Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
439f96bc
Commit
439f96bc
authored
Feb 15, 2023
by
charlie
Browse files
Bracket change
parent
c9497134
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
814 additions
and
818 deletions
+814
-818
test/ref_ops_test.cpp
test/ref_ops_test.cpp
+814
-818
No files found.
test/ref_ops_test.cpp
View file @
439f96bc
...
@@ -7413,937 +7413,933 @@ TEST_CASE(select_module_reduce_test1)
...
@@ -7413,937 +7413,933 @@ TEST_CASE(select_module_reduce_test1)
std::vector<float> results_vector;
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{-5, 12, 7, 4, -5, 12, 7, 4};
std::vector<float> gold{-5, 12, 7, 4, -5, 12, 7, 4};
}
TEST_CASE(scatternd_reduction_dyn_test)
TEST_CASE(scatternd_reduction_dyn_test)
{
{
// reduction = add, with dynamic input shapes
// reduction = add, with dynamic input shapes
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
auto dtype = migraphx::shape::float_type;
auto dtype = migraphx::shape::float_type;
auto itype = migraphx::shape::int64_type;
auto itype = migraphx::shape::int64_type;
migraphx::shape::dynamic_dimension dd{3, 6, 0};
migraphx::shape::dynamic_dimension dd{3, 6, 0};
migraphx::shape ds{migraphx::shape::float_type, {dd, dd, dd}};
migraphx::shape ds{migraphx::shape::float_type, {dd, dd, dd}};
migraphx::shape is{itype, {2, 1}};
migraphx::shape is{itype, {2, 1}};
migraphx::shape us{dtype, {{2, 2, 0}, dd, dd}};
migraphx::shape us{dtype, {{2, 2, 0}, dd, dd}};
auto xdata = mm->add_parameter("X", ds);
auto xdata = mm->add_parameter("X", ds);
auto xindex = mm->add_parameter("I", is);
auto xindex = mm->add_parameter("I", is);
auto xupdates = mm->add_parameter("U", us);
auto xupdates = mm->add_parameter("U", us);
auto scatternd_add_op = migraphx::make_op("scatternd_add");
auto scatternd_add_op = migraphx::make_op("scatternd_add");
auto scatternd = mm->add_instruction(scatternd_add_op, xdata, xindex, xupdates);
auto scatternd = mm->add_instruction(scatternd_add_op, xdata, xindex, xupdates);
mm->add_return({scatternd});
mm->add_return({scatternd});
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
migraphx::parameter_map params;
migraphx::parameter_map params;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {4, 4, 4}}; // data
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {4, 4, 4}}; // data
std::vector<float> input_data{1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1,
std::vector<float> input_data{1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6,
1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1,
7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4,
8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8,
5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8};
8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8};
std::vector<uint64_t> input_index{0, 2};
std::vector<uint64_t> input_index{0, 2};
migraphx::shape input_fixed_shape1{migraphx::shape::float_type, {2, 4, 4}}; // updates
migraphx::shape input_fixed_shape1{migraphx::shape::float_type, {2, 4, 4}}; // updates
std::vector<float> input_updates{5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
std::vector<float> input_updates{5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
params["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
params["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
params["I"] = migraphx::argument(is, input_index.data());
params["I"] = migraphx::argument(is, input_index.data());
params["U"] = migraphx::argument(input_fixed_shape1, input_updates.data());
params["U"] = migraphx::argument(input_fixed_shape1, input_updates.data());
auto result = p.eval(params).back();
auto result = p.eval(params).back();
std::vector<float> results_vector;
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{6, 7, 8, 9, 11, 12, 13, 14, 15, 14, 13, 12, 12, 11, 10, 9,
std::vector<float> gold{6, 7, 8, 9, 11, 12, 13, 14, 15, 14, 13, 12, 12, 11, 10, 9,
1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1,
1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1,
9, 8, 7, 6, 6, 5, 4, 3, 4, 5, 6, 7, 9, 10, 11, 12,
9, 8, 7, 6, 6, 5, 4, 3, 4, 5, 6, 7, 9, 10, 11, 12,
8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8};
8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8};
EXPECT(migraphx::verify_range(results_vector, gold));
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
TEST_CASE(sigmoid_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 2}};
auto l = mm->add_literal(migraphx::literal{s, {-1, 2, -3, 4}});
mm->add_instruction(migraphx::make_op("sigmoid"), l);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{sigmoid(-1), sigmoid(2), sigmoid(-3), sigmoid(4)};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sigmoid_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {{2, 4, 0}, {2, 2, 0}}};
auto input = mm->add_parameter("X", s);
mm->add_instruction(migraphx::make_op("sigmoid"), input);
p.compile(migraphx::ref::target{});
std::vector<float> input_data{-1, 2, -3, 4};
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {2, 2}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{sigmoid(-1), sigmoid(2), sigmoid(-3), sigmoid(4)};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sigmoid_test)
TEST_CASE(sign_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {5}};
auto l = mm->add_literal(
migraphx::literal{s, {1.02481645, 0.85643062, -0.03404123, -0.92791926, 0.0}});
mm->add_instruction(migraphx::make_op("sign"), l);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {1.0, 1.0, -1.0, -1.0, 0.0};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sign_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape::dynamic_dimension dd{3, 8, 0};
migraphx::shape s{migraphx::shape::float_type, {dd}};
auto input = mm->add_parameter("X", s);
mm->add_instruction(migraphx::make_op("sign"), input);
p.compile(migraphx::ref::target{});
std::vector<float> input_data{1.02481645, 0.85643062, -0.03404123, -0.92791926, 0.0};
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {5}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {1.0, 1.0, -1.0, -1.0, 0.0};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sin_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3}};
std::vector<float> data = {-1, 0, 1};
auto l = mm->add_literal(migraphx::literal{s, data});
mm->add_instruction(migraphx::make_op("sin"), l);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sinf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sin_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape::dynamic_dimension dd{3, 8, 0};
migraphx::shape s{migraphx::shape::float_type, {dd}};
auto input = mm->add_parameter("X", s);
mm->add_instruction(migraphx::make_op("sin"), input);
p.compile(migraphx::ref::target{});
std::vector<float> input_data = {-1, 0, 1};
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {3}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = input_data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sinf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sinh_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 2}};
std::vector<float> data{-1.0, 2.0, -3.0, 4.0};
auto l = mm->add_literal(migraphx::literal{s, data});
mm->add_instruction(migraphx::make_op("sinh"), l);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sinhf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sinh_dynamic_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {{2, 4, 0}, {2, 4, 0}}};
auto input = mm->add_parameter("X", s);
std::vector<float> input_data{-1.0, 2.0, -3.0, 4.0};
mm->add_instruction(migraphx::make_op("sinh"), input);
p.compile(migraphx::ref::target{});
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {4}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = input_data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sinhf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(slice_test)
{
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 2}};
std::vector<int> data(2 * 2 * 3);
auto l = mm->add_literal(migraphx::literal{s, {-1, 2, -3, 4}});
std::iota(data.begin(), data.end(), 0);
mm->add_instruction(migraphx::make_op("sigmoid"), l);
migraphx::shape s{migraphx::shape::int32_type, {2, 2, 3}};
auto l0 = mm->add_literal(migraphx::literal{s, data});
mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {1}}, {"ends", {3}}}), l0);
migraphx::shape s2{migraphx::shape::int32_type, {2, 2, 2}, {6, 3, 1}};
EXPECT(p.get_output_shapes().back() == s2);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
migraphx::shape sresult{migraphx::shape::int32_type, {2, 2, 2}, {4, 2, 1}};
std::vector<float> results_vector(4);
auto result = p.eval({}).back();
std::vector<int> gold = {1, 2, 4, 5, 7, 8, 10, 11};
std::vector<int> results_vector(2 * 2 * 2);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{sigmoid(-1), sigmoid(2), sigmoid(-3), sigmoid(4)};
EXPECT(migraphx::verify_range(results_vector, gold));
EXPECT(migraphx::verify_range(results_vector, gold));
EXPECT(result.get_shape() == sresult);
}
}
TEST_CASE(sigmoid_dyn_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {{2, 4, 0}, {2, 2, 0}}};
std::vector<int> data(2 * 2 * 3);
auto input = mm->add_parameter("X", s);
std::iota(data.begin(), data.end(), 0);
mm->add_instruction(migraphx::make_op("sigmoid"), input);
migraphx::shape s{migraphx::shape::int32_type, {2, 2, 3}};
auto l0 = mm->add_literal(migraphx::literal{s, data});
mm->add_instruction(
migraphx::make_op("slice",
{{"axes", {0, 1, 2}}, {"starts", {0, 0, 0}}, {"ends", {2, 2, 2}}}),
l0);
migraphx::shape s2{migraphx::shape::int32_type, {2, 2, 2}, {6, 3, 1}};
EXPECT(p.get_output_shapes().back() == s2);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
migraphx::shape sresult{migraphx::shape::int32_type, {2, 2, 2}, {4, 2, 1}};
std::vector<float> input_data{-1, 2, -3, 4};
auto result = p.eval({}).back();
migraphx::parameter_map params0;
std::vector<int> gold = {0, 1, 3, 4, 6, 7, 9, 10};
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {2, 2}};
std::vector<int> results_vector(2 * 2 * 2);
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{sigmoid(-1), sigmoid(2), sigmoid(-3), sigmoid(4)};
EXPECT(migraphx::verify_range(results_vector, gold));
EXPECT(migraphx::verify_range(results_vector, gold));
EXPECT(result.get_shape() == sresult);
}
}
}
TEST_CASE(softmax_simple_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<float> a = {0.25, 0.75};
std::vector<float> s = {0.377541, 0.622459};
migraphx::shape a_shape{migraphx::shape::float_type, {1, 2}};
auto al = mm->add_literal(migraphx::literal{a_shape, a});
mm->add_instruction(migraphx::make_op("softmax", {{"axis", 1}}), al);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(2);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, s));
}
TEST_CASE(softmax_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<float> a = {
-5.61869681e-01, 9.07827199e-01, 1.29255986e+00, 3.18533443e-02, -1.22183852e-03,
-2.83830553e-01, -1.03245842e+00, -9.28322077e-01, -8.82696748e-01, 1.11327164e-01,
-9.20038462e-01, 8.47388089e-01, 2.51734018e-01, 1.50563884e+00, 2.23056650e+00,
-6.17576987e-02, -1.00264274e-01, -6.10369384e-01, 1.17537189e+00, -2.51560897e-01,
-8.50333512e-01, -8.03578615e-01, -6.51194930e-01, -2.58137047e-01, 4.65528190e-01,
3.23284641e-02, -1.54700470e+00, 1.38096774e+00, 5.39869189e-01, -7.56884992e-01,
1.81503093e+00, -2.11269641e+00, 1.92466557e+00, 1.77230799e+00, 2.21660900e+00,
1.56777036e+00, -2.08995026e-03, 3.50566894e-01, -1.15042710e+00, -1.18577778e+00,
8.90633047e-01, -6.63949102e-02, 1.44661188e+00, 1.59215283e+00, -2.56262213e-01,
9.39079225e-01, 4.07298543e-02, 3.86590779e-01, 6.09607756e-01, 8.22331488e-01,
-2.82126725e-01, -9.49052632e-01, -4.24012303e-01, -5.32990396e-01, -3.18386006e+00,
3.27092171e-01, -1.33315325e+00, 3.62459183e-01, 3.74710828e-01, -1.30302286e+00,
1.79680198e-01, -4.51832324e-01, 4.34282750e-01, -7.09520102e-01, 6.20333970e-01,
-1.28712380e+00, 2.04130828e-01, -7.70607769e-01, 1.61889160e+00, -1.50951004e+00,
-4.10505563e-01, -3.56566496e-02, -1.29747534e+00, -1.49967879e-01, 7.77626812e-01,
-8.28408226e-02, 2.73412596e-02, 5.79780899e-03, 9.87900198e-02, -7.95276761e-01,
-1.38536084e+00, -6.63573861e-01, 3.89783204e-01, -1.30670881e+00, -7.62425125e-01,
-4.04883057e-01, 6.24344349e-01, 3.68128955e-01, -1.01577950e+00, -3.06715906e-01,
5.67961395e-01, 2.98198581e-01, -1.63613629e+00, -3.75131965e-01, -6.75393403e-01,
2.59172034e+00, 6.75538957e-01, 9.07939598e-02, 1.92257717e-01, -1.21592450e+00,
-2.73682117e-01, 1.25232983e+00, -1.39969170e+00, -1.91483587e-01, 2.57732719e-01,
3.10056299e-01, 1.41833842e+00, -1.81386679e-01, 3.92868072e-01, -8.14771175e-01,
2.02392387e+00, -9.42091495e-02, -3.77683818e-01, 2.05638766e+00, 2.93796062e-01,
-6.02131486e-01, 2.70461679e-01, -8.92358482e-01, 1.04388881e+00, 2.66154885e-01};
std::vector<float> s = {
0.30191708, 0.59879845, 0.50029165, 0.24915339, 0.36823985, 0.13190967, 0.0349741,
0.18750034, 0.21905553, 0.27000085, 0.0547399, 0.56318235, 0.47422904, 0.78964758,
0.91381913, 0.44601166, 0.47902739, 0.13120073, 0.4449684, 0.18766427, 0.15753111,
0.07844277, 0.05120674, 0.36648798, 0.14637007, 0.13152322, 0.01560997, 0.29065287,
0.49196178, 0.10550152, 0.81890774, 0.06369215, 0.62972021, 0.74931765, 0.67285055,
0.35034987, 0.28612873, 0.31931475, 0.04220394, 0.16093165, 0.22390974, 0.11915915,
0.3115395, 0.35899726, 0.22190949, 0.57518375, 0.13888834, 0.7753762, 0.4642328,
0.57055861, 0.21954368, 0.34515455, 0.09486015, 0.40631217, 0.01842281, 0.48770609,
0.06652815, 0.36023033, 0.42343026, 0.24226256, 0.17348589, 0.44066274, 0.6865865,
0.17296699, 0.46923906, 0.06921105, 0.3570261, 0.4125829, 0.73165393, 0.15302512,
0.29499072, 0.33932695, 0.30852377, 0.40762195, 0.40170741, 0.36259529, 0.60848355,
0.42618036, 0.31721094, 0.02960522, 0.28256637, 0.24389413, 0.2725659, 0.10663581,
0.27622163, 0.28264219, 0.53652936, 0.09476089, 0.40890986, 0.34848392, 0.32572666,
0.53076893, 0.11529481, 0.29117745, 0.14625968, 0.8756339, 0.49818122, 0.10656087,
0.1813329, 0.17664003, 0.21410346, 0.80408043, 0.02315119, 0.27155462, 0.32804728,
0.13268511, 0.61795473, 0.49703068, 0.41696799, 0.10175809, 0.71028161, 0.29929739,
0.17377149, 0.76075399, 0.20071237, 0.32632929, 0.36892858, 0.09416146, 0.26656723,
0.42914796};
migraphx::shape a_shape{migraphx::shape::float_type, {5, 3, 4, 2}};
auto al = mm->add_literal(migraphx::literal{a_shape, a});
mm->add_instruction(migraphx::make_op("softmax", {{"axis", 1}}), al);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(120);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, s));
}
TEST_CASE(softmax_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape a_shape{migraphx::shape::float_type,
{{1, 10, 0}, {1, 3, 3}, {4, 4, 0}, {2, 2, 2}}};
auto al = mm->add_parameter("a", a_shape);
mm->add_instruction(migraphx::make_op("softmax", {{"axis", 1}}), al);
p.compile(migraphx::ref::target{});
TEST_CASE(sign_test)
std::vector<float> a = {
-5.61869681e-01, 9.07827199e-01, 1.29255986e+00, 3.18533443e-02, -1.22183852e-03,
-2.83830553e-01, -1.03245842e+00, -9.28322077e-01, -8.82696748e-01, 1.11327164e-01,
-9.20038462e-01, 8.47388089e-01, 2.51734018e-01, 1.50563884e+00, 2.23056650e+00,
-6.17576987e-02, -1.00264274e-01, -6.10369384e-01, 1.17537189e+00, -2.51560897e-01,
-8.50333512e-01, -8.03578615e-01, -6.51194930e-01, -2.58137047e-01, 4.65528190e-01,
3.23284641e-02, -1.54700470e+00, 1.38096774e+00, 5.39869189e-01, -7.56884992e-01,
1.81503093e+00, -2.11269641e+00, 1.92466557e+00, 1.77230799e+00, 2.21660900e+00,
1.56777036e+00, -2.08995026e-03, 3.50566894e-01, -1.15042710e+00, -1.18577778e+00,
8.90633047e-01, -6.63949102e-02, 1.44661188e+00, 1.59215283e+00, -2.56262213e-01,
9.39079225e-01, 4.07298543e-02, 3.86590779e-01, 6.09607756e-01, 8.22331488e-01,
-2.82126725e-01, -9.49052632e-01, -4.24012303e-01, -5.32990396e-01, -3.18386006e+00,
3.27092171e-01, -1.33315325e+00, 3.62459183e-01, 3.74710828e-01, -1.30302286e+00,
1.79680198e-01, -4.51832324e-01, 4.34282750e-01, -7.09520102e-01, 6.20333970e-01,
-1.28712380e+00, 2.04130828e-01, -7.70607769e-01, 1.61889160e+00, -1.50951004e+00,
-4.10505563e-01, -3.56566496e-02, -1.29747534e+00, -1.49967879e-01, 7.77626812e-01,
-8.28408226e-02, 2.73412596e-02, 5.79780899e-03, 9.87900198e-02, -7.95276761e-01,
-1.38536084e+00, -6.63573861e-01, 3.89783204e-01, -1.30670881e+00, -7.62425125e-01,
-4.04883057e-01, 6.24344349e-01, 3.68128955e-01, -1.01577950e+00, -3.06715906e-01,
5.67961395e-01, 2.98198581e-01, -1.63613629e+00, -3.75131965e-01, -6.75393403e-01,
2.59172034e+00, 6.75538957e-01, 9.07939598e-02, 1.92257717e-01, -1.21592450e+00,
-2.73682117e-01, 1.25232983e+00, -1.39969170e+00, -1.91483587e-01, 2.57732719e-01,
3.10056299e-01, 1.41833842e+00, -1.81386679e-01, 3.92868072e-01, -8.14771175e-01,
2.02392387e+00, -9.42091495e-02, -3.77683818e-01, 2.05638766e+00, 2.93796062e-01,
-6.02131486e-01, 2.70461679e-01, -8.92358482e-01, 1.04388881e+00, 2.66154885e-01};
migraphx::parameter_map params;
migraphx::shape input_fixed_shape{migraphx::shape::float_type, {5, 3, 4, 2}};
params["a"] = migraphx::argument(input_fixed_shape, a.data());
auto result = p.eval(params).back();
std::vector<float> results_vector(120);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> s = {
0.30191708, 0.59879845, 0.50029165, 0.24915339, 0.36823985, 0.13190967, 0.0349741,
0.18750034, 0.21905553, 0.27000085, 0.0547399, 0.56318235, 0.47422904, 0.78964758,
0.91381913, 0.44601166, 0.47902739, 0.13120073, 0.4449684, 0.18766427, 0.15753111,
0.07844277, 0.05120674, 0.36648798, 0.14637007, 0.13152322, 0.01560997, 0.29065287,
0.49196178, 0.10550152, 0.81890774, 0.06369215, 0.62972021, 0.74931765, 0.67285055,
0.35034987, 0.28612873, 0.31931475, 0.04220394, 0.16093165, 0.22390974, 0.11915915,
0.3115395, 0.35899726, 0.22190949, 0.57518375, 0.13888834, 0.7753762, 0.4642328,
0.57055861, 0.21954368, 0.34515455, 0.09486015, 0.40631217, 0.01842281, 0.48770609,
0.06652815, 0.36023033, 0.42343026, 0.24226256, 0.17348589, 0.44066274, 0.6865865,
0.17296699, 0.46923906, 0.06921105, 0.3570261, 0.4125829, 0.73165393, 0.15302512,
0.29499072, 0.33932695, 0.30852377, 0.40762195, 0.40170741, 0.36259529, 0.60848355,
0.42618036, 0.31721094, 0.02960522, 0.28256637, 0.24389413, 0.2725659, 0.10663581,
0.27622163, 0.28264219, 0.53652936, 0.09476089, 0.40890986, 0.34848392, 0.32572666,
0.53076893, 0.11529481, 0.29117745, 0.14625968, 0.8756339, 0.49818122, 0.10656087,
0.1813329, 0.17664003, 0.21410346, 0.80408043, 0.02315119, 0.27155462, 0.32804728,
0.13268511, 0.61795473, 0.49703068, 0.41696799, 0.10175809, 0.71028161, 0.29929739,
0.17377149, 0.76075399, 0.20071237, 0.32632929, 0.36892858, 0.09416146, 0.26656723,
0.42914796};
EXPECT(migraphx::verify_range(results_vector, s));
}
TEST_CASE(sqdiff_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3}};
auto l1 = mm->add_literal(migraphx::literal{s, {-1, 0, 1}});
auto l2 = mm->add_literal(migraphx::literal{s, {1, 2, 3}});
mm->add_instruction(migraphx::make_op("sqdiff"), l1, l2);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {4, 4, 4};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sqdiff_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<migraphx::shape::dynamic_dimension> dd{{2, 6, 0}};
migraphx::shape s{migraphx::shape::float_type, dd};
auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
mm->add_instruction(migraphx::make_op("sqdiff"), x, y);
p.compile(migraphx::ref::target{});
std::vector<float> x_data{-1, 0, 1};
std::vector<float> y_data{1, 2, 3};
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {3}};
params0["x"] = migraphx::argument(input_fixed_shape0, x_data.data());
params0["y"] = migraphx::argument(input_fixed_shape0, y_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {4, 4, 4};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sqrt_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {5}};
std::vector<float> data{1.02481645, 0.85643062, 0.03404123, 0.92791926, 0.10569184};
auto l = mm->add_literal(migraphx::literal{s, data});
mm->add_instruction(migraphx::make_op("sqrt"), l);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sqrtf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sqrt_dynamic_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape::dynamic_dimension dd{3, 8, 0};
migraphx::shape s{migraphx::shape::float_type, {dd}};
auto input = mm->add_parameter("X", s);
std::vector<float> input_data{1.02481645, 0.85643062, 0.03404123, 0.92791926, 0.10569184};
mm->add_instruction(migraphx::make_op("sqrt"), input);
p.compile(migraphx::ref::target{});
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {5}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = input_data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sqrtf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(squeeze_test)
{
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {5}};
std::vector<float> data(4 * 3 * 3);
auto l = mm->add_literal(
migraphx::shape s1{migraphx::shape::float_type, {4, 1, 3, 1, 3}};
migraphx::literal{s, {1.02481645, 0.85643062, -0.03404123, -0.92791926, 0.0}});
migraphx::shape s2{migraphx::shape::float_type, {4, 3, 1, 3}};
mm->add_instruction(migraphx::make_op("sign"), l);
auto l0 = mm->add_literal(migraphx::literal{s1, data});
mm->add_instruction(migraphx::make_op("squeeze", {{"axes", {1}}}), l0);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
auto result = p.eval({}).back();
std::vector<float> results_vector;
EXPECT(result.get_shape() == s2);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {1.0, 1.0, -1.0, -1.0, 0.0};
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
TEST_CASE(sign_dyn_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape::dynamic_dimension dd{3, 8, 0};
std::vector<float> data(4 * 3 * 3);
migraphx::shape s{migraphx::shape::float_type, {dd}};
migraphx::shape s1{migraphx::shape::float_type, {4, 1, 3, 1, 3}};
auto input = mm->add_parameter("X", s);
migraphx::shape s2{migraphx::shape::float_type, {4, 1, 3, 3}};
mm->add_instruction(migraphx::make_op("sign"), input);
auto l0 = mm->add_literal(migraphx::literal{s1, data});
mm->add_instruction(migraphx::make_op("squeeze", {{"axes", {3}}}), l0);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> input_data{1.02481645, 0.85643062, -0.03404123, -0.92791926, 0.0};
EXPECT(result.get_shape() == s2);
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {5}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {1.0, 1.0, -1.0, -1.0, 0.0};
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
TEST_CASE(sin_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3}};
std::vector<float> data(4 * 3 * 3);
std::vector<float> data = {-1, 0, 1};
migraphx::shape s1{migraphx::shape::float_type, {4, 1, 3, 1, 3}};
auto l = mm->add_literal(migraphx::literal{s, data});
migraphx::shape s2{migraphx::shape::float_type, {4, 3, 3}};
mm->add_instruction(migraphx::make_op("sin"), l);
auto l0 = mm->add_literal(migraphx::literal{s1, data});
mm->add_instruction(migraphx::make_op("squeeze"), l0);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
auto result = p.eval({}).back();
std::vector<float> results_vector(3);
EXPECT(result.get_shape() == s2);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sinf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
}
TEST_CASE(s
in
_dyn_test)
TEST_CASE(s
queeze
_dyn_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape::dynamic_dimension dd{3, 8, 0};
migraphx::shape s1{migraphx::shape::float_type,
migraphx::shape s{migraphx::shape::float_type, {dd
}};
{{1, 4, 0}, {1, 1, 0}, {3, 3, 0}, {1, 1, 0}, {3, 3, 0}
}};
auto
input
= mm->add_parameter("
X
", s);
auto
p0
= mm->add_parameter("
x
", s
1
);
mm->add_instruction(migraphx::make_op("s
in"), input
);
mm->add_instruction(migraphx::make_op("s
queeze", {{"axes", {1}}}), p0
);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
std::vector<float> input_data = {-1, 0, 1};
std::vector<float> input_data(4 * 3 * 3);
migraphx::parameter_map params0;
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {3}};
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {4, 1, 3, 1, 3}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
params0["x"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
auto result = p.eval(params0).back();
std::vector<float> results_vector(3);
migraphx::shape s2{migraphx::shape::float_type, {4, 3, 1, 3}};
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(result.get_shape() == s2);
std::vector<float> gold = input_data;
}
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sinf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sinh_test)
TEST_CASE(step_test)
{
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 2}};
std::vector<float> data(2 * 4 * 6);
std::vector<float> data{-1.0, 2.0, -3.0, 4.0};
std::iota(data.begin(), data.end(), 2);
auto l = mm->add_literal(migraphx::literal{s, data});
migraphx::shape s1{migraphx::shape::float_type, {2, 1, 4, 6}};
mm->add_instruction(migraphx::make_op("sinh"), l);
auto l0 = mm->add_literal(migraphx::literal{s1, data});
auto r = mm->add_instruction(
migraphx::make_op("step", {{"axes", {0, 2, 3}}, {"steps", {2, 2, 3}}}), l0);
mm->add_return({r});
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
auto result = p.eval({}).back();
std::vector<float> results_vector(4);
migraphx::shape s2{migraphx::shape::float_type, {1, 1, 2, 2}};
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(result.get_shape() == s2);
std::vector<float> gold = data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sinhf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
TEST_CASE(sinh_dynamic_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {{2, 4, 0}, {2, 4, 0}}};
std::vector<float> data(2 * 4 * 6);
auto input = mm->add_parameter("X", s);
std::iota(data.begin(), data.end(), 2);
std::vector<float> input_data{-1.0, 2.0, -3.0, 4.0};
migraphx::shape s1{migraphx::shape::float_type, {2, 1, 4, 6}};
mm->add_instruction(migraphx::make_op("sinh"), input);
auto l0 = mm->add_literal(migraphx::literal{s1, data});
auto tl = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 3, 1}}}), l0);
auto r = mm->add_instruction(
migraphx::make_op("step", {{"axes", {0, 1, 2}}, {"steps", {2, 2, 3}}}), tl);
mm->add_return({r});
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
migraphx::parameter_map params0;
migraphx::shape s2{migraphx::shape::float_type, {1, 2, 2, 1}};
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {4}};
EXPECT(result.get_shape() == s2);
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = input_data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sinhf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
}
TEST_CASE(slice_test)
TEST_CASE(sub_test)
{
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3}};
std::vector<int> data(2 * 2 * 3);
auto l1 = mm->add_literal(migraphx::literal{s, {-1, 0, 1}});
std::iota(data.begin(), data.end(), 0);
auto l2 = mm->add_literal(migraphx::literal{s, {1, 2, 3}});
migraphx::shape s{migraphx::shape::int32_type, {2, 2, 3}};
mm->add_instruction(migraphx::make_op("sub"), l1, l2);
auto l0 = mm->add_literal(migraphx::literal{s, data});
p.compile(migraphx::ref::target{});
mm->add_instruction(
auto result = p.eval({}).back();
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {1}}, {"ends", {3}}}), l0);
std::vector<float> results_vector(3);
migraphx::shape s2{migraphx::shape::int32_type, {2, 2, 2}, {6, 3, 1}};
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(p.get_output_shapes().back() == s2);
std::vector<float> gold = {-2, -2, -2};
p.compile(migraphx::ref::target{});
EXPECT(migraphx::verify_range(results_vector, gold));
migraphx::shape sresult{migraphx::shape::int32_type, {2, 2, 2}, {4, 2, 1}};
}
auto result = p.eval({}).back();
std::vector<int> gold = {1, 2, 4, 5, 7, 8, 10, 11};
std::vector<int> results_vector(2 * 2 * 2);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, gold));
EXPECT(result.get_shape() == sresult);
}
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<int> data(2 * 2 * 3);
std::iota(data.begin(), data.end(), 0);
migraphx::shape s{migraphx::shape::int32_type, {2, 2, 3}};
auto l0 = mm->add_literal(migraphx::literal{s, data});
mm->add_instruction(
migraphx::make_op(
"slice", {{"axes", {0, 1, 2}}, {"starts", {0, 0, 0}}, {"ends", {2, 2, 2}}}),
l0);
migraphx::shape s2{migraphx::shape::int32_type, {2, 2, 2}, {6, 3, 1}};
EXPECT(p.get_output_shapes().back() == s2);
p.compile(migraphx::ref::target{});
migraphx::shape sresult{migraphx::shape::int32_type, {2, 2, 2}, {4, 2, 1}};
auto result = p.eval({}).back();
std::vector<int> gold = {0, 1, 3, 4, 6, 7, 9, 10};
std::vector<int> results_vector(2 * 2 * 2);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, gold));
EXPECT(result.get_shape() == sresult);
}
}
TEST_CASE(softmax_simple_test)
TEST_CASE(sub_dyn_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
std::vector<float> a = {0.25, 0.75};
std::vector<migraphx::shape::dynamic_dimension> dd{{2, 6, 0}};
std::vector<float> s = {0.377541, 0.622459};
migraphx::shape s{migraphx::shape::float_type, dd};
migraphx::shape a_shape{migraphx::shape::float_type, {1, 2}};
auto x = mm->add_parameter("x", s);
auto al = mm->add_literal(migraphx::literal{a_shape, a});
auto y = mm->add_parameter("y", s);
mm->add_instruction(migraphx::make_op("softmax", {{"axis", 1}}), al);
mm->add_instruction(migraphx::make_op("sub"), x, y);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(2);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, s));
}
TEST_CASE(softmax_test)
std::vector<float> x_data{-1, 0, 1};
{
std::vector<float> y_data{1, 2, 3};
migraphx::program p;
migraphx::parameter_map params0;
auto* mm = p.get_main_module();
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {3}};
std::vector<float> a = {
params0["x"] = migraphx::argument(input_fixed_shape0, x_data.data());
-5.61869681e-01, 9.07827199e-01, 1.29255986e+00, 3.18533443e-02, -1.22183852e-03,
params0["y"] = migraphx::argument(input_fixed_shape0, y_data.data());
-2.83830553e-01, -1.03245842e+00, -9.28322077e-01, -8.82696748e-01, 1.11327164e-01,
auto result = p.eval(params0).back();
-9.20038462e-01, 8.47388089e-01, 2.51734018e-01, 1.50563884e+00, 2.23056650e+00,
std::vector<float> results_vector(3);
-6.17576987e-02, -1.00264274e-01, -6.10369384e-01, 1.17537189e+00, -2.51560897e-01,
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
-8.50333512e-01, -8.03578615e-01, -6.51194930e-01, -2.58137047e-01, 4.65528190e-01,
std::vector<float> gold = {-2, -2, -2};
3.23284641e-02, -1.54700470e+00, 1.38096774e+00, 5.39869189e-01, -7.56884992e-01,
EXPECT(migraphx::verify_range(results_vector, gold));
1.81503093e+00, -2.11269641e+00, 1.92466557e+00, 1.77230799e+00, 2.21660900e+00,
}
1.56777036e+00, -2.08995026e-03, 3.50566894e-01, -1.15042710e+00, -1.18577778e+00,
8.90633047e-01, -6.63949102e-02, 1.44661188e+00, 1.59215283e+00, -2.56262213e-01,
TEST_CASE(tan_test)
9.39079225e-01, 4.07298543e-02, 3.86590779e-01, 6.09607756e-01, 8.22331488e-01,
{
-2.82126725e-01, -9.49052632e-01, -4.24012303e-01, -5.32990396e-01, -3.18386006e+00,
migraphx::program p;
3.27092171e-01, -1.33315325e+00, 3.62459183e-01, 3.74710828e-01, -1.30302286e+00,
auto* mm = p.get_main_module();
1.79680198e-01, -4.51832324e-01, 4.34282750e-01, -7.09520102e-01, 6.20333970e-01,
migraphx::shape s{migraphx::shape::float_type, {3}};
-1.28712380e+00, 2.04130828e-01, -7.70607769e-01, 1.61889160e+00, -1.50951004e+00,
std::vector<float> data{-1, 0, 1};
-4.10505563e-01, -3.56566496e-02, -1.29747534e+00, -1.49967879e-01, 7.77626812e-01,
auto l = mm->add_literal(migraphx::literal{s, data});
-8.28408226e-02, 2.73412596e-02, 5.79780899e-03, 9.87900198e-02, -7.95276761e-01,
mm->add_instruction(migraphx::make_op("tan"), l);
-1.38536084e+00, -6.63573861e-01, 3.89783204e-01, -1.30670881e+00, -7.62425125e-01,
p.compile(migraphx::ref::target{});
-4.04883057e-01, 6.24344349e-01, 3.68128955e-01, -1.01577950e+00, -3.06715906e-01,
auto result = p.eval({}).back();
5.67961395e-01, 2.98198581e-01, -1.63613629e+00, -3.75131965e-01, -6.75393403e-01,
std::vector<float> results_vector(3);
2.59172034e+00, 6.75538957e-01, 9.07939598e-02, 1.92257717e-01, -1.21592450e+00,
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
-2.73682117e-01, 1.25232983e+00, -1.39969170e+00, -1.91483587e-01, 2.57732719e-01,
std::vector<float> gold = data;
3.10056299e-01, 1.41833842e+00, -1.81386679e-01, 3.92868072e-01, -8.14771175e-01,
std::transform(
2.02392387e+00, -9.42091495e-02, -3.77683818e-01, 2.05638766e+00, 2.93796062e-01,
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return tanf(n); });
-6.02131486e-01, 2.70461679e-01, -8.92358482e-01, 1.04388881e+00, 2.66154885e-01};
EXPECT(migraphx::verify_range(results_vector, gold));
}
std::vector<float> s = {
0.30191708, 0.59879845, 0.50029165, 0.24915339, 0.36823985, 0.13190967, 0.0349741,
TEST_CASE(tan_dynamic_test)
0.18750034, 0.21905553, 0.27000085, 0.0547399, 0.56318235, 0.47422904, 0.78964758,
{
0.91381913, 0.44601166, 0.47902739, 0.13120073, 0.4449684, 0.18766427, 0.15753111,
migraphx::program p;
0.07844277, 0.05120674, 0.36648798, 0.14637007, 0.13152322, 0.01560997, 0.29065287,
auto* mm = p.get_main_module();
0.49196178, 0.10550152, 0.81890774, 0.06369215, 0.62972021, 0.74931765, 0.67285055,
migraphx::shape::dynamic_dimension dd{3, 8, 0};
0.35034987, 0.28612873, 0.31931475, 0.04220394, 0.16093165, 0.22390974, 0.11915915,
migraphx::shape s{migraphx::shape::float_type, {dd}};
0.3115395, 0.35899726, 0.22190949, 0.57518375, 0.13888834, 0.7753762, 0.4642328,
auto input = mm->add_parameter("X", s);
0.57055861, 0.21954368, 0.34515455, 0.09486015, 0.40631217, 0.01842281, 0.48770609,
std::vector<float> input_data{-1, 0, 1};
0.06652815, 0.36023033, 0.42343026, 0.24226256, 0.17348589, 0.44066274, 0.6865865,
mm->add_instruction(migraphx::make_op("tan"), input);
0.17296699, 0.46923906, 0.06921105, 0.3570261, 0.4125829, 0.73165393, 0.15302512,
p.compile(migraphx::ref::target{});
0.29499072, 0.33932695, 0.30852377, 0.40762195, 0.40170741, 0.36259529, 0.60848355,
0.42618036, 0.31721094, 0.02960522, 0.28256637, 0.24389413, 0.2725659, 0.10663581,
migraphx::parameter_map params0;
0.27622163, 0.28264219, 0.53652936, 0.09476089, 0.40890986, 0.34848392, 0.32572666,
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {3}};
0.53076893, 0.11529481, 0.29117745, 0.14625968, 0.8756339, 0.49818122, 0.10656087,
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
0.1813329, 0.17664003, 0.21410346, 0.80408043, 0.02315119, 0.27155462, 0.32804728,
auto result = p.eval(params0).back();
0.13268511, 0.61795473, 0.49703068, 0.41696799, 0.10175809, 0.71028161, 0.29929739,
std::vector<float> results_vector(3);
0.17377149, 0.76075399, 0.20071237, 0.32632929, 0.36892858, 0.09416146, 0.26656723,
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
0.42914796};
std::vector<float> gold = input_data;
std::transform(
migraphx::shape a_shape{migraphx::shape::float_type, {5, 3, 4, 2}};
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return tanf(n); });
auto al = mm->add_literal(migraphx::literal{a_shape, a});
EXPECT(migraphx::verify_range(results_vector, gold));
mm->add_instruction(migraphx::make_op("softmax", {{"axis", 1}}), al);
}
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(120);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, s));
}
TEST_CASE(softmax_dyn_test)
TEST_CASE(tanh_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape a_shape{migraphx::shape::float_type,
migraphx::shape s{migraphx::shape::float_type, {2, 2}};
{{1, 10, 0}, {1, 3, 3}, {4, 4, 0}, {2, 2, 2}}};
std::vector<float> data{-1.0, 2.0, -3.0, 4.0};
auto al = mm->add_parameter("a", a_shape);
auto l = mm->add_literal(migraphx::literal{s, data});
mm->add_instruction(migraphx::make_op("softmax", {{"axis", 1}}), al);
mm->add_instruction(migraphx::make_op("tanh"), l);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return tanhf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
std::vector<float> a = {
TEST_CASE(tanh_dynamic_test)
-5.61869681e-01, 9.07827199e-01, 1.29255986e+00, 3.18533443e-02, -1.22183852e-03,
{
-2.83830553e-01, -1.03245842e+00, -9.28322077e-01, -8.82696748e-01, 1.11327164e-01,
migraphx::program p;
-9.20038462e-01, 8.47388089e-01, 2.51734018e-01, 1.50563884e+00, 2.23056650e+00,
auto* mm = p.get_main_module();
-6.17576987e-02, -1.00264274e-01, -6.10369384e-01, 1.17537189e+00, -2.51560897e-01,
migraphx::shape::dynamic_dimension dd{3, 8, 0};
-8.50333512e-01, -8.03578615e-01, -6.51194930e-01, -2.58137047e-01, 4.65528190e-01,
migraphx::shape s{migraphx::shape::float_type, {dd}};
3.23284641e-02, -1.54700470e+00, 1.38096774e+00, 5.39869189e-01, -7.56884992e-01,
auto input = mm->add_parameter("X", s);
1.81503093e+00, -2.11269641e+00, 1.92466557e+00, 1.77230799e+00, 2.21660900e+00,
std::vector<float> input_data{-1.0, 2.0, -3.0, 4.0};
1.56777036e+00, -2.08995026e-03, 3.50566894e-01, -1.15042710e+00, -1.18577778e+00,
mm->add_instruction(migraphx::make_op("tanh"), input);
8.90633047e-01, -6.63949102e-02, 1.44661188e+00, 1.59215283e+00, -2.56262213e-01,
p.compile(migraphx::ref::target{});
9.39079225e-01, 4.07298543e-02, 3.86590779e-01, 6.09607756e-01, 8.22331488e-01,
-2.82126725e-01, -9.49052632e-01, -4.24012303e-01, -5.32990396e-01, -3.18386006e+00,
3.27092171e-01, -1.33315325e+00, 3.62459183e-01, 3.74710828e-01, -1.30302286e+00,
1.79680198e-01, -4.51832324e-01, 4.34282750e-01, -7.09520102e-01, 6.20333970e-01,
-1.28712380e+00, 2.04130828e-01, -7.70607769e-01, 1.61889160e+00, -1.50951004e+00,
-4.10505563e-01, -3.56566496e-02, -1.29747534e+00, -1.49967879e-01, 7.77626812e-01,
-8.28408226e-02, 2.73412596e-02, 5.79780899e-03, 9.87900198e-02, -7.95276761e-01,
-1.38536084e+00, -6.63573861e-01, 3.89783204e-01, -1.30670881e+00, -7.62425125e-01,
-4.04883057e-01, 6.24344349e-01, 3.68128955e-01, -1.01577950e+00, -3.06715906e-01,
5.67961395e-01, 2.98198581e-01, -1.63613629e+00, -3.75131965e-01, -6.75393403e-01,
2.59172034e+00, 6.75538957e-01, 9.07939598e-02, 1.92257717e-01, -1.21592450e+00,
-2.73682117e-01, 1.25232983e+00, -1.39969170e+00, -1.91483587e-01, 2.57732719e-01,
3.10056299e-01, 1.41833842e+00, -1.81386679e-01, 3.92868072e-01, -8.14771175e-01,
2.02392387e+00, -9.42091495e-02, -3.77683818e-01, 2.05638766e+00, 2.93796062e-01,
-6.02131486e-01, 2.70461679e-01, -8.92358482e-01, 1.04388881e+00, 2.66154885e-01};
migraphx::parameter_map params;
migraphx::shape input_fixed_shape{migraphx::shape::float_type, {5, 3, 4, 2}};
params["a"] = migraphx::argument(input_fixed_shape, a.data());
auto result = p.eval(params).back();
std::vector<float> results_vector(120);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> s = {
0.30191708, 0.59879845, 0.50029165, 0.24915339, 0.36823985, 0.13190967, 0.0349741,
0.18750034, 0.21905553, 0.27000085, 0.0547399, 0.56318235, 0.47422904, 0.78964758,
0.91381913, 0.44601166, 0.47902739, 0.13120073, 0.4449684, 0.18766427, 0.15753111,
0.07844277, 0.05120674, 0.36648798, 0.14637007, 0.13152322, 0.01560997, 0.29065287,
0.49196178, 0.10550152, 0.81890774, 0.06369215, 0.62972021, 0.74931765, 0.67285055,
0.35034987, 0.28612873, 0.31931475, 0.04220394, 0.16093165, 0.22390974, 0.11915915,
0.3115395, 0.35899726, 0.22190949, 0.57518375, 0.13888834, 0.7753762, 0.4642328,
0.57055861, 0.21954368, 0.34515455, 0.09486015, 0.40631217, 0.01842281, 0.48770609,
0.06652815, 0.36023033, 0.42343026, 0.24226256, 0.17348589, 0.44066274, 0.6865865,
0.17296699, 0.46923906, 0.06921105, 0.3570261, 0.4125829, 0.73165393, 0.15302512,
0.29499072, 0.33932695, 0.30852377, 0.40762195, 0.40170741, 0.36259529, 0.60848355,
0.42618036, 0.31721094, 0.02960522, 0.28256637, 0.24389413, 0.2725659, 0.10663581,
0.27622163, 0.28264219, 0.53652936, 0.09476089, 0.40890986, 0.34848392, 0.32572666,
0.53076893, 0.11529481, 0.29117745, 0.14625968, 0.8756339, 0.49818122, 0.10656087,
0.1813329, 0.17664003, 0.21410346, 0.80408043, 0.02315119, 0.27155462, 0.32804728,
0.13268511, 0.61795473, 0.49703068, 0.41696799, 0.10175809, 0.71028161, 0.29929739,
0.17377149, 0.76075399, 0.20071237, 0.32632929, 0.36892858, 0.09416146, 0.26656723,
0.42914796};
EXPECT(migraphx::verify_range(results_vector, s));
}
TEST_CASE(sqdiff_test)
migraphx::parameter_map params0;
{
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {4}};
migraphx::program p;
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto* mm = p.get_main_module();
auto result = p.eval(params0).back();
migraphx::shape s{migraphx::shape::float_type, {3}};
std::vector<float> results_vector(4);
auto l1 = mm->add_literal(migraphx::literal{s, {-1, 0, 1}});
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
auto l2 = mm->add_literal(migraphx::literal{s, {1, 2, 3}});
std::vector<float> gold = input_data;
mm->add_instruction(migraphx::make_op("sqdiff"), l1, l2);
std::transform(
p.compile(migraphx::ref::target{});
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return tanhf(n); });
auto result = p.eval({}).back();
EXPECT(migraphx::verify_range(results_vector, gold));
std::vector<float> results_vector(3);
}
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {4, 4, 4};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sqdiff_dyn_test)
TEST_CASE(topk_test)
{
{
auto create_program = [](int64_t k, int64_t axis, int largest) {
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
std::vector<migraphx::shape::dynamic_dimension> dd{{2, 6, 0}};
migraphx::shape s{migraphx::shape::float_type, {3, 5}};
migraphx::shape s{migraphx::shape::float_type, dd};
auto data = mm->add_parameter("data", s);
auto x = mm->add_parameter("x", s);
auto r = mm->add_instruction(
auto y = mm->add_parameter("y", s);
migraphx::make_op("topk", {{"axis", axis}, {"k", k}, {"largest", largest}}), data);
mm->add_instruction(migraphx::make_op("sqdiff"), x, y);
auto r0 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), r);
p.compile(migraphx::ref::target{});
auto r1 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), r);
mm->add_return({r0, r1});
std::vector<float> x_data{-1, 0, 1};
std::vector<float> y_data{1, 2, 3};
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {3}};
params0["x"] = migraphx::argument(input_fixed_shape0, x_data.data());
params0["y"] = migraphx::argument(input_fixed_shape0, y_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {4, 4, 4};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sqrt_test)
return p;
{
};
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {5}};
std::vector<float> data{1.02481645, 0.85643062, 0.03404123, 0.92791926, 0.10569184};
auto l = mm->add_literal(migraphx::literal{s, data});
mm->add_instruction(migraphx::make_op("sqrt"), l);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sqrtf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(sqrt_dynamic_test)
auto run_program = [&](int64_t k, int64_t axis, int largest) {
{
auto p = create_program(k, axis, largest);
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape::dynamic_dimension dd{3, 8, 0};
migraphx::shape s{migraphx::shape::float_type, {dd}};
auto input = mm->add_parameter("X", s);
std::vector<float> input_data{1.02481645, 0.85643062, 0.03404123, 0.92791926, 0.10569184};
mm->add_instruction(migraphx::make_op("sqrt"), input);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
std::vector<float> data = {
2.1, 2.3, 2.0, 2.5, 1.9, 3.3, 0.2, 4.5, 0.1, 0.8, 1.0, 4.5, 2.1, 0.8, 1.5};
migraphx::shape s{migraphx::shape::float_type, {3, 5}};
migraphx::parameter_map pp;
pp["data"] = migraphx::argument(s, data.data());
auto rets = p.eval(pp);
std::vector<float> ret_val;
rets.front().visit([&](auto v) { ret_val.assign(v.begin(), v.end()); });
std::vector<int64_t> ret_ind;
rets.back().visit([&](auto v) { ret_ind.assign(v.begin(), v.end()); });
return std::make_pair(ret_val, ret_ind);
};
migraphx::parameter_map params0;
// case 1
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {5}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = input_data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return sqrtf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(squeeze_test)
{
{
{
auto results = run_program(4, 1, 1);
migraphx::program p;
std::vector<float> gold_val = {2.5, 2.3, 2.1, 2, 4.5, 3.3, 0.8, 0.2, 4.5, 2.1, 1.5, 1};
auto* mm = p.get_main_module();
EXPECT(results.first == gold_val);
std::vector<float> data(4 * 3 * 3);
std::vector<int64_t> gold_ind = {3, 1, 0, 2, 2, 0, 4, 1, 1, 2, 4, 0};
migraphx::shape s1{migraphx::shape::float_type, {4, 1, 3, 1, 3}};
EXPECT(results.second == gold_ind);
migraphx::shape s2{migraphx::shape::float_type, {4, 3, 1, 3}};
auto l0 = mm->add_literal(migraphx::literal{s1, data});
mm->add_instruction(migraphx::make_op("squeeze", {{"axes", {1}}}), l0);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
EXPECT(result.get_shape() == s2);
}
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<float> data(4 * 3 * 3);
migraphx::shape s1{migraphx::shape::float_type, {4, 1, 3, 1, 3}};
migraphx::shape s2{migraphx::shape::float_type, {4, 1, 3, 3}};
auto l0 = mm->add_literal(migraphx::literal{s1, data});
mm->add_instruction(migraphx::make_op("squeeze", {{"axes", {3}}}), l0);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
EXPECT(result.get_shape() == s2);
}
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<float> data(4 * 3 * 3);
migraphx::shape s1{migraphx::shape::float_type, {4, 1, 3, 1, 3}};
migraphx::shape s2{migraphx::shape::float_type, {4, 3, 3}};
auto l0 = mm->add_literal(migraphx::literal{s1, data});
mm->add_instruction(migraphx::make_op("squeeze"), l0);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
EXPECT(result.get_shape() == s2);
}
}
}
TEST_CASE(squeeze_dyn_test)
// case 2
{
{
migraphx::program p;
auto results = run_program(4, 1, 0);
auto* mm = p.get_main_module();
std::vector<float> gold_val = {1.9, 2, 2.1, 2.3, 0.1, 0.2, 0.8, 3.3, 0.8, 1, 1.5, 2.1};
migraphx::shape s1{migraphx::shape::float_type,
EXPECT(results.first == gold_val);
{{1, 4, 0}, {1, 1, 0}, {3, 3, 0}, {1, 1, 0}, {3, 3, 0}}};
std::vector<int64_t> gold_ind = {4, 2, 0, 1, 3, 1, 4, 0, 3, 0, 4, 2};
auto p0 = mm->add_parameter("x", s1);
EXPECT(results.second == gold_ind);
mm->add_instruction(migraphx::make_op("squeeze", {{"axes", {1}}}), p0);
p.compile(migraphx::ref::target{});
std::vector<float> input_data(4 * 3 * 3);
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {4, 1, 3, 1, 3}};
params0["x"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
migraphx::shape s2{migraphx::shape::float_type, {4, 3, 1, 3}};
EXPECT(result.get_shape() == s2);
}
}
}
TEST_CASE(step_test)
TEST_CASE(transpose_test)
{
{
{
migraphx::shape a_shape{migraphx::shape::float_type, {1, 2, 2, 3}};
migraphx::program p;
std::vector<float> data(12);
auto* mm = p.get_main_module();
std::iota(data.begin(), data.end(), 0);
std::vector<float> data(2 * 4 * 6);
std::iota(data.begin(), data.end(), 2);
migraphx::shape s1{migraphx::shape::float_type, {2, 1, 4, 6}};
auto l0 = mm->add_literal(migraphx::literal{s1, data});
auto r = mm->add_instruction(
migraphx::make_op("step", {{"axes", {0, 2, 3}}, {"steps", {2, 2, 3}}}), l0);
mm->add_return({r});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
migraphx::shape s2{migraphx::shape::float_type, {1, 1, 2, 2}};
EXPECT(result.get_shape() == s2);
}
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<float> data(2 * 4 * 6);
std::iota(data.begin(), data.end(), 2);
migraphx::shape s1{migraphx::shape::float_type, {2, 1, 4, 6}};
auto l0 = mm->add_literal(migraphx::literal{s1, data});
auto tl = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 3, 1}}}), l0);
auto r = mm->add_instruction(
migraphx::make_op("step", {{"axes", {0, 1, 2}}, {"steps", {2, 2, 3}}}), tl);
mm->add_return({r});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
migraphx::shape s2{migraphx::shape::float_type, {1, 2, 2, 1}};
EXPECT(result.get_shape() == s2);
}
}
TEST_CASE(sub_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3}};
auto l = mm->add_literal(migraphx::literal{a_shape, data});
auto l1 = mm->add_literal(migraphx::literal{s, {-1, 0, 1}});
std::vector<int64_t> perm = {0, 3, 1, 2};
auto l2 = mm->add_literal(migraphx::literal{s, {1, 2, 3}});
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), l);
mm->add_instruction(migraphx::make_op("sub"), l1, l2);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
auto result = p.eval({}).back();
std::vector<float> results_vector(3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {-2, -2, -2};
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
TEST_CASE(sub_dyn_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm
= p.get_main_module();
std::vector<migraphx::shape::dynamic_dimension> dd{{2, 6, 0}}
;
auto l = mm->add_literal(migraphx::literal{a_shape, data})
;
migraphx::shape s{migraphx::shape::float_type, dd
};
std::vector<int64_t> perm = {0, 3, 1, 2
};
auto
x = mm->add_parameter("x", s);
auto
result =
auto y =
mm->add_
parameter("y", s
);
mm->add_
instruction(migraphx::make_op("transpose", {{"permutation", perm}}), l
);
mm->add_instruction(migraphx::make_op("
sub"), x, y
);
mm->add_instruction(migraphx::make_op("
contiguous"), result
);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result2 = p.eval({}).back();
std::vector<float> x_data{-1, 0, 1};
std::vector<float> results_vector(12);
std::vector<float> y_data{1, 2, 3};
result2.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
migraphx::parameter_map params0;
std::vector<float> gold = {0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11};
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {3}};
params0["x"] = migraphx::argument(input_fixed_shape0, x_data.data());
params0["y"] = migraphx::argument(input_fixed_shape0, y_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {-2, -2, -2};
EXPECT(migraphx::verify_range(results_vector, gold));
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
}
TEST_CASE(tan_test)
TEST_CASE(transpose_dyn_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3}};
migraphx::shape s{migraphx::shape::float_type, {{1, 4, 0}, {2, 2, 0}, {2, 2, 0}, {3, 3, 0}}};
std::vector<float> data{-1, 0, 1};
auto l = mm->add_parameter("X", s);
auto l = mm->add_literal(migraphx::literal{s, data});
std::vector<int64_t> perm = {0, 3, 1, 2};
mm->add_instruction(migraphx::make_op("tan"), l);
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), l);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return tanf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(tan_dynamic_test)
std::vector<float> data(12);
{
std::iota(data.begin(), data.end(), 0);
migraphx::program p;
migraphx::parameter_map params;
auto* mm = p.get_main_module();
migraphx::shape input_fixed_shape{migraphx::shape::float_type, {1, 2, 2, 3}};
migraphx::shape::dynamic_dimension dd{3, 8, 0};
params["X"] = migraphx::argument(input_fixed_shape, data.data());
migraphx::shape s{migraphx::shape::float_type, {dd}};
auto result = p.eval(params).back();
auto input = mm->add_parameter("X", s);
std::vector<float> input_data{-1, 0, 1};
mm->add_instruction(migraphx::make_op("tan"), input);
p.compile(migraphx::ref::target{});
migraphx::parameter_map params0;
std::vector<size_t> new_lens = {1, 3, 2, 2};
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {3}};
EXPECT(result.get_shape().lens() == new_lens);
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(12);
std::vector<float> results_vector(3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11};
std::vector<float> gold = input_data;
EXPECT(migraphx::verify_range(results_vector, gold));
std::transform(
}
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return tanf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(tanh_test)
TEST_CASE(unsqueeze_test)
{
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 2}};
std::vector<float> data(4 * 3 * 3);
std::vector<float> data{-1.0, 2.0, -3.0, 4.0};
migraphx::shape s1{migraphx::shape::float_type, {4, 3, 3}};
auto l = mm->add_literal(migraphx::literal{s, data});
migraphx::shape s2{migraphx::shape::float_type, {4, 1, 3, 3}};
mm->add_instruction(migraphx::make_op("tanh"), l);
auto l0 = mm->add_literal(migraphx::literal{s1, data});
mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), l0);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
auto result = p.eval({}).back();
std::vector<float> results_vector(4);
EXPECT(result.get_shape() == s2);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return tanhf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
TEST_CASE(tanh_dynamic_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape::dynamic_dimension dd{3, 8, 0}
;
std::vector<float> data(4 * 3 * 3)
;
migraphx::shape s{migraphx::shape::float_type, {
dd
}};
migraphx::shape s
1
{migraphx::shape::float_type, {
4, 3, 3
}};
auto input = mm->add_parameter("X", s)
;
migraphx::shape s2{migraphx::shape::float_type, {4, 3, 1, 3}}
;
std::vector<float> input_data{-1.0, 2.0, -3.0, 4.0}
;
auto l0 = mm->add_literal(migraphx::literal{s1, data})
;
mm->add_instruction(migraphx::make_op("
tanh"), input
);
mm->add_instruction(migraphx::make_op("
unsqueeze", {{"axes", {2}}}), l0
);
p.compile(migraphx::ref::target{});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
migraphx::parameter_map params0;
EXPECT(result.get_shape() == s2);
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {4}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = input_data;
std::transform(
gold.begin(), gold.end(), gold.begin(), [](float n) -> float { return tanhf(n); });
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(topk_test)
{
auto create_program = [](int64_t k, int64_t axis, int largest) {
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3, 5}};
auto data = mm->add_parameter("data", s);
auto r = mm->add_instruction(
migraphx::make_op("topk", {{"axis", axis}, {"k", k}, {"largest", largest}}), data);
auto r0 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), r);
auto r1 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), r);
mm->add_return({r0, r1});
return p;
};
auto run_program = [&](int64_t k, int64_t axis, int largest) {
auto p = create_program(k, axis, largest);
p.compile(migraphx::ref::target{});
std::vector<float> data = {
2.1, 2.3, 2.0, 2.5, 1.9, 3.3, 0.2, 4.5, 0.1, 0.8, 1.0, 4.5, 2.1, 0.8, 1.5};
migraphx::shape s{migraphx::shape::float_type, {3, 5}};
migraphx::parameter_map pp;
pp["data"] = migraphx::argument(s, data.data());
auto rets = p.eval(pp);
std::vector<float> ret_val;
rets.front().visit([&](auto v) { ret_val.assign(v.begin(), v.end()); });
std::vector<int64_t> ret_ind;
rets.back().visit([&](auto v) { ret_ind.assign(v.begin(), v.end()); });
return std::make_pair(ret_val, ret_ind);
};
// case 1
{
auto results = run_program(4, 1, 1);
std::vector<float> gold_val = {2.5, 2.3, 2.1, 2, 4.5, 3.3, 0.8, 0.2, 4.5, 2.1, 1.5, 1};
EXPECT(results.first == gold_val);
std::vector<int64_t> gold_ind = {3, 1, 0, 2, 2, 0, 4, 1, 1, 2, 4, 0};
EXPECT(results.second == gold_ind);
}
// case 2
{
auto results = run_program(4, 1, 0);
std::vector<float> gold_val = {1.9, 2, 2.1, 2.3, 0.1, 0.2, 0.8, 3.3, 0.8, 1, 1.5, 2.1};
EXPECT(results.first == gold_val);
std::vector<int64_t> gold_ind = {4, 2, 0, 1, 3, 1, 4, 0, 3, 0, 4, 2};
EXPECT(results.second == gold_ind);
}
}
TEST_CASE(transpose_test)
{
migraphx::shape a_shape{migraphx::shape::float_type, {1, 2, 2, 3}};
std::vector<float> data(12);
std::iota(data.begin(), data.end(), 0);
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l = mm->add_literal(migraphx::literal{a_shape, data});
std::vector<int64_t> perm = {0, 3, 1, 2};
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), l);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
}
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l = mm->add_literal(migraphx::literal{a_shape, data});
std::vector<int64_t> perm = {0, 3, 1, 2};
auto result =
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), l);
mm->add_instruction(migraphx::make_op("contiguous"), result);
p.compile(migraphx::ref::target{});
auto result2 = p.eval({}).back();
std::vector<float> results_vector(12);
result2.visit(
[&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11};
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
}
}
TEST_CASE(transpose_dyn_test)
TEST_CASE(unsqueeze_dyn_test)
{
{
migraphx::program p;
migraphx::program p;
auto* mm = p.get_main_module();
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type,
{{1, 4, 0}, {2, 2, 0}, {2, 2, 0}, {3, 3, 0}}};
auto l = mm->add_parameter("X", s);
std::vector<int64_t> perm = {0, 3, 1, 2};
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), l);
p.compile(migraphx::ref::target{});
std::vector<float> data(12);
migraphx::shape s1{migraphx::shape::float_type, {{1, 4, 0}, {3, 3, 0}, {3, 3, 0}}};
std::iota(data.begin(), data.end(), 0);
auto p0 = mm->add_parameter("x", s1);
migraphx::parameter_map params;
mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), p0);
migraphx::shape input_fixed_shape{migraphx::shape::float_type, {1, 2, 2, 3}};
p.compile(migraphx::ref::target{});
params["X"] = migraphx::argument(input_fixed_shape, data.data());
auto result = p.eval(params).back();
std::vector<size_t> new_lens = {1, 3, 2, 2};
std::vector<float> input_data(4 * 3 * 3);
EXPECT(result.get_shape().lens() == new_lens);
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {4, 3, 3}};
params0["x"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
migraphx::shape s2{migraphx::shape::float_type, {4, 1, 3, 3}};
EXPECT(result.get_shape() == s2);
}
std::vector<float> results_vector(12);
TEST_CASE(where_test)
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
{
std::vector<float> gold = {0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11};
migraphx::program p;
EXPECT(migraphx::verify_range(results_vector, gold));
auto* mm = p.get_main_module();
}
migraphx::shape sb{migraphx::shape::bool_type, {3, 3}};
migraphx::shape sx{migraphx::shape::float_type, {3, 3}};
TEST_CASE(unsqueeze_test)
std::vector<bool> b{true, true, true, false, false, false, true, false, true};
{
std::vector<float> x(9, 1.0);
{
std::vector<float> y(9, 2.0);
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<float> data(4 * 3 * 3);
migraphx::shape s1{migraphx::shape::float_type, {4, 3, 3}};
migraphx::shape s2{migraphx::shape::float_type, {4, 1, 3, 3}};
auto l0 = mm->add_literal(migraphx::literal{s1, data});
mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), l0);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
EXPECT(result.get_shape() == s2);
}
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<float> data(4 * 3 * 3);
migraphx::shape s1{migraphx::shape::float_type, {4, 3, 3}};
migraphx::shape s2{migraphx::shape::float_type, {4, 3, 1, 3}};
auto l0 = mm->add_literal(migraphx::literal{s1, data});
mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}}), l0);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
EXPECT(result.get_shape() == s2);
}
}
TEST_CASE(unsqueeze_dyn_test)
auto lb = mm->add_literal(migraphx::literal{sb, b});
{
auto lx = mm->add_literal(migraphx::literal{sx, x});
migraphx::program p;
auto ly = mm->add_literal(migraphx::literal{sx, y});
auto* mm = p.get_main_module();
auto w = mm->add_instruction(migraphx::make_op("where"), lb, lx, ly);
mm->add_return({w});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> result_vec;
result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); });
std::vector<float> gold(9);
for(int i = 0; i < gold.size(); ++i)
gold[i] = b[i] ? x[i] : y[i];
migraphx::shape s1{migraphx::shape::float_type, {{1, 4, 0}, {3, 3, 0}, {3, 3, 0}}};
EXPECT(migraphx::verify_range(result_vec, gold));
auto p0 = mm->add_parameter("x", s1);
}
mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), p0);
p.compile(migraphx::ref::target{});
std::vector<float> input_data(4 * 3 * 3);
TEST_CASE(where_dyn_test)
migraphx::parameter_map params0;
{
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {4, 3, 3}};
migraphx::program p;
params0["x"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto* mm = p.get_main_module();
auto result = p.eval(params0).back();
migraphx::shape sb{migraphx::shape::bool_type, {{2, 3, 0}, {2, 3, 0}}};
migraphx::shape s2{migraphx::shape::float_type, {4, 1, 3, 3}};
migraphx::shape sx{migraphx::shape::float_type, {{2, 3, 0}, {2, 3, 0}}};
EXPECT(result.get_shape() == s2);
}
TEST_CASE(where_test)
auto lb = mm->add_parameter("predicate", sb);
{
auto lx = mm->add_parameter("X", sx);
migraphx::program p;
auto ly = mm->add_parameter("Y", sx);
auto* mm = p.get_main_module();
mm->add_instruction(migraphx::make_op("where"), lb, lx, ly);
migraphx::shape sb{migraphx::shape::bool_type, {3, 3}};
p.compile(migraphx::ref::target{});
migraphx::shape sx{migraphx::shape::float_type, {3, 3}};
std::vector<bool> b{true, true, true, false, false, false, true, false, true};
std::vector<float> x(9, 1.0);
std::vector<float> y(9, 2.0);
auto lb = mm->add_literal(migraphx::literal{sb, b});
auto lx = mm->add_literal(migraphx::literal{sx, x});
auto ly = mm->add_literal(migraphx::literal{sx, y});
auto w = mm->add_instruction(migraphx::make_op("where"), lb, lx, ly);
mm->add_return({w});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> result_vec;
result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); });
std::vector<float> gold(9);
for(int i = 0; i < gold.size(); ++i)
gold[i] = b[i] ? x[i] : y[i];
EXPECT(migraphx::verify_range(result_vec, gold));
std::vector<char> b{1, 1, 1, 0, 0, 0, 1, 0, 1};
}
std::vector<float> x(9, 1.0);
std::vector<float> y(9, 2.0);
migraphx::parameter_map params;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {3, 3}};
migraphx::shape input_fixed_shape1{migraphx::shape::uint8_type, {3, 3}};
params["X"] = migraphx::argument(input_fixed_shape0, x.data());
params["Y"] = migraphx::argument(input_fixed_shape0, y.data());
TEST_CASE(where_dyn_test)
params["predicate"] = migraphx::argument(input_fixed_shape1, b.data());
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sb{migraphx::shape::bool_type, {{2, 3, 0}, {2, 3, 0}}};
migraphx::shape sx{migraphx::shape::float_type, {{2, 3, 0}, {2, 3, 0}}};
auto lb = mm->add_parameter("predicate", sb);
auto result = p.eval(params).back();
auto lx = mm->add_parameter("X", sx);
std::vector<float> results_vector(3 * 3);
auto ly = mm->add_parameter("Y", sx);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
mm->add_instruction(migraphx::make_op("where"), lb, lx, ly);
std::vector<float> gold{1, 1, 1, 2, 2, 2, 1, 2, 1};
p.compile(migraphx::ref::target{});
EXPECT(migraphx::verify_range(results_vector, gold));
}
std::vector<char> b{1, 1, 1, 0, 0, 0, 1, 0, 1};
TEST_CASE(where_broadcasted_inputs_test)
std::vector<float> x(9, 1.0);
{
std::vector<float> y(9, 2.0);
migraphx::program p;
migraphx::parameter_map params;
auto* mm = p.get_main_module();
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {3, 3}};
migraphx::shape sb{migraphx::shape::bool_type, {3, 3}};
migraphx::shape input_fixed_shape1{migraphx::shape::uint8_type, {3, 3}};
params["X"] = migraphx::argument(input_fixed_shape0, x.data());
params["Y"] = migraphx::argument(input_fixed_shape0, y.data());
params["predicate"] = migraphx::argument(input_fixed_shape1, b.data())
;
std::vector<bool> b{true, true, true, false, false, false, true, false, true}
;
auto result = p.eval(params).back();
auto lb = mm->add_literal(migraphx::literal{sb, b});
std::vector<float> results_vector(3 * 3);
auto lx = mm->add_literal(migraphx::literal(1.0f));
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
auto ly = mm->add_literal(migraphx::literal(2.0f));
std::vector<float> gold{1, 1, 1, 2, 2, 2, 1, 2, 1};
auto mbx = mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3, 3}}}), lx);
EXPECT(migraphx::verify_range(results_vector, gold));
auto mby = mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3, 3}}}), ly);
}
auto w = mm->add_instruction(migraphx::make_op("where"), lb, mbx, mby);
mm->add_return({w});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> result_vec;
result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); });
std::vector<float> gold(9);
std::vector<float> x(9, 1.0);
std::vector<float> y(9, 2.0);
for(int i = 0; i < gold.size(); ++i)
gold[i] = b[i] ? x[i] : y[i];
TEST_CASE(where_broadcasted_inputs_test)
EXPECT(migraphx::verify_range(result_vec, gold));
{
}
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sb{migraphx::shape::bool_type, {3, 3}};
std::vector<bool> b{true, true, true, false, false, false, true, false, true};
auto lb = mm->add_literal(migraphx::literal{sb, b});
auto lx = mm->add_literal(migraphx::literal(1.0f));
auto ly = mm->add_literal(migraphx::literal(2.0f));
auto mbx =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3, 3}}}), lx);
auto mby =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3, 3}}}), ly);
auto w = mm->add_instruction(migraphx::make_op("where"), lb, mbx, mby);
mm->add_return({w});
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> result_vec;
result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); });
std::vector<float> gold(9);
std::vector<float> x(9, 1.0);
std::vector<float> y(9, 2.0);
for(int i = 0; i < gold.size(); ++i)
gold[i] = b[i] ? x[i] : y[i];
EXPECT(migraphx::verify_range(result_vec, gold));
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
int main(int argc, const char* argv[]) { test::run(argc, argv); }
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment