Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
42408349
Unverified
Commit
42408349
authored
Jul 26, 2021
by
Cagri Eryilmaz
Committed by
GitHub
Jul 26, 2021
Browse files
Merge branch 'develop' into unet
parents
ebd0bb3a
9054ebbe
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
160 additions
and
94 deletions
+160
-94
src/include/migraphx/op/flatten.hpp
src/include/migraphx/op/flatten.hpp
+1
-1
src/onnx/parse_generic_op.cpp
src/onnx/parse_generic_op.cpp
+1
-1
test/eliminate_contiguous_test.cpp
test/eliminate_contiguous_test.cpp
+28
-0
test/onnx/flatten_nonstd_test.onnx
test/onnx/flatten_nonstd_test.onnx
+0
-0
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+115
-92
test/onnx/onnx_test.cpp
test/onnx/onnx_test.cpp
+15
-0
No files found.
src/include/migraphx/op/flatten.hpp
View file @
42408349
...
...
@@ -39,7 +39,7 @@ struct flatten
std
::
string
name
()
const
{
return
"flatten"
;
}
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
}.
has
(
1
)
.
standard
()
;
auto
&&
lens
=
inputs
.
front
().
lens
();
auto
x
=
std
::
accumulate
(
lens
.
begin
(),
lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{});
...
...
src/onnx/parse_generic_op.cpp
View file @
42408349
...
...
@@ -47,7 +47,7 @@ struct parse_generic_op : op_parser<parse_generic_op>
bool
needs_contiguous
(
const
std
::
string
&
op_name
)
const
{
return
contains
({
"gather"
},
op_name
);
return
contains
({
"flatten"
,
"gather"
},
op_name
);
}
instruction_ref
parse
(
const
op_desc
&
opd
,
...
...
test/eliminate_contiguous_test.cpp
View file @
42408349
...
...
@@ -131,4 +131,32 @@ TEST_CASE(non_standard_return_input)
EXPECT
(
std
::
distance
(
m
.
begin
(),
m
.
end
())
==
count
);
}
TEST_CASE
(
non_standard_flatten_op
)
{
migraphx
::
module
m
;
auto
l
=
m
.
add_parameter
(
"x"
,
{
migraphx
::
shape
::
float_type
,
{
2
,
6
,
6
,
6
}});
auto
t
=
m
.
add_instruction
(
migraphx
::
make_op
(
"slice"
,
{{
"axes"
,
{
2
,
3
}},
{
"starts"
,
{
1
,
1
}},
{
"ends"
,
{
6
,
6
}}}),
l
);
auto
c
=
m
.
add_instruction
(
migraphx
::
make_op
(
"contiguous"
),
t
);
m
.
add_instruction
(
migraphx
::
make_op
(
"flatten"
),
c
);
auto
count
=
std
::
distance
(
m
.
begin
(),
m
.
end
());
run_pass
(
m
);
EXPECT
(
std
::
distance
(
m
.
begin
(),
m
.
end
())
==
count
);
}
TEST_CASE
(
standard_flatten_op
)
{
migraphx
::
module
m
;
auto
l
=
m
.
add_parameter
(
"x"
,
{
migraphx
::
shape
::
float_type
,
{
2
,
6
,
6
,
6
}});
auto
t
=
m
.
add_instruction
(
migraphx
::
make_op
(
"slice"
,
{{
"axes"
,
{
0
,
1
}},
{
"starts"
,
{
1
,
1
}},
{
"ends"
,
{
6
,
6
}}}),
l
);
auto
c
=
m
.
add_instruction
(
migraphx
::
make_op
(
"contiguous"
),
t
);
m
.
add_instruction
(
migraphx
::
make_op
(
"flatten"
),
c
);
auto
count
=
std
::
distance
(
m
.
begin
(),
m
.
end
());
run_pass
(
m
);
EXPECT
(
std
::
distance
(
m
.
begin
(),
m
.
end
())
==
(
count
-
1
));
}
int
main
(
int
argc
,
const
char
*
argv
[])
{
test
::
run
(
argc
,
argv
);
}
test/onnx/flatten_nonstd_test.onnx
0 → 100644
View file @
42408349
File added
test/onnx/gen_onnx.py
View file @
42408349
...
...
@@ -1232,98 +1232,6 @@ def equal_bool_test():
return
([
node1
,
node2
],
[
x1
,
x2
],
[
y
])
@
onnx_test
def
greater_test
():
ax1
=
np
.
array
([
1.0
,
2.0
,
3.0
,
4.0
,
5.0
,
6.0
])
x1
=
helper
.
make_tensor
(
"x1"
,
data_type
=
TensorProto
.
FLOAT
,
dims
=
(
2
,
3
),
vals
=
ax1
.
astype
(
np
.
float32
))
x2
=
helper
.
make_tensor_value_info
(
'x2'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
node
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
[
'x1'
,
'x2'
],
outputs
=
[
'y'
],
)
return
([
node
],
[
x2
],
[
y
],
[
x1
])
@
onnx_test
def
greater_bool_test
():
x1
=
helper
.
make_tensor_value_info
(
'x1'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
x2
=
helper
.
make_tensor_value_info
(
'x2'
,
TensorProto
.
BOOL
,
[
2
,
3
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
node1
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
[
'x1'
],
outputs
=
[
'bx1'
],
to
=
9
)
node2
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
[
'bx1'
,
'x2'
],
outputs
=
[
'y'
],
)
return
([
node1
,
node2
],
[
x1
,
x2
],
[
y
])
@
onnx_test
def
less_test
():
ax1
=
np
.
array
([
1.0
,
2.0
,
3.0
,
4.0
,
5.0
,
6.0
])
x1
=
helper
.
make_tensor
(
"x1"
,
data_type
=
TensorProto
.
FLOAT
,
dims
=
(
2
,
3
),
vals
=
ax1
.
astype
(
np
.
float32
))
x2
=
helper
.
make_tensor_value_info
(
'x2'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
node
=
onnx
.
helper
.
make_node
(
'Less'
,
inputs
=
[
'x1'
,
'x2'
],
outputs
=
[
'y'
],
)
return
([
node
],
[
x2
],
[
y
],
[
x1
])
@
onnx_test
def
less_bool_test
():
x1
=
helper
.
make_tensor_value_info
(
'x1'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
x2
=
helper
.
make_tensor_value_info
(
'x2'
,
TensorProto
.
BOOL
,
[
2
,
3
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
node1
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
[
'x1'
],
outputs
=
[
'bx1'
],
to
=
9
)
node2
=
onnx
.
helper
.
make_node
(
'Less'
,
inputs
=
[
'bx1'
,
'x2'
],
outputs
=
[
'y'
],
)
return
([
node1
,
node2
],
[
x1
,
x2
],
[
y
])
@
onnx_test
def
lessorequal_test
():
x1
=
helper
.
make_tensor_value_info
(
'x1'
,
TensorProto
.
FLOAT
,
[
3
])
x2
=
helper
.
make_tensor_value_info
(
'x2'
,
TensorProto
.
FLOAT
,
[
3
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
3
])
node
=
onnx
.
helper
.
make_node
(
'LessOrEqual'
,
inputs
=
[
'x1'
,
'x2'
],
outputs
=
[
'y'
],
)
return
([
node
],
[
x1
,
x2
],
[
y
])
@
onnx_test
def
erf_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
10
,
15
])
...
...
@@ -1391,6 +1299,29 @@ def flatten_test():
return
([
node
,
node2
],
[
x
],
[
y
,
y2
])
@
onnx_test
def
flatten_nonstd_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
5
,
4
])
y
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
6
,
20
])
y2
=
helper
.
make_tensor_value_info
(
'3'
,
TensorProto
.
FLOAT
,
[
2
,
60
])
trans
=
helper
.
make_node
(
'Transpose'
,
inputs
=
[
'0'
],
outputs
=
[
'tx'
],
perm
=
[
0
,
1
,
3
,
2
],
)
node
=
onnx
.
helper
.
make_node
(
'Flatten'
,
inputs
=
[
'tx'
],
axis
=
2
,
outputs
=
[
'2'
])
node2
=
onnx
.
helper
.
make_node
(
'Flatten'
,
inputs
=
[
'tx'
],
outputs
=
[
'3'
])
return
([
trans
,
node
,
node2
],
[
x
],
[
y
,
y2
])
@
onnx_test
def
floor_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
10
])
...
...
@@ -1534,6 +1465,44 @@ def globalmaxpool_test():
return
([
node
],
[
x
],
[
y
])
@
onnx_test
def
greater_test
():
ax1
=
np
.
array
([
1.0
,
2.0
,
3.0
,
4.0
,
5.0
,
6.0
])
x1
=
helper
.
make_tensor
(
"x1"
,
data_type
=
TensorProto
.
FLOAT
,
dims
=
(
2
,
3
),
vals
=
ax1
.
astype
(
np
.
float32
))
x2
=
helper
.
make_tensor_value_info
(
'x2'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
node
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
[
'x1'
,
'x2'
],
outputs
=
[
'y'
],
)
return
([
node
],
[
x2
],
[
y
],
[
x1
])
@
onnx_test
def
greater_bool_test
():
x1
=
helper
.
make_tensor_value_info
(
'x1'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
x2
=
helper
.
make_tensor_value_info
(
'x2'
,
TensorProto
.
BOOL
,
[
2
,
3
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
node1
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
[
'x1'
],
outputs
=
[
'bx1'
],
to
=
9
)
node2
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
[
'bx1'
,
'x2'
],
outputs
=
[
'y'
],
)
return
([
node1
,
node2
],
[
x1
,
x2
],
[
y
])
@
onnx_test
def
group_conv_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
4
,
16
,
16
])
...
...
@@ -2231,6 +2200,60 @@ def leaky_relu_test():
return
([
node
],
[
x
],
[
y
])
@
onnx_test
def
less_test
():
ax1
=
np
.
array
([
1.0
,
2.0
,
3.0
,
4.0
,
5.0
,
6.0
])
x1
=
helper
.
make_tensor
(
"x1"
,
data_type
=
TensorProto
.
FLOAT
,
dims
=
(
2
,
3
),
vals
=
ax1
.
astype
(
np
.
float32
))
x2
=
helper
.
make_tensor_value_info
(
'x2'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
node
=
onnx
.
helper
.
make_node
(
'Less'
,
inputs
=
[
'x1'
,
'x2'
],
outputs
=
[
'y'
],
)
return
([
node
],
[
x2
],
[
y
],
[
x1
])
@
onnx_test
def
less_bool_test
():
x1
=
helper
.
make_tensor_value_info
(
'x1'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
x2
=
helper
.
make_tensor_value_info
(
'x2'
,
TensorProto
.
BOOL
,
[
2
,
3
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
node1
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
[
'x1'
],
outputs
=
[
'bx1'
],
to
=
9
)
node2
=
onnx
.
helper
.
make_node
(
'Less'
,
inputs
=
[
'bx1'
,
'x2'
],
outputs
=
[
'y'
],
)
return
([
node1
,
node2
],
[
x1
,
x2
],
[
y
])
@
onnx_test
def
lessorequal_test
():
x1
=
helper
.
make_tensor_value_info
(
'x1'
,
TensorProto
.
FLOAT
,
[
3
])
x2
=
helper
.
make_tensor_value_info
(
'x2'
,
TensorProto
.
FLOAT
,
[
3
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
3
])
node
=
onnx
.
helper
.
make_node
(
'LessOrEqual'
,
inputs
=
[
'x1'
,
'x2'
],
outputs
=
[
'y'
],
)
return
([
node
],
[
x1
,
x2
],
[
y
])
@
onnx_test
def
log_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
10
])
...
...
test/onnx/onnx_test.cpp
View file @
42408349
...
...
@@ -1183,6 +1183,21 @@ TEST_CASE(flatten_test)
EXPECT
(
p
==
prog
);
}
TEST_CASE
(
flatten_nonstd_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
l0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
2
,
3
,
5
,
4
}});
auto
l1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"transpose"
,
{{
"dims"
,
{
0
,
1
,
3
,
2
}}}),
l0
);
auto
l2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"contiguous"
),
l1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"flatten"
,
{{
"axis"
,
2
}}),
l2
);
auto
l3
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"contiguous"
),
l1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"flatten"
,
{{
"axis"
,
1
}}),
l3
);
auto
prog
=
optimize_onnx
(
"flatten_nonstd_test.onnx"
);
EXPECT
(
p
==
prog
);
}
TEST_CASE
(
floor_test
)
{
migraphx
::
program
p
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment