else
if
(
s
.
type
()
==
shape
::
int8_type
)
return
ck
::
host
::
DataType
::
Int8
;
else
if
(
s
.
type
()
==
shape
::
int32_type
)
return
ck
::
host
::
DataType
::
Int32
;
MIGRAPHX_THROW
(
"Unsupported ck type"
);
}
inline
std
::
size_t
get_batch_count
(
const
shape
&
s
)
{
return
std
::
accumulate
(
s
.
lens
().
rbegin
()
+
2
,
s
.
lens
().
rend
(),
std
::
size_t
{
1
},
std
::
multiplies
<
std
::
size_t
>
());
}
inline
void
fold_batch_dims
(
shape
&
s
)
{
auto
lens
=
s
.
lens
();
if
(
lens
.
size
()
<=
2
)
return
;
auto
batch_count
=
get_batch_count
(
s
);
auto
m1
=
lens
.
at
(
lens
.
size
()
-
2
);
auto
m2
=
lens
.
at
(
lens
.
size
()
-
1
);
if
(
transposed_matrix
(
s
))
s
=
shape
{
s
.
type
(),
{
m1
,
m2
*
batch_count
}};
else
s
=
shape
{
s
.
type
(),
{
m1
*
batch_count
,
m2
}};
}
inline
void
remove_batch_dims
(
shape
&
s
)
{
auto
lens
=
s
.
lens
();
if
(
lens
.
size
()
<=
2
)
return
;
auto
m1
=
lens
.
at
(
lens
.
size
()
-
2
);
auto
m2
=
lens
.
at
(
lens
.
size
()
-
1
);
s
=
shape
{
s
.
type
(),
{
m1
,
m2
}};
}
inline
bool
standard_batch
(
const
shape
&
s
)
{
if
(
s
.
lens
().
size
()
<
3
)
return
true
;
std
::
vector
<
std
::
size_t
>
lens
(
s
.
lens
().
begin
(),
s
.
lens
().
end
()
-
2
);
std
::
vector
<
std
::
size_t
>
strides
(
s
.
strides
().
begin
(),
s
.
strides
().
end
()
-
2
);
auto
base
=
*
(
s
.
lens
().
end
()
-
2
)
*
*
(
s
.
lens
().
end
()
-
1
);
std
::
transform
(
strides
.
begin
(),
strides
.
end
(),
strides
.
begin
(),
[
&
](
auto
stride
)
{
return
stride
/
base
;
});
return
shape
{
s
.
type
(),
lens
,
strides
}.
standard
();
}
inline
bool
can_fold_batch
(
const
std
::
vector
<
shape
>&
inputs
)
{
const
auto
&
b_shape
=
inputs
[
1
];
if
(
std
::
any_of
(
inputs
.
begin
()
+
2
,
inputs
.
end
()
-
1
,
[](
auto
input
)
{
return
not
standard_batch
(
input
);
}))
return
false
;
const
auto
&
b_strides
=
b_shape
.
strides
();
return
std
::
all_of
(
b_strides
.
begin
(),
b_strides
.
end
()
-
2
,
[](
auto
stride
)
{
return
stride
==
0
;
});
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif // MIGRAPHX_GUARD_GPU_CK_HPP
src/targets/gpu/include/migraphx/gpu/compile_hip.hpp
View file @
4ea39116
...
...
@@ -45,10 +45,7 @@ MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_HIPRTC_WORKAROUNDS);
struct
hiprtc_src_file
{
hiprtc_src_file
()
=
default
;
hiprtc_src_file
(
const
src_file
&
s
)
:
path
(
s
.
path
.
string
()),
content
(
s
.
content
.
first
,
s
.
content
.
second
)
{
}
hiprtc_src_file
(
const
src_file
&
s
)
:
path
(
s
.
path
.
string
()),
content
(
s
.
content
)
{}
std
::
string
path
;
std
::
string
content
;
template
<
class
Self
,
class
F
>
...
...
src/targets/gpu/include/migraphx/gpu/compile_miopen.hpp
View file @
4ea39116
...
...
@@ -42,7 +42,7 @@ struct compile_miopen
context
*
ctx
=
nullptr
;
std
::
string
name
()
const
{
return
"gpu::compile_miopen"
;
}
void
apply
(
module
&
m
)
const
;
std
::
size_t
compile
(
operation
&
op
,
instruction_ref
ins
,
bool
format
)
const
;
std
::
size_t
compile
(
operation
&
op
,
instruction_ref
ins
)
const
;
};
}
// namespace gpu
...
...
src/targets/gpu/include/migraphx/gpu/context.hpp
View file @
4ea39116
...
...
@@ -299,23 +299,6 @@ struct context
any_ptr
get_queue
()
{
return
get_stream
().
get
();
}
void
enable_perf_measurement
(
bool
b
=
true
)
{
if
(
b
)
{
start_event
=
create_event_for_timing
();
stop_event
=
create_event_for_timing
();
get_stream
().
record
(
start_event
.
get
());
get_stream
().
record
(
stop_event
.
get
());
}
else
{
start_event
=
nullptr
;
stop_event
=
nullptr
;
}
measure_perf
=
b
;
}
std
::
pair
<
hipEvent_t
,
hipEvent_t
>
get_perf_events
()
const
{
if
(
measure_perf
)
...
...
@@ -323,12 +306,12 @@ struct context
return
std
::
make_pair
(
nullptr
,
nullptr
);
}
float
get_elapsed_ms
(
)
const
static
float
get_elapsed_ms
(
hipEvent_t
start
,
hipEvent_t
stop
)
{
float
result
=
0
;
if
(
start
_event
!=
nullptr
and
stop
_event
!=
nullptr
)
if
(
start
!=
nullptr
and
stop
!=
nullptr
)
{
auto
status
=
hipEventElapsedTime
(
&
result
,
start
_event
.
get
(),
stop_event
.
get
()
);
auto
status
=
hipEventElapsedTime
(
&
result
,
start
,
stop
);
if
(
status
!=
hipSuccess
)
MIGRAPHX_THROW
(
"Failed hipEventElapsedTime: "
+
hip_error
(
status
));
}
...
...
src/targets/gpu/include/migraphx/gpu/convolution.hpp
View file @
4ea39116
...
...
@@ -57,7 +57,6 @@ template <class Op>
struct
miopen_convolution
{
Op
op
;
bool
int8_x4_format
=
false
;
shared
<
convolution_descriptor
>
cd
=
nullptr
;
miopenConvFwdAlgorithm_t
algo
{};
#ifdef MIGRAPHX_HAS_FIND_2_API
...
...
@@ -74,7 +73,6 @@ struct miopen_convolution
f
(
self
.
solution_object
,
"solution_object"
),
#endif
f
(
self
.
algo
,
"algo"
),
f
(
self
.
int8_x4_format
,
"int8_x4_format"
),
f
(
self
.
solution_id
,
"solution_id"
));
}
...
...
@@ -94,9 +92,9 @@ struct miopen_convolution
argument
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
{
auto
x_desc
=
make_tensor
(
reshape_if_1d
(
args
[
0
].
get_shape
())
,
int8_x4_format
);
auto
w_desc
=
make_tensor
(
reshape_if_1d
(
args
[
1
].
get_shape
())
,
int8_x4_format
);
auto
y_desc
=
make_tensor
(
reshape_if_1d
(
output_shape
));
auto
x_desc
=
make_tensor
(
reshape_if_1d
(
args
[
0
].
get_shape
()));
auto
w_desc
=
make_tensor
(
reshape_if_1d
(
args
[
1
].
get_shape
()));
auto
y_desc
=
make_tensor
(
reshape_if_1d
(
output_shape
));
auto
*
miopen_stream_handle
=
ctx
.
get_stream
().
get_miopen
();
auto
workspace_size
=
args
[
2
].
get_shape
().
bytes
();
...
...
@@ -162,8 +160,8 @@ struct miopen_convolution
shape
find
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
shape
>&
inputs
)
{
shape
workspace_shape
{};
auto
x_desc
=
make_tensor
(
reshape_if_1d
(
inputs
[
0
])
,
int8_x4_format
);
auto
w_desc
=
make_tensor
(
reshape_if_1d
(
inputs
[
1
])
,
int8_x4_format
);
auto
x_desc
=
make_tensor
(
reshape_if_1d
(
inputs
[
0
]));
auto
w_desc
=
make_tensor
(
reshape_if_1d
(
inputs
[
1
]));
auto
y_desc
=
make_tensor
(
reshape_if_1d
(
output_shape
));
auto
*
miopen_stream_handle
=
ctx
.
get_stream
().
get_miopen
();
...
...
@@ -179,13 +177,8 @@ struct miopen_convolution
workspace_shape
=
shape
{
shape
::
int8_type
,
{
workspace_size
}};
auto
x_shape
=
inputs
[
0
];
auto
w_shape
=
inputs
[
1
];
if
(
int8_x4_format
)
{
x_shape
=
pack_int8_shape
(
x_shape
);
w_shape
=
pack_int8_shape
(
w_shape
);
}
const
auto
&
x_shape
=
inputs
[
0
];
const
auto
&
w_shape
=
inputs
[
1
];
#ifdef MIGRAPHX_HAS_FIND_2_API
{
...
...
@@ -199,9 +192,9 @@ struct miopen_convolution
// MIOpen has APIs to pass pre-allocated buffers starting from rocm-5.6
preallocate
=
true
;
#endif
auto
x
=
preallocate
?
to_gpu
(
generate_argument
(
x_shape
))
:
inputs
[
0
];
auto
w
=
preallocate
?
to_gpu
(
generate_argument
(
w_shape
))
:
inputs
[
1
];
auto
y
=
preallocate
?
allocate_gpu
(
output_shape
)
:
inputs
[
2
];
auto
x
=
preallocate
?
to_gpu
(
generate_argument
(
x_shape
))
:
argument
{
inputs
[
0
]
}
;
auto
w
=
preallocate
?
to_gpu
(
generate_argument
(
w_shape
))
:
argument
{
inputs
[
1
]
}
;
auto
y
=
preallocate
?
allocate_gpu
(
output_shape
)
:
argument
{
inputs
[
2
]
}
;
auto
workspace
=
preallocate
?
allocate_gpu
(
workspace_shape
)
:
migraphx
::
argument
(
workspace_shape
);
...
...
@@ -327,8 +320,8 @@ struct miopen_convolution
": workspace has changed during finalization."
);
}
auto
x_desc
=
make_tensor
(
reshape_if_1d
(
inputs
[
0
])
,
int8_x4_format
);
auto
w_desc
=
make_tensor
(
reshape_if_1d
(
inputs
[
1
])
,
int8_x4_format
);
auto
x_desc
=
make_tensor
(
reshape_if_1d
(
inputs
[
0
]));
auto
w_desc
=
make_tensor
(
reshape_if_1d
(
inputs
[
1
]));
auto
y_desc
=
make_tensor
(
reshape_if_1d
(
output_shape
));
auto
status
=
miopenConvolutionForwardCompileSolution
(
ctx
.
get_stream
().
get_miopen
(),
...
...
@@ -347,21 +340,6 @@ struct miopen_convolution
{
return
shapes
.
size
()
-
1
;
}
inline
shape
pack_int8_shape
(
const
shape
&
s
)
const
{
if
(
s
.
type
()
!=
shape
::
int8_type
)
{
return
s
;
}
auto
lens
=
s
.
lens
();
auto
strides
=
s
.
strides
();
lens
[
1
]
=
(
lens
[
1
]
+
3
)
/
4
*
4
;
strides
[
0
]
=
strides
[
1
]
*
lens
[
1
];
return
{
s
.
type
(),
lens
,
strides
};
}
};
}
// namespace gpu
...
...
src/targets/gpu/include/migraphx/gpu/device/arg_op.hpp
View file @
4ea39116
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -55,7 +55,7 @@ MIGRAPHX_DEVICE_CONSTEXPR val_index<T> make_val_index(T v, int64_t i)
return
{
v
,
i
};
}
struct
argmax_op
struct
argmax_op
_first_index
{
template
<
class
T
>
MIGRAPHX_DEVICE_CONSTEXPR
val_index
<
T
>
operator
()(
val_index
<
T
>
x
,
val_index
<
T
>
y
)
const
...
...
@@ -73,7 +73,25 @@ struct argmax_op
MIGRAPHX_DEVICE_CONSTEXPR
auto
init
()
const
{
return
lowest
();
}
};
struct
argmin_op
struct
argmax_op_last_index
{
template
<
class
T
>
MIGRAPHX_DEVICE_CONSTEXPR
val_index
<
T
>
operator
()(
val_index
<
T
>
x
,
val_index
<
T
>
y
)
const
{
if
(
x
.
val
>
y
.
val
)
return
x
;
else
if
(
x
.
val
<
y
.
val
)
return
y
;
else
{
return
(
x
.
index
>
y
.
index
)
?
x
:
y
;
}
}
MIGRAPHX_DEVICE_CONSTEXPR
auto
init
()
const
{
return
lowest
();
}
};
struct
argmin_op_first_index
{
template
<
class
T
>
MIGRAPHX_DEVICE_CONSTEXPR
val_index
<
T
>
operator
()(
val_index
<
T
>
x
,
val_index
<
T
>
y
)
const
...
...
@@ -91,6 +109,24 @@ struct argmin_op
MIGRAPHX_DEVICE_CONSTEXPR
auto
init
()
const
{
return
highest
();
}
};
struct
argmin_op_last_index
{
template
<
class
T
>
MIGRAPHX_DEVICE_CONSTEXPR
val_index
<
T
>
operator
()(
val_index
<
T
>
x
,
val_index
<
T
>
y
)
const
{
if
(
x
.
val
<
y
.
val
)
return
x
;
else
if
(
x
.
val
>
y
.
val
)
return
y
;
else
{
return
(
x
.
index
>
y
.
index
)
?
x
:
y
;
}
}
MIGRAPHX_DEVICE_CONSTEXPR
auto
init
()
const
{
return
highest
();
}
};
template
<
class
Op
>
void
arg_op
(
Op
op
,
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int64_t
axis
)
{
...
...
src/targets/gpu/include/migraphx/gpu/device/argmax.hpp
View file @
4ea39116
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -36,7 +36,8 @@ namespace device {
void
MIGRAPHX_DEVICE_EXPORT
argmax
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int64_t
axis
);
int64_t
axis
,
bool
select_last_index
);
}
// namespace device
}
// namespace gpu
...
...
src/targets/gpu/include/migraphx/gpu/device/argmin.hpp
View file @
4ea39116
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -36,7 +36,8 @@ namespace device {
void
MIGRAPHX_DEVICE_EXPORT
argmin
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int64_t
axis
);
int64_t
axis
,
bool
select_last_index
);
}
// namespace device
}
// namespace gpu
...
...
src/targets/gpu/include/migraphx/gpu/device/int8_gemm_pack.hpp
deleted
100644 → 0
View file @
20128cae
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_INT8_GEMM_PACK_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_INT8_GEMM_PACK_HPP
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/config.hpp>
#include <hip/hip_runtime_api.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
MIGRAPHX_DEVICE_EXPORT
int8_gemm_pack_a
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
);
void
MIGRAPHX_DEVICE_EXPORT
int8_gemm_pack_b
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
);
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/fuse_mlir.hpp
View file @
4ea39116
...
...
@@ -38,6 +38,7 @@ MIGRAPHX_GPU_EXPORT bool mlir_enabled();
struct
MIGRAPHX_GPU_EXPORT
fuse_mlir
{
context
*
ctx
=
nullptr
;
bool
enable_extra
=
false
;
std
::
string
name
()
const
{
return
"gpu::fuse_mlir"
;
}
void
apply
(
module_pass_manager
&
mpm
)
const
;
};
...
...
src/targets/gpu/include/migraphx/gpu/fuse_ops.hpp
View file @
4ea39116
...
...
@@ -24,7 +24,6 @@
#ifndef MIGRAPHX_GUARD_RTGLIB_FUSE_OPS_HPP
#define MIGRAPHX_GUARD_RTGLIB_FUSE_OPS_HPP
#include <migraphx/config.hpp>
#include <migraphx/gpu/context.hpp>
namespace
migraphx
{
...
...
@@ -34,7 +33,7 @@ struct module;
namespace
gpu
{
struct
fuse_ops
struct
MIGRAPHX_GPU_EXPORT
fuse_ops
{
context
*
ctx
=
nullptr
;
bool
fast_math
=
true
;
...
...
src/targets/gpu/include/migraphx/gpu/gemm.hpp
View file @
4ea39116
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -40,9 +40,8 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace
gpu
{
struct
context
;
void
blas_shape
(
const
shape
&
s
);
shape
transpose_batch
(
const
shape
&
s
,
unsigned
trans_batch
);
void
blas_shape
(
const
shape
&
s
);
template
<
class
Op
>
struct
rocblas_gemm
...
...
@@ -50,9 +49,9 @@ struct rocblas_gemm
Op
op
;
float
alpha
=
1
;
float
beta
=
0
;
bool
int8_x4_format
=
true
;
bool
compute_fp32
=
false
;
unsigned
trans_batch
=
0
;
int32_t
solution_idx
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
...
...
@@ -60,9 +59,9 @@ struct rocblas_gemm
return
pack_join
(
migraphx
::
reflect
(
self
.
op
,
f
),
pack
(
f
(
self
.
alpha
,
"alpha"
),
f
(
self
.
beta
,
"beta"
),
f
(
self
.
int8_x4_format
,
"int8_x4_format"
),
f
(
self
.
compute_fp32
,
"compute_fp32"
),
f
(
self
.
trans_batch
,
"trans_batch"
)));
f
(
self
.
trans_batch
,
"trans_batch"
),
f
(
self
.
solution_idx
,
"solution_idx"
)));
}
std
::
string
name
()
const
...
...
@@ -78,6 +77,8 @@ struct rocblas_gemm
{
std
::
vector
<
shape
>
in_shapes
(
inputs
);
in_shapes
.
pop_back
();
// When input shapes are A, B, C the GEMM equation is C = α AB+ β C where α, β are
// scalars
check_shapes
{
in_shapes
,
*
this
}.
has
(
2
,
3
);
blas_shape
(
inputs
[
0
]);
blas_shape
(
inputs
[
1
]);
...
...
@@ -113,17 +114,12 @@ struct rocblas_gemm
{
if
(
this
->
name
()
==
"gpu::gemm"
)
{
gemm
(
ctx
,
output_shape
,
args
,
alpha
,
beta
,
int8_x4_format
,
compute_fp32
);
gemm
_compute
(
ctx
,
output_shape
,
args
,
alpha
,
beta
,
compute_fp32
,
solution_idx
);
}
else
{
gemm
(
ctx
,
output_shape
,
args
,
int32_t
(
alpha
),
int32_t
(
beta
),
int8_x4_format
,
compute_fp32
);
gemm_compute
(
ctx
,
output_shape
,
args
,
int32_t
(
alpha
),
int32_t
(
beta
),
compute_fp32
,
solution_idx
);
}
return
args
.
back
();
}
...
...
@@ -132,6 +128,33 @@ struct rocblas_gemm
{
return
shapes
.
size
()
-
1
;
}
void
finalize
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
shape
>&
input_shapes
)
{
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
if
(
enabled
(
MIGRAPHX_ENABLE_GEMM_TUNING
{})
or
ctx
.
get_exhaustive_tune_flag
())
{
if
(
this
->
name
()
==
"gpu::gemm"
)
{
solution_idx
=
gemm_finalize
(
ctx
,
output_shape
,
input_shapes
,
alpha
,
beta
,
compute_fp32
,
solution_idx
);
}
else
{
solution_idx
=
gemm_finalize
(
ctx
,
output_shape
,
input_shapes
,
int32_t
(
alpha
),
int32_t
(
beta
),
compute_fp32
,
solution_idx
);
}
}
#else
// suppress compiler warnings
(
void
)
ctx
,
(
void
)
output_shape
,
(
void
)
input_shapes
;
#endif
}
};
}
// namespace gpu
...
...
src/targets/gpu/include/migraphx/gpu/gemm_impl.hpp
View file @
4ea39116
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -24,28 +24,64 @@
#ifndef MIGRAPHX_GUARD_RTGLIB_GEMM_IMPL_HPP
#define MIGRAPHX_GUARD_RTGLIB_GEMM_IMPL_HPP
#include <iterator>
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/context.hpp>
// Set this environment variable to "true" to perform GEMM tuning even when the
// --exhaustive-tune option isn't set. Can be used to skip slow convolution tuning.
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_ENABLE_GEMM_TUNING
);
using
milliseconds
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
;
using
microseconds
=
std
::
chrono
::
duration
<
double
,
std
::
micro
>
;
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
void
gemm
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
float
alpha
,
float
beta
,
bool
int8_x4_format
,
bool
compute_fp32
);
void
gemm
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
int32_t
alpha
,
int32_t
beta
,
bool
int8_x4_format
,
bool
compute_fp32
);
/**
* @brief Templated implementations of the compute() and finalize() methods of the Gemm operator.
* For each function there are overloads using either float or int32_t for the arguments
* alpha and beta.
*
* @param ctx .
* @param output_shape .
* @param args .
* @param alpha .
* @param beta .
* @param compute_fp32 .
*/
void
gemm_compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
float
alpha
,
float
beta
,
bool
compute_fp32
,
int32_t
solution_idx
);
void
gemm_compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
int32_t
alpha
,
int32_t
beta
,
bool
compute_fp32
,
int32_t
solution_idx
);
int32_t
gemm_finalize
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
shape
>&
input_shapes
,
float
alpha
,
float
beta
,
bool
compute_fp32
);
int32_t
gemm_finalize
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
shape
>&
input_shapes
,
int32_t
alpha
,
int32_t
beta
,
bool
compute_fp32
,
int32_t
solution_idx
);
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
...
...
src/targets/gpu/include/migraphx/gpu/
int8_conv_pack
.hpp
→
src/targets/gpu/include/migraphx/gpu/
gemm_softmax_gemm
.hpp
View file @
4ea39116
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -21,32 +21,55 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_
RTGLIB_INT8_CONV_PACK
_HPP
#define MIGRAPHX_GUARD_
RTGLIB_INT8_CONV_PACK
_HPP
#ifndef MIGRAPHX_GUARD_
GPU_GEMM_SOFTMAX_GEMM
_HPP
#define MIGRAPHX_GUARD_
GPU_GEMM_SOFTMAX_GEMM
_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <utility>
#include <migraphx/make_op.hpp>
#include <migraphx/check_shapes.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
context
;
struct
miopen_int8_conv_pack
struct
gemm_softmax_gemm
{
std
::
string
name
()
const
{
return
"gpu::int8_conv_pack"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
;
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
operation
op
=
make_op
(
"dot"
);
float
scale
=
1.0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
op
,
"op"
),
f
(
self
.
scale
,
"scale"
));
}
std
::
string
name
()
const
{
return
"gpu::gemm_softmax_gemm"
;
}
void
check_gemm_shape
(
const
shape
&
s
)
const
{
return
shapes
.
size
()
-
1
;
if
(
not
contains
(
range
(
s
.
strides
().
rbegin
(),
s
.
strides
().
rbegin
()
+
3
),
1
))
MIGRAPHX_THROW
(
"Invalid shape for "
+
name
());
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
,
const
std
::
vector
<
module_ref
>&
)
const
{
check_shapes
{
inputs
,
*
this
}.
same_ndims
();
if
(
inputs
.
size
()
<
3
)
MIGRAPHX_THROW
(
name
()
+
": Expected 3 inputs but got "
+
to_string
(
inputs
.
size
()));
auto
a
=
inputs
[
0
];
auto
b
=
inputs
[
1
];
auto
b1
=
inputs
[
2
];
for
(
const
auto
&
input
:
inputs
)
{
check_gemm_shape
(
input
);
}
return
op
.
compute_shape
({
op
.
compute_shape
({
a
,
b
}),
b1
});
}
static
bool
is_ck_supported_type
(
shape
::
type_t
t
)
{
return
contains
({
shape
::
half_type
},
t
);
}
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
#endif // MIGRAPHX_GUARD_GPU_GEMM_SOFTMAX_GEMM_HPP
src/targets/gpu/include/migraphx/gpu/miopen.hpp
View file @
4ea39116
...
...
@@ -127,7 +127,7 @@ inline void set_tensor_descriptor(miopenTensorArgumentId_t name,
}
#endif
inline
tensor_descriptor
make_tensor
(
const
migraphx
::
shape
&
os
,
bool
pack
=
false
)
inline
tensor_descriptor
make_tensor
(
const
migraphx
::
shape
&
os
)
{
auto
s
=
os
.
normalize_standard
();
auto
t
=
make_obj
<
tensor_descriptor
>
(
&
miopenCreateTensorDescriptor
);
...
...
@@ -142,23 +142,9 @@ inline tensor_descriptor make_tensor(const migraphx::shape& os, bool pack = fals
else
if
(
s
.
type
()
==
shape
::
int32_type
)
d
=
miopenInt32
;
else
if
(
s
.
type
()
==
shape
::
int8_type
)
{
if
(
pack
)
{
// update the lens and corresponding strides
d
=
miopenInt8x4
;
lens
[
1
]
=
((
lens
[
1
]
+
3
)
/
4
)
*
4
;
strides
[
0
]
=
strides
[
1
]
*
lens
[
1
];
}
else
{
d
=
miopenInt8
;
}
}
d
=
miopenInt8
;
else
{
MIGRAPHX_THROW
(
"MAKE_TENSOR: unsupported type"
);
}
miopenSetTensorDescriptor
(
t
.
get
(),
d
,
s
.
lens
().
size
(),
lens
.
data
(),
strides
.
data
());
return
t
;
...
...
src/targets/gpu/include/migraphx/gpu/prefuse_ops.hpp
View file @
4ea39116
...
...
@@ -24,7 +24,7 @@
#ifndef MIGRAPHX_GUARD_GPU_PREFUSE_OPS_HPP
#define MIGRAPHX_GUARD_GPU_PREFUSE_OPS_HPP
#include <migraphx/config.hpp>
#include <migraphx/
gpu/
config.hpp>
#include <string>
namespace
migraphx
{
...
...
@@ -34,7 +34,7 @@ struct module_pass_manager;
namespace
gpu
{
struct
prefuse_ops
struct
MIGRAPHX_GPU_EXPORT
prefuse_ops
{
std
::
string
name
()
const
{
return
"gpu::prefuse_ops"
;
}
void
apply
(
module_pass_manager
&
mpm
)
const
;
...
...
src/targets/gpu/include/migraphx/gpu/rocblas.hpp
View file @
4ea39116
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -40,8 +40,6 @@ struct context;
MIGRAPHX_GPU_EXPORT
bool
get_compute_fp32_flag
();
MIGRAPHX_GPU_EXPORT
bool
get_int8_x4_format
(
context
&
ctx
);
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
Prev
1
…
3
4
5
6
7
8
9
10
11
…
16
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment