Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
40fbef9b
"test/vscode:/vscode.git/clone" did not exist on "2e6d1431f45f8003c2761d76c2c52e301d5b183f"
Unverified
Commit
40fbef9b
authored
Aug 05, 2023
by
Ted Themistokleous
Committed by
GitHub
Aug 05, 2023
Browse files
Merge branch 'develop' into threaded_nms
parents
d164b151
aeb9f78c
Changes
440
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
616 additions
and
135 deletions
+616
-135
src/include/migraphx/onnx.hpp
src/include/migraphx/onnx.hpp
+9
-4
src/include/migraphx/op/broadcast.hpp
src/include/migraphx/op/broadcast.hpp
+10
-4
src/include/migraphx/op/clip.hpp
src/include/migraphx/op/clip.hpp
+6
-5
src/include/migraphx/op/common.hpp
src/include/migraphx/op/common.hpp
+2
-2
src/include/migraphx/op/convert.hpp
src/include/migraphx/op/convert.hpp
+13
-1
src/include/migraphx/op/convolution.hpp
src/include/migraphx/op/convolution.hpp
+8
-21
src/include/migraphx/op/convolution_backwards.hpp
src/include/migraphx/op/convolution_backwards.hpp
+76
-29
src/include/migraphx/op/dequantizelinear.hpp
src/include/migraphx/op/dequantizelinear.hpp
+9
-0
src/include/migraphx/op/dimensions_of.hpp
src/include/migraphx/op/dimensions_of.hpp
+80
-0
src/include/migraphx/op/multibroadcast.hpp
src/include/migraphx/op/multibroadcast.hpp
+19
-15
src/include/migraphx/op/pointwise.hpp
src/include/migraphx/op/pointwise.hpp
+5
-4
src/include/migraphx/op/pooling.hpp
src/include/migraphx/op/pooling.hpp
+110
-16
src/include/migraphx/op/prefix_scan_op.hpp
src/include/migraphx/op/prefix_scan_op.hpp
+16
-4
src/include/migraphx/op/quantizelinear.hpp
src/include/migraphx/op/quantizelinear.hpp
+9
-0
src/include/migraphx/op/reshape.hpp
src/include/migraphx/op/reshape.hpp
+117
-5
src/include/migraphx/op/run_on_target.hpp
src/include/migraphx/op/run_on_target.hpp
+98
-0
src/include/migraphx/op/select_module.hpp
src/include/migraphx/op/select_module.hpp
+1
-1
src/include/migraphx/op/unsqueeze.hpp
src/include/migraphx/op/unsqueeze.hpp
+7
-8
src/include/migraphx/operation.hpp
src/include/migraphx/operation.hpp
+19
-15
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+2
-1
No files found.
src/include/migraphx/onnx.hpp
View file @
40fbef9b
...
...
@@ -26,6 +26,7 @@
#include <migraphx/program.hpp>
#include <migraphx/config.hpp>
#include <migraphx/onnx/export.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -54,15 +55,19 @@ struct onnx_options
};
/// Create a program from an onnx file
program
parse_onnx
(
const
std
::
string
&
name
,
const
onnx_options
&
=
onnx_options
{});
MIGRAPHX_ONNX_EXPORT
program
parse_onnx
(
const
std
::
string
&
name
,
const
onnx_options
&
=
onnx_options
{});
/// Create a program from an onnx buffer
program
parse_onnx_buffer
(
const
std
::
string
&
buffer
,
const
onnx_options
&
options
);
MIGRAPHX_ONNX_EXPORT
program
parse_onnx_buffer
(
const
std
::
string
&
buffer
,
const
onnx_options
&
options
);
/// Create a program from an onnx buffer
program
parse_onnx_buffer
(
const
void
*
data
,
std
::
size_t
size
,
const
onnx_options
&
options
);
MIGRAPHX_ONNX_EXPORT
program
parse_onnx_buffer
(
const
void
*
data
,
std
::
size_t
size
,
const
onnx_options
&
options
);
std
::
vector
<
std
::
string
>
get_onnx_operators
();
MIGRAPHX_ONNX_EXPORT
std
::
vector
<
std
::
string
>
get_onnx_operators
();
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/include/migraphx/op/broadcast.hpp
View file @
40fbef9b
...
...
@@ -37,10 +37,13 @@ namespace op {
* 1 input version:
* Broadcasts a tensor from the original shape to the broadcast_lens by setting the stride of
* broadcasted dimensions to zero. `axis` attribute for a 1D input shape is the output dimension
* that stays the same. ex: broadcasting shape [1024] -> [4, 1024, 3] has axis = 1 For higher rank
* input shapes, axis is an offset parameter for the broadcasting. Such that this operator would
* work in the opposite direction of NumPy broadcasting. ex: broadcasting shape [2, 2] -> [2, 2, 3]
* with axis = 0
* that stays the same.
* ex: broadcasting shape [1024] -> [4, 1024, 3] has axis = 1.
*
* For higher rank input shapes, axis is an offset parameter for the broadcasting.
* Such that this operator would work in the opposite direction of NumPy broadcasting
* (left-most to rightwards element-wise comparison)
* ex: broadcasting shape [2, 2] -> [2, 2, 3] with axis = 0
*
* 2 input version:
* Broadcast the first input 1D shape into the second input shape based on the axis parameter.
...
...
@@ -68,6 +71,9 @@ struct broadcast
{
// the ONNX broadcast op is deprecated now, so not handling the negative
// value of axis anymore
if
(
s0
.
dynamic
())
MIGRAPHX_THROW
(
"BROADCAST: Single dynamic input shape not supported. Use two inputs."
);
if
(
axis
>=
broadcast_lens
.
size
())
{
MIGRAPHX_THROW
(
"BROADCAST : axis "
+
migraphx
::
to_string
(
axis
)
+
...
...
src/include/migraphx/op/clip.hpp
View file @
40fbef9b
...
...
@@ -25,12 +25,13 @@
#define MIGRAPHX_GUARD_OPERATORS_CLIP_HPP
#include <array>
#include <cmath>
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <
cmath
>
#include <
migraphx/dyn_output.hpp
>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -48,15 +49,15 @@ struct clip
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
3
).
same_type
().
same_dims
();
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
3
).
same_type
().
same_dims
();
return
inputs
.
front
();
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
out
put_shape
};
argument
result
{
dyn_out
.
com
put
ed
_shape
};
visit_all
(
result
,
args
[
0
],
args
[
1
],
args
[
2
])([
&
](
auto
output
,
auto
x
,
auto
min
,
auto
max
)
{
par_for
(
out
put_shape
.
elements
(),
par_for
(
dyn_out
.
com
put
ed
_shape
.
elements
(),
[
&
](
auto
i
)
{
output
[
i
]
=
std
::
min
(
std
::
max
(
min
[
i
],
x
[
i
]),
max
[
i
]);
});
});
...
...
src/include/migraphx/op/common.hpp
View file @
40fbef9b
...
...
@@ -59,8 +59,8 @@ enum class rnn_direction
bidirectional
,
};
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
pooling_mode
v
);
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
rnn_direction
v
);
MIGRAPHX_EXPORT
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
pooling_mode
v
);
MIGRAPHX_EXPORT
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
rnn_direction
v
);
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
...
...
src/include/migraphx/op/convert.hpp
View file @
40fbef9b
...
...
@@ -66,7 +66,19 @@ struct convert : unary<convert>
auto
type
=
target_type
;
return
[
type
](
auto
x
)
{
auto
y
=
x
;
shape
::
visit
(
type
,
[
&
](
auto
as
)
{
y
=
std
::
min
(
std
::
max
(
as
(
x
),
as
.
min
()),
as
.
max
());
});
shape
::
visit
(
type
,
[
&
](
auto
as
)
{
// clamping value between target_type's max and min doesn't work for NaNs,
if
(
std
::
isnan
(
x
))
{
y
=
as
.
nan
();
}
else
{
// clamp overflowing/underflowing values to min()/max() instead of +/-infinity
// during downcasting
y
=
std
::
min
(
std
::
max
(
as
(
x
),
as
.
min
()),
as
.
max
());
}
});
return
y
;
};
}
...
...
src/include/migraphx/op/convolution.hpp
View file @
40fbef9b
...
...
@@ -79,17 +79,17 @@ struct convolution
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
2
).
same_type
().
same_ndims
().
min_ndims
(
3
);
check_attribute_size
();
// num of dims of input and attribute should match
const
auto
input_
size
=
inputs
[
0
].
max_lens
().
size
();
const
auto
input_
ndim
=
inputs
[
0
].
ndim
();
const
auto
padding_size
=
padding
.
size
();
if
(
input_
size
!=
padding_size
/
2
+
2
&&
input_
size
!=
padding_size
+
2
)
if
(
input_
ndim
!=
padding_size
/
2
+
2
&&
input_
ndim
!=
padding_size
+
2
)
{
MIGRAPHX_THROW
(
"CONVOLUTION: input and attribute size mismatch!"
);
}
const
shape
&
x_shape
=
inputs
.
at
(
0
);
const
shape
&
w_shape
=
inputs
.
at
(
1
);
const
size_t
num_spatial_dims
=
input_
size
-
2
;
const
size_t
num_spatial_dims
=
input_
ndim
-
2
;
if
(
num_spatial_dims
!=
this
->
kdims
())
{
MIGRAPHX_THROW
(
"CONVOLUTION: input k-dims does not match attribute size"
);
...
...
@@ -105,7 +105,7 @@ struct convolution
}
else
{
return
fixed
_compute_shape
(
x_shape
,
w_shape
);
return
static
_compute_shape
(
x_shape
,
w_shape
);
}
}
...
...
@@ -143,23 +143,10 @@ struct convolution
shape
dynamic_compute_shape
(
shape
x_shape
,
shape
w_shape
)
const
{
std
::
vector
<
shape
::
dynamic_dimension
>
output_dyn_dims
=
{};
output_dyn_dims
.
push_back
(
x_shape
.
to_dynamic
().
dyn_dims
().
at
(
0
));
output_dyn_dims
.
push_back
(
w_shape
.
to_dynamic
().
dyn_dims
().
at
(
0
));
auto
dynamic_shape_push_back
=
[
&
](
const
shape
&
input_shape
)
{
if
(
input_shape
.
dynamic
())
{
output_dyn_dims
.
push_back
(
input_shape
.
dyn_dims
().
at
(
0
));
}
else
{
auto
l
=
input_shape
.
lens
().
at
(
0
);
output_dyn_dims
.
push_back
({
l
,
l
});
}
};
dynamic_shape_push_back
(
x_shape
);
dynamic_shape_push_back
(
w_shape
);
const
size_t
num_spatial_dims
=
x_shape
.
max_lens
().
size
()
-
2
;
const
size_t
num_spatial_dims
=
x_shape
.
ndim
()
-
2
;
if
(
padding_mode
!=
default_
)
{
for
(
std
::
size_t
i
=
0
;
i
<
num_spatial_dims
;
++
i
)
...
...
@@ -198,7 +185,7 @@ struct convolution
return
shape
{
x_shape
.
type
(),
output_dyn_dims
};
}
shape
fixed
_compute_shape
(
shape
x_shape
,
shape
w_shape
)
const
shape
static
_compute_shape
(
shape
x_shape
,
shape
w_shape
)
const
{
std
::
vector
<
size_t
>
output_lens
{
x_shape
.
lens
()[
0
],
w_shape
.
lens
()[
0
]};
auto
spatial_lens
=
calc_conv_lens
(
x_shape
.
lens
(),
w_shape
.
lens
());
...
...
src/include/migraphx/op/
de
convolution.hpp
→
src/include/migraphx/op/convolution
_backwards
.hpp
View file @
40fbef9b
...
...
@@ -21,9 +21,11 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_
DE
CONVOLUTION_HPP
#define MIGRAPHX_GUARD_OPERATORS_
DE
CONVOLUTION_HPP
#ifndef MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_
BACKWARDS_
HPP
#define MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_
BACKWARDS_
HPP
#include <cmath>
#include <utility>
#include <migraphx/op/common.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
...
...
@@ -31,14 +33,13 @@
#include <migraphx/argument.hpp>
#include <migraphx/par_dfor.hpp>
#include <migraphx/shape_for_each.hpp>
#include <cmath>
#include <utility>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
de
convolution
struct
convolution
_backwards
{
std
::
vector
<
std
::
size_t
>
padding
=
{
0
,
0
};
std
::
vector
<
std
::
size_t
>
stride
=
{
1
,
1
};
...
...
@@ -57,45 +58,91 @@ struct deconvolution
f
(
self
.
group
,
"group"
));
}
std
::
string
name
()
const
{
return
"
de
convolution"
;
}
std
::
string
name
()
const
{
return
"convolution
_backwards
"
;
}
void
check_attribute_size
()
const
{
if
((
padding
.
size
()
!=
stride
.
size
()
and
(
padding
.
size
()
/
2
)
!=
stride
.
size
())
or
stride
.
size
()
!=
dilation
.
size
())
if
(
padding
.
size
()
!=
stride
.
size
()
or
stride
.
size
()
!=
dilation
.
size
())
{
MIGRAPHX_THROW
(
"
deconvolution
: inconsistent attribute sizes"
);
MIGRAPHX_THROW
(
"
CONVOLUTION_BACKWARDS
: inconsistent attribute sizes"
);
}
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
same_type
().
same_ndims
().
min_ndims
(
3
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
2
).
same_type
().
same_ndims
().
min_ndims
(
3
);
const
shape
&
input
=
inputs
.
at
(
0
);
const
shape
&
weights
=
inputs
.
at
(
1
);
size_t
kdims
=
input
.
lens
().
size
()
-
2
;
if
(
kdims
!=
this
->
kdims
())
const
shape
&
x_shape
=
inputs
.
at
(
0
);
const
shape
&
w_shape
=
inputs
.
at
(
1
);
if
(
x_shape
.
ndim
()
-
2
!=
this
->
kdims
())
{
MIGRAPHX_THROW
(
"
deconvolution
: input k-dims does not match attribute size"
);
MIGRAPHX_THROW
(
"
CONVOLUTION_BACKWARDS
: input k-dims does not match attribute size"
);
}
std
::
vector
<
size_t
>
output_lens
{
input
.
lens
()[
0
],
weights
.
lens
()[
1
]};
if
(
not
x_shape
.
dynamic
()
and
not
w_shape
.
dynamic
()
and
x_shape
.
lens
().
at
(
1
)
!=
(
w_shape
.
lens
().
at
(
0
)
*
group
))
{
MIGRAPHX_THROW
(
"CONVOLUTION_BACKWARDS: mismatched channel numbers"
);
}
for
(
size_t
i
=
0
;
i
<
kdims
;
i
++
)
if
(
x_shape
.
dynamic
()
or
w_shape
.
dynamic
()
)
{
output_lens
.
push_back
(
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
return
dynamic_compute_shape
(
x_shape
,
w_shape
);
}
else
{
return
static_compute_shape
(
x_shape
,
w_shape
);
}
}
std
::
vector
<
std
::
size_t
>
calc_spatial_lens
(
std
::
vector
<
std
::
size_t
>
x_lens
,
std
::
vector
<
std
::
size_t
>
w_lens
)
const
{
std
::
vector
<
size_t
>
spatial_lens
(
x_lens
.
size
()
-
2
);
// stride * (input - 1) + output_padding + ((kernel - 1) * dilation + 1) - padding_L -
// padding_R. This assumes padding_L = padding_R and output_padding handled in parser.
for
(
size_t
i
=
0
;
i
<
spatial_lens
.
size
();
i
++
)
{
spatial_lens
.
at
(
i
)
=
(
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
stride
[
i
]
*
(
input
.
lens
()[
i
+
2
]
-
1
)
+
((
weights
.
lens
()[
i
+
2
]
-
1
)
*
dilation
[
i
]
+
1
)
-
2
*
padding
[
i
])));
stride
[
i
]
*
(
x_lens
[
i
+
2
]
-
1
)
+
((
w_lens
[
i
+
2
]
-
1
)
*
dilation
[
i
]
+
1
)
-
2
*
padding
[
i
])));
}
return
inputs
[
0
].
with_lens
(
output_lens
);
return
spatial_lens
;
}
shape
dynamic_compute_shape
(
shape
x_shape
,
shape
w_shape
)
const
{
std
::
vector
<
shape
::
dynamic_dimension
>
output_dyn_dims
=
{};
output_dyn_dims
.
push_back
(
x_shape
.
to_dynamic
().
dyn_dims
().
at
(
0
));
output_dyn_dims
.
push_back
(
w_shape
.
to_dynamic
().
dyn_dims
().
at
(
1
));
const
std
::
size_t
num_spatial_dims
=
x_shape
.
ndim
()
-
2
;
// Does not compute for optimals
auto
min_spatial_dims
=
calc_spatial_lens
(
x_shape
.
min_lens
(),
w_shape
.
min_lens
());
auto
max_spatial_dims
=
calc_spatial_lens
(
x_shape
.
max_lens
(),
w_shape
.
max_lens
());
for
(
size_t
i
=
0
;
i
<
num_spatial_dims
;
++
i
)
{
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
min_spatial_dims
[
i
],
max_spatial_dims
[
i
],
{}});
}
return
shape
{
x_shape
.
type
(),
output_dyn_dims
};
}
shape
static_compute_shape
(
shape
x_shape
,
shape
w_shape
)
const
{
std
::
vector
<
size_t
>
output_lens
{
x_shape
.
lens
()[
0
],
w_shape
.
lens
()[
1
]};
auto
spatial_lens
=
calc_spatial_lens
(
x_shape
.
lens
(),
w_shape
.
lens
());
std
::
for_each
(
spatial_lens
.
begin
(),
spatial_lens
.
end
(),
[
&
output_lens
](
auto
x
)
{
output_lens
.
push_back
(
x
);
});
return
x_shape
.
with_lens
(
output_lens
);
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
out
put_shape
};
auto
k
dims
=
this
->
kdims
();
argument
result
{
dyn_out
.
com
put
ed
_shape
};
auto
num_spatial_
dims
=
this
->
kdims
();
visit_all
(
result
,
args
[
0
],
args
[
1
])([
&
](
auto
output
,
auto
input
,
auto
weights
)
{
using
type
=
typename
decltype
(
output
)
::
value_type
;
...
...
@@ -109,22 +156,22 @@ struct deconvolution
auto
wei_n
=
wei
[
0
];
auto
wei_c
=
wei
[
1
];
auto
out_lens
=
out
put_shape
.
lens
();
auto
out_lens
=
dyn_out
.
com
put
ed
_shape
.
lens
();
std
::
vector
<
std
::
size_t
>
win_size
{
in_c
};
std
::
copy
(
in_lens
.
begin
()
+
2
,
in_lens
.
end
(),
std
::
back_inserter
(
win_size
));
std
::
copy
(
wei
.
begin
()
+
2
,
wei
.
end
(),
std
::
back_inserter
(
win_size
));
shape
win_shape
{
out
put_shape
.
type
(),
win_size
};
shape
win_shape
{
dyn_out
.
com
put
ed
_shape
.
type
(),
win_size
};
par_dfor
(
in_n
,
wei_c
)([
&
](
int
o
,
int
k
)
{
shape_for_each
(
win_shape
,
[
&
](
auto
idx_win
)
{
const
int
w
=
idx_win
[
0
];
auto
input_dims_start
=
idx_win
.
begin
()
+
1
;
auto
wei_dims_start
=
idx_win
.
begin
()
+
k
dims
+
1
;
auto
wei_dims_start
=
idx_win
.
begin
()
+
num_spatial_
dims
+
1
;
std
::
vector
<
std
::
ptrdiff_t
>
win_start
;
for
(
std
::
size_t
n
=
0
;
n
<
k
dims
;
++
n
)
for
(
std
::
size_t
n
=
0
;
n
<
num_spatial_
dims
;
++
n
)
{
win_start
.
push_back
(
std
::
ptrdiff_t
(
*
(
input_dims_start
+
n
)
*
stride
[
n
])
-
std
::
ptrdiff_t
(
padding
[
n
]));
...
...
@@ -135,7 +182,7 @@ struct deconvolution
std
::
vector
<
std
::
ptrdiff_t
>
idx_out
{
o
,
in_ch
};
for
(
size_t
n
=
0
;
n
<
k
dims
;
n
++
)
for
(
size_t
n
=
0
;
n
<
num_spatial_
dims
;
n
++
)
{
idx_out
.
push_back
(
win_start
[
n
]
+
*
(
wei_dims_start
+
n
)
*
dilation
[
n
]);
}
...
...
src/include/migraphx/op/dequantizelinear.hpp
View file @
40fbef9b
...
...
@@ -37,6 +37,15 @@ namespace op {
struct
dequantizelinear
{
value
attributes
()
const
{
// Note: point_op attribute is not used in this op. Instead, in
// gpu compilation pipeline, rewrite_quantization will be invoked
// from generate_pointwise() to rewrite this op.
return
{{
"pointwise"
,
true
}};
}
std
::
string
name
()
const
{
return
"dequantizelinear"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
...
...
src/include/migraphx/op/dimensions_of.hpp
0 → 100644
View file @
40fbef9b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_DIMENSIONS_OF_HPP
#define MIGRAPHX_GUARD_OPERATORS_DIMENSIONS_OF_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
/**
* Returns the dimensions of the input argument from starting axis to ending axis.
* Atleast `end` must be set to use this operator (set `end` to ndim for default ONNX behavior of
* `Shape` operator) This should only be used for dynamic shapes as this can be simplified to a
* literal for static shapes.
*/
struct
dimensions_of
{
std
::
size_t
start
=
0
;
std
::
size_t
end
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
start
,
"start"
),
f
(
self
.
end
,
"end"
));
}
std
::
string
name
()
const
{
return
"dimensions_of"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
if
(
start
>=
end
)
{
MIGRAPHX_THROW
(
"DIMENSIONS_OF: start >= end. start = "
+
std
::
to_string
(
start
)
+
", end = "
+
std
::
to_string
(
end
));
}
return
shape
{
shape
::
int64_type
,
{
end
-
start
}};
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
auto
input_lens
=
args
[
0
].
get_shape
().
lens
();
result
.
visit
([
&
](
auto
output
)
{
std
::
copy
(
input_lens
.
cbegin
()
+
start
,
input_lens
.
cbegin
()
+
end
,
output
.
begin
());
});
return
result
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/multibroadcast.hpp
View file @
40fbef9b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -36,9 +36,9 @@ namespace op {
/**
* Broadcast multiple dimensions between two tensors.
* Two versions of this operator:
one
input and
two
inputs.
* Two versions of this operator:
1
input and
2+
inputs.
* One input version uses output_lens attribute and broadcasts to it.
*
Two
inputs version broadcasts
both
input
s
to the common shape at evaluation time.
*
2+
inputs version broadcasts
first
input to the common shape at evaluation time.
*/
struct
multibroadcast
{
...
...
@@ -57,19 +57,19 @@ struct multibroadcast
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
,
2
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
_at_least
(
1
);
auto
t
=
inputs
.
at
(
0
).
type
();
auto
s0
=
inputs
.
at
(
0
);
if
(
s0
.
max_lens
().
empty
()
)
if
(
s0
.
ndim
()
<
1
)
{
MIGRAPHX_THROW
(
"MULTIBROADCAST: input dimensions should be > 0"
);
}
auto
make_bcast_strides
=
[
&
](
std
::
vector
<
std
::
size_t
>
bcast_lens
,
std
::
size_t
offset
)
{
std
::
vector
<
size_t
>
bcast_strides
(
bcast_lens
.
size
(),
0
);
for
(
std
::
ptrdiff_t
i
=
s0
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
for
(
std
::
ptrdiff_t
i
=
s0
.
ndim
()
-
1
;
i
>=
0
;
i
--
)
{
if
(
bcast_lens
[
i
+
offset
]
==
s0
.
lens
()[
i
])
{
...
...
@@ -81,13 +81,16 @@ struct multibroadcast
if
(
inputs
.
size
()
==
1
)
{
if
(
s0
.
lens
().
size
()
>
output_lens
.
size
())
if
(
s0
.
dynamic
())
MIGRAPHX_THROW
(
"MULTIBROADCAST: Single dynamic input shape not supported. Use two inputs."
);
if
(
s0
.
ndim
()
>
output_lens
.
size
())
{
MIGRAPHX_THROW
(
"MULTIBROADCAST: input dimensions should <= output size"
);
}
auto
offset
=
output_lens
.
size
()
-
s0
.
lens
().
size
();
for
(
std
::
ptrdiff_t
i
=
s0
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
auto
offset
=
output_lens
.
size
()
-
s0
.
ndim
();
for
(
std
::
ptrdiff_t
i
=
s0
.
ndim
()
-
1
;
i
>=
0
;
i
--
)
{
if
(
output_lens
[
i
+
offset
]
!=
s0
.
lens
()[
i
]
and
s0
.
lens
()[
i
]
!=
1
)
{
...
...
@@ -102,20 +105,21 @@ struct multibroadcast
}
else
{
//
two
inputs
auto
s1
=
inputs
.
at
(
1
);
if
(
s0
.
dynamic
()
or
s1
.
dynamic
())
//
2+
inputs
if
(
std
::
any_of
(
inputs
.
cbegin
(),
inputs
.
cend
(),
[](
auto
input
)
{
return
input
.
dynamic
()
;
})
)
{
if
(
not
output_dyn_dims
.
empty
())
{
return
{
t
,
output_dyn_dims
};
}
return
{
t
,
compute_
broadcasted
_dyn_dims
(
s0
,
s1
)};
return
{
t
,
compute_
common
_dyn_dims
(
inputs
)};
}
else
{
auto
bcast_lens
=
compute_broadcasted_lens
(
s0
.
lens
(),
s1
.
lens
());
auto
offset
=
bcast_lens
.
size
()
-
s0
.
lens
().
size
();
// output_lens will not be set for 2+ input version
auto
bcast_lens
=
compute_common_lens
(
inputs
);
auto
offset
=
bcast_lens
.
size
()
-
s0
.
ndim
();
auto
bcast_strides
=
make_bcast_strides
(
bcast_lens
,
offset
);
return
{
t
,
std
::
move
(
bcast_lens
),
std
::
move
(
bcast_strides
)};
}
...
...
src/include/migraphx/op/pointwise.hpp
View file @
40fbef9b
...
...
@@ -45,14 +45,15 @@ struct pointwise
{
MIGRAPHX_THROW
(
"should have one submodule."
);
}
auto
*
pm
=
mods
.
front
();
auto
*
pm
=
mods
.
front
();
if
(
pm
->
get_output_shapes
().
size
()
!=
1
)
MIGRAPHX_THROW
(
"pointwise should have only one output."
);
if
(
inputs
.
empty
())
MIGRAPHX_THROW
(
"pointwise should have at least one input"
);
auto
pnames
=
pm
->
get_parameter_names
();
std
::
sort
(
pnames
.
begin
(),
pnames
.
end
());
check_shapes
{
inputs
,
*
this
}.
has
(
pnames
.
size
()).
same_dims
();
if
(
pm
->
get_output_shapes
().
size
()
!=
1
)
MIGRAPHX_THROW
(
"submodule should have only one output."
);
auto
type
=
pm
->
get_output_shapes
().
front
().
type
();
// Scalar output if all inputs are scalar
...
...
src/include/migraphx/op/pooling.hpp
View file @
40fbef9b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -42,16 +42,43 @@ namespace op {
struct
pooling
{
pooling_mode
mode
=
{
pooling_mode
::
average
};
pooling_mode
mode
=
{
pooling_mode
::
average
};
// Padding along each spatial input dimension
// Can be ndim or 2*ndim values where ndim is size of lengths
// ndim values means pad the same before and after each dimension
// 2*ndim values contains n pre and then n post padding values
std
::
vector
<
std
::
size_t
>
padding
=
{
0
,
0
};
std
::
vector
<
std
::
size_t
>
stride
=
{
1
,
1
};
// Size of stride to take from one placement of the pooling kernel to the next.
// This is distinct from the strides used by the shape class. Must be the same
// ndim as lengths.
std
::
vector
<
std
::
size_t
>
stride
=
{
1
,
1
};
// Spatial dimensions of the pooling kernel or window,
// 2 smaller than the input tensor rank (NCHW layout)
std
::
vector
<
std
::
size_t
>
lengths
=
{
1
,
1
};
bool
ceil_mode
=
false
;
int
lp_order
=
2
;
// Dilations are not supported at this time.
// ceiling mode is a flag affecting output size
// or equivalently, placements of the pooling kernel.
// When true, round the size upwards, possibly
// including partial placements where the kernel extends beyond the edge
// of input and even padding. When false, round down so that all
// kernel placements fit but some input values may be dropped.
bool
ceil_mode
=
false
;
int
lp_order
=
2
;
// Global pooling with dynamic shape input
bool
dyn_global
=
false
;
// an attribute of the Onnx pooling operator, not currently enabled here because MIOpen can't
// support it. We currently implement padding for average pooling by inserting a Padding
// operator during Onnx parsing. But to support dynamic shape inputs and count_include_pad
// together, it would be necessary to do this calculation at runtime in MIOpen.
bool
count_include_pad
=
false
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
...
...
@@ -68,11 +95,29 @@ struct pooling
void
check_attribute_size
()
const
{
if
((
padding
.
size
()
!=
stride
.
size
()
and
(
padding
.
size
()
/
2
)
!=
stride
.
size
())
or
(
not
dyn_global
and
stride
.
size
()
!=
lengths
.
size
()))
if
(
dyn_global
)
return
;
if
((
padding
.
size
()
!=
stride
.
size
()
and
(
padding
.
size
())
!=
stride
.
size
()
*
2
)
or
stride
.
size
()
!=
lengths
.
size
())
{
MIGRAPHX_THROW
(
"POOLING: inconsistent attribute sizes"
);
}
if
(
std
::
any_of
(
lengths
.
begin
(),
lengths
.
end
(),
[
&
](
auto
i
)
{
return
(
i
==
0
);
})
or
std
::
any_of
(
stride
.
begin
(),
stride
.
end
(),
[
&
](
auto
i
)
{
return
(
i
==
0
);
}))
{
MIGRAPHX_THROW
(
"POOLING: size 0 pooling kernel or stride"
);
}
// TODO: update lowering to run the reference
// code when OneDNN can't execute pooling for a CPU
// OneDNN has a limitation on padding size for pooling. see
// https://oneapi-src.github.io/oneDNN/dev_guide_convolution.html#doxid-dev-guide-convolution
// padding = {2}; stride = {1}; lengths = {3} succeeds in oneDNN but
// padding = {2}; stride = {1}; lengths = {2} fails.
// Also, the referenced documentation contains a max. dimension size of 14 for the kernel
// ("weights tensor") that MIGraphX doesn't enforce.
}
size_t
kdims
()
const
...
...
@@ -112,7 +157,11 @@ struct pooling
const
shape
&
input
=
inputs
.
at
(
0
);
auto
padding_size
=
padding
.
size
();
size_t
kdims
=
input
.
ndim
()
-
2
;
if
(
input
.
ndim
()
!=
padding_size
/
2
+
2
and
input
.
ndim
()
!=
padding_size
+
2
)
if
(
input
.
ndim
()
<
3
)
{
MIGRAPHX_THROW
(
"POOLING: input must have 3 or more dimensions and be nonempty"
);
}
if
(
input
.
ndim
()
*
2
!=
padding_size
+
4
and
input
.
ndim
()
!=
padding_size
+
2
)
{
MIGRAPHX_THROW
(
"POOLING: input and attribute size mismatch!"
);
}
...
...
@@ -132,7 +181,7 @@ struct pooling
}
else
{
// does not compute
for
optimals
// does not compute optimals
auto
min_spatial_dims
=
calc_spatial_dim_out
(
input
.
min_lens
(),
kdims
);
auto
max_spatial_dims
=
calc_spatial_dim_out
(
input
.
max_lens
(),
kdims
);
for
(
size_t
i
=
0
;
i
<
kdims
;
++
i
)
...
...
@@ -149,7 +198,7 @@ struct pooling
std
::
vector
<
std
::
size_t
>
output_lens
(
input_lens
.
begin
(),
input_lens
.
begin
()
+
2
);
// Used for when normalize_compute_shape() is called again at model eval time
// for an originally dynamic shape.
Since k
ernel shape is not used with dyn_global.
// for an originally dynamic shape.
K
ernel shape is not used with dyn_global.
if
(
dyn_global
)
{
for
(
size_t
i
=
0
;
i
<
kdims
;
++
i
)
...
...
@@ -184,7 +233,7 @@ struct pooling
double
operator
()(
double
x
,
double
y
)
const
{
return
x
+
std
::
pow
(
std
::
abs
(
y
),
p
);
}
double
final
(
double
x
,
std
::
size_t
)
const
{
return
std
::
pow
(
x
,
1.
/
p
);
}
double
final
(
double
x
,
std
::
size_t
)
const
{
return
(
p
==
0
)
?
1
:
std
::
pow
(
x
,
1.
/
p
);
}
};
struct
avg_pool
...
...
@@ -222,37 +271,82 @@ struct pooling
{
auto
in_s
=
input
.
get_shape
();
auto
in_lens
=
in_s
.
lens
();
// For each element of output; i.e., for each placement of pooling kernel...
par_for
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
idx_o
=
output_shape
.
multi
(
i
);
auto
n_dim
=
idx_o
.
size
();
std
::
vector
<
std
::
size_t
>
win_start
;
// starting offset of the pooling window
std
::
vector
<
int
>
win_start
;
std
::
vector
<
std
::
size_t
>
win_size
;
// For each spatial dimension, find starting and ending index of pooling kernel
for
(
std
::
size_t
dim
=
2
;
dim
<
n_dim
;
++
dim
)
{
auto
d_2
=
dim
-
2
;
int
start
=
static_cast
<
int
>
(
idx_o
[
dim
]
*
stride
[
d_2
])
-
static_cast
<
int
>
(
padding
[
d_2
]);
int
end
=
std
::
min
(
start
+
kernel_dims
[
d_2
],
in_lens
[
dim
]);
start
=
std
::
max
(
start
,
0
);
int
end
;
// NOLINT
if
(
count_include_pad
and
ceil_mode
and
(
mode
!=
pooling_mode
::
max
))
{
// TODO: this block can't execute until we enable count_include_pad
// Even when using padding, if in ceil_mode a window
// could extend beyond the end of both input and
// padding. Clip out-of-bounds indexes but not padding.
// Check if this kernel extends beyond the padding at end of dimension
end
=
std
::
min
(
start
+
kernel_dims
[
d_2
],
in_lens
[
dim
]
+
static_cast
<
int
>
(
padding
[
d_2
]));
}
else
{
// In non-ceiling mode, when
// count_include_pad is false, or for max pooling, clip off padding.
end
=
std
::
min
(
start
+
kernel_dims
[
d_2
],
in_lens
[
dim
]);
start
=
std
::
max
(
start
,
0
);
}
win_start
.
push_back
(
start
);
if
(
end
<
start
)
{
// This error can be caused by misc. bad input combinations
MIGRAPHX_THROW
(
"POOLING: invalid attributes"
);
}
win_size
.
push_back
(
end
-
start
);
}
shape
win_shape
{
output_shape
.
type
(),
win_size
};
auto
pool_size
=
win_shape
.
elements
();
double
output_val
=
op
.
template
init
<
Type
>();
// for each element in the window...
shape_for_each
(
win_shape
,
[
&
](
auto
idx_w
)
{
// the coordinates of this element
auto
idx
=
idx_o
;
// Add the kernel location idx_w and the offset win_start, for each dimension.
// Negative results are cast to very large unsigned integers.
std
::
transform
(
idx_w
.
begin
(),
idx_w
.
end
(),
win_start
.
begin
(),
idx
.
begin
()
+
2
,
[](
auto
ii
,
auto
jj
)
{
return
ii
+
jj
;
});
if
(
std
::
all_of
(
idx
.
begin
()
+
2
,
idx
.
end
(),
[
&
](
auto
ii
)
{
return
ii
>=
0
;
})
and
idx
<
in_lens
)
// Check if any of coordinates are out of input tensor's range
if
(
std
::
mismatch
(
idx
.
begin
()
+
2
,
idx
.
end
(),
in_lens
.
begin
()
+
2
,
in_lens
.
end
(),
std
::
less
<>
{})
==
std
::
make_pair
(
idx
.
end
(),
in_lens
.
end
()))
{
output_val
=
op
(
output_val
,
input
[
in_s
.
index
(
idx
)]);
}
else
{
// this is a padding element. Padding locations
// don't contribute to average or max pooling total but can play in
// lpnorm pooling.
output_val
=
op
(
output_val
,
0
);
}
});
output
[
i
]
=
Type
(
op
.
final
(
output_val
,
pool_size
));
});
...
...
src/include/migraphx/op/prefix_scan_op.hpp
View file @
40fbef9b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP
#define MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP
...
...
@@ -37,6 +38,12 @@ namespace migraphx {
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
/**
* Parent struct for prefix scan operations. A prefix scan is equivalent to the C++
* std::exclusive_scan or std::inclusive_scan. Given a list of numbers, a prefix scan
* sum op returns an equal size list of running totals of the values. Other operations
* besides addition can be supported by their own child ops.
*/
template
<
class
Derived
>
struct
prefix_scan_op
:
op_name
<
Derived
>
{
...
...
@@ -60,9 +67,13 @@ struct prefix_scan_op : op_name<Derived>
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
s
=
inputs
.
front
();
if
(
s
.
broadcasted
())
if
(
s
.
dynamic
())
{
return
s
;
}
else
if
(
s
.
broadcasted
())
{
return
{
s
.
type
(),
s
.
lens
()};
}
...
...
@@ -72,8 +83,9 @@ struct prefix_scan_op : op_name<Derived>
}
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
shape
output_shape
(
dyn_out
.
computed_shape
);
argument
result
{
output_shape
};
auto
s
=
args
[
0
].
get_shape
();
if
(
s
==
output_shape
)
...
...
src/include/migraphx/op/quantizelinear.hpp
View file @
40fbef9b
...
...
@@ -38,6 +38,15 @@ namespace op {
struct
quantizelinear
{
std
::
string
name
()
const
{
return
"quantizelinear"
;
}
value
attributes
()
const
{
// Note: point_op attribute is not used in this op. Instead, in
// gpu compilation pipeline, rewrite_quantization will be invoked
// from generate_pointwise() to rewrite this op.
return
{{
"pointwise"
,
true
}};
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
same_dims
().
has
(
2
,
3
);
...
...
src/include/migraphx/op/reshape.hpp
View file @
40fbef9b
...
...
@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/optional.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -96,9 +97,115 @@ struct reshape
return
{
s0
.
type
(),
output_dyn_dims
};
}
template
<
class
Iterator
>
static
auto
compute_end_dim
(
Iterator
start
,
Iterator
last
,
std
::
size_t
dim
)
{
std
::
size_t
x
=
1
;
auto
it
=
std
::
find_if
(
start
,
last
,
[
&
](
auto
i
)
{
x
*=
i
;
return
x
>=
dim
;
});
if
(
x
!=
dim
)
return
start
;
return
it
;
}
template
<
class
DimIterator
,
class
StrideIterator
>
static
auto
can_strides_merge
(
DimIterator
dim_start
,
DimIterator
dim_last
,
StrideIterator
stride_start
,
StrideIterator
stride_last
)
{
assert
(
std
::
distance
(
dim_start
,
dim_last
)
==
std
::
distance
(
stride_start
,
stride_last
));
auto
cstride
=
*
std
::
prev
(
stride_last
);
return
std
::
equal
(
std
::
make_reverse_iterator
(
dim_last
),
std
::
make_reverse_iterator
(
dim_start
+
1
),
std
::
make_reverse_iterator
(
stride_last
-
1
),
std
::
make_reverse_iterator
(
stride_start
),
[
&
](
auto
dim
,
auto
stride
)
{
cstride
*=
dim
;
return
stride
==
cstride
;
});
}
// This will reshape the dimesions of the input shape to use the lens of
// `rdims`. If this can't be done without changing memory layout then it
// will return nullopt
static
optional
<
shape
>
reshape_dims
(
const
shape
&
input
,
const
std
::
vector
<
std
::
size_t
>&
rdims
)
{
if
(
input
.
standard
())
return
shape
{
input
.
type
(),
rdims
};
const
auto
&
idims
=
input
.
lens
();
const
auto
&
istrides
=
input
.
strides
();
std
::
vector
<
std
::
size_t
>
rstrides
;
std
::
size_t
i
=
0
;
std
::
size_t
r
=
0
;
while
(
i
<
idims
.
size
()
and
r
<
rdims
.
size
())
{
auto
idim
=
idims
[
i
];
auto
rdim
=
rdims
[
r
];
if
(
rdim
==
idim
)
{
rstrides
.
push_back
(
istrides
[
i
]);
}
// squeeze
else
if
(
rdim
>
idim
)
{
auto
start
=
idims
.
begin
()
+
i
;
auto
it
=
compute_end_dim
(
start
,
idims
.
end
(),
rdim
);
if
(
it
==
start
)
return
nullopt
;
auto
n
=
it
-
start
;
assert
((
i
+
n
)
<=
istrides
.
size
());
if
(
not
can_strides_merge
(
start
,
it
+
1
,
istrides
.
begin
()
+
i
,
istrides
.
begin
()
+
i
+
n
+
1
))
return
nullopt
;
i
+=
n
;
rstrides
.
push_back
(
istrides
[
i
]);
}
// unsqueeze
else
// if(rdim < idim)
{
auto
start
=
rdims
.
begin
()
+
i
;
auto
it
=
compute_end_dim
(
start
,
rdims
.
end
(),
idim
);
if
(
it
==
start
)
return
nullopt
;
auto
n
=
it
-
start
;
assert
((
r
+
n
)
<=
rdims
.
size
());
auto
stride
=
istrides
[
i
]
*
idim
;
std
::
for_each
(
start
,
it
+
1
,
[
&
](
auto
dim
)
{
stride
/=
dim
;
rstrides
.
push_back
(
stride
);
});
r
+=
n
;
}
i
++
;
r
++
;
}
// Handle trailing 1s
if
(
rstrides
.
size
()
<
rdims
.
size
()
and
not
rstrides
.
empty
())
{
auto
stride
=
rstrides
.
back
();
for
(
auto
d
:
range
(
rdims
.
begin
()
+
rstrides
.
size
(),
rdims
.
end
()))
{
if
(
d
!=
1
)
return
nullopt
;
rstrides
.
push_back
(
stride
);
}
}
if
(
rdims
.
size
()
!=
rstrides
.
size
())
return
nullopt
;
return
shape
{
input
.
type
(),
rdims
,
rstrides
};
}
shape
static_compute_shape
(
std
::
vector
<
shape
>
inputs
,
std
::
size_t
n_neg_dims
)
const
{
check_shapes
{
inputs
,
*
this
}.
standard
(
);
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
&&
idims
=
inputs
.
front
().
lens
();
std
::
vector
<
std
::
size_t
>
rdims
(
dims
.
begin
(),
dims
.
end
());
...
...
@@ -125,12 +232,17 @@ struct reshape
}
}
shape
s
{
inputs
.
front
().
type
(),
rdims
};
if
(
s
.
elements
()
!=
inputs
.
front
().
elements
())
auto
s
=
reshape_dims
(
inputs
.
front
(),
rdims
);
if
(
not
s
.
has_value
())
MIGRAPHX_THROW
(
"Reshape on axis that is not packed."
);
if
(
s
->
elements
()
!=
inputs
.
front
().
elements
())
MIGRAPHX_THROW
(
"Reshape: Wrong number of elements for reshape: reshape has "
+
std
::
to_string
(
s
.
elements
())
+
" elements whereas the input has "
+
std
::
to_string
(
s
->
elements
())
+
" elements whereas the input has "
+
std
::
to_string
(
inputs
.
front
().
elements
()));
return
s
;
assert
(
s
->
bytes
()
==
inputs
.
front
().
bytes
());
return
*
s
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
...
...
src/include/migraphx/op/run_on_target.hpp
0 → 100644
View file @
40fbef9b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_RUN_ON_TARGET_HPP
#define MIGRAPHX_GUARD_RTGLIB_RUN_ON_TARGET_HPP
#include <unordered_map>
#include <vector>
#include <set>
#include <algorithm>
#include <migraphx/config.hpp>
#include <migraphx/errors.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/module.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
run_on_target
{
std
::
size_t
target_id
=
0
;
std
::
string
name
()
const
{
return
"run_on_target"
;
}
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
target_id
,
"target_id"
));
}
migraphx
::
shape
compute_shape
(
const
std
::
vector
<
migraphx
::
shape
>&
inputs
,
std
::
vector
<
migraphx
::
module_ref
>
mods
)
const
{
if
(
mods
.
size
()
!=
1
)
{
MIGRAPHX_THROW
(
"RUN_ON_TARGET: must have exactly 1 module argument"
);
}
auto
*
mod_input
=
mods
.
front
();
if
(
inputs
.
size
()
!=
mod_input
->
get_parameter_shapes
().
size
())
{
MIGRAPHX_THROW
(
"RUN_ON_TARGET: Mismatched number of input parameters"
);
}
auto
mod_out_shapes
=
mod_input
->
get_output_shapes
();
return
mod_out_shapes
;
}
migraphx
::
argument
compute
(
const
migraphx
::
shape
&
,
const
std
::
vector
<
migraphx
::
argument
>&
args
,
const
std
::
vector
<
migraphx
::
module_ref
>&
mods
,
const
std
::
function
<
std
::
vector
<
migraphx
::
argument
>
(
migraphx
::
module_ref
&
,
const
std
::
unordered_map
<
std
::
string
,
migraphx
::
argument
>&
)
>&
run
)
const
{
std
::
unordered_map
<
std
::
string
,
migraphx
::
argument
>
params
;
std
::
set
<
std
::
string
>
pnames
;
const
auto
*
smod
=
mods
.
front
();
assert
(
mods
.
size
()
==
1
);
auto
names
=
smod
->
get_parameter_names
();
pnames
.
insert
(
names
.
begin
(),
names
.
end
());
assert
(
pnames
.
size
()
==
args
.
size
());
std
::
transform
(
pnames
.
begin
(),
pnames
.
end
(),
args
.
begin
(),
std
::
inserter
(
params
,
params
.
end
()),
[](
auto
&&
name
,
auto
&&
arg
)
{
return
std
::
make_pair
(
name
,
arg
);
});
auto
*
mod
=
mods
.
front
();
auto
results
=
run
(
mod
,
params
);
return
migraphx
::
argument
{
results
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/select_module.hpp
View file @
40fbef9b
...
...
@@ -125,7 +125,7 @@ struct select_module
auto
ps
=
param_shapes
.
at
(
name
);
if
(
a
.
get_shape
()
!=
ps
)
{
assert
(
ps
.
bytes
()
=
=
a
.
get_shape
().
bytes
());
assert
(
ps
.
bytes
()
<
=
a
.
get_shape
().
bytes
());
return
std
::
make_pair
(
name
,
a
.
reshape
(
ps
));
}
else
...
...
src/include/migraphx/op/unsqueeze.hpp
View file @
40fbef9b
...
...
@@ -95,13 +95,10 @@ struct unsqueeze
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
auto
old_strides
=
input_shape
.
strides
();
if
(
input_shape
.
scalar
())
{
if
(
old_lens
.
size
()
==
1
and
old_lens
.
front
()
==
1
)
return
shape
{
type
,
old_lens
};
else
MIGRAPHX_THROW
(
"UNSQUEEZE: Input must be a scalar"
);
}
auto
is_scalar
=
input_shape
.
scalar
();
if
(
is_scalar
and
old_lens
.
size
()
==
1
and
old_lens
.
front
()
==
1
)
return
shape
{
type
,
old_lens
};
if
(
steps
.
size
()
>
axes
.
size
())
MIGRAPHX_THROW
(
"UNSQUEEZE: Steps provided with no axis"
);
...
...
@@ -121,13 +118,15 @@ struct unsqueeze
step
=
steps
[
axis_idx
];
if
(
step
==
0
)
MIGRAPHX_THROW
(
"UNSQUEEZE: step must be non-zero"
);
if
(
is_scalar
and
step
!=
1
)
MIGRAPHX_THROW
(
"UNSQUEEZE: step must be 1 when input is scalar"
);
new_lens
[
i
]
=
step
;
if
(
p
<
old_strides
.
size
())
{
if
((
old_lens
[
p
]
%
step
)
!=
0
)
MIGRAPHX_THROW
(
"UNSQUEEZE: Axis dimenstion is not divisible by step"
);
old_lens
[
p
]
/=
step
;
new_strides
[
i
]
=
old_strides
[
p
]
*
old_lens
[
p
];
new_strides
[
i
]
=
is_scalar
?
1
:
old_strides
[
p
]
*
old_lens
[
p
];
}
else
{
...
...
src/include/migraphx/operation.hpp
View file @
40fbef9b
...
...
@@ -143,7 +143,7 @@ auto compute_shape_op(rank<2>, const T& x, const std::vector<shape>& inputs)
if
(
inputs
.
empty
())
MIGRAPHX_THROW
(
"At least one input is required for "
+
x
.
name
());
dependent_type
<
operation
,
T
>
y
=
x
;
normalize_attributes
(
y
,
inputs
[
0
]
.
max_lens
()
);
normalize_attributes
(
y
,
inputs
[
0
]);
return
any_cast
<
T
>
(
y
).
normalize_compute_shape
(
inputs
);
}
...
...
@@ -251,9 +251,10 @@ auto compute_op(rank<1>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
);
}
...
...
@@ -261,11 +262,13 @@ auto compute_op(rank<1>,
template
<
class
T
,
class
F
>
argument
compute_op
(
rank
<
0
>
,
const
T
&
x
,
const
shape
&
,
const
std
::
vector
<
argument
>&
,
const
std
::
vector
<
module_ref
>&
,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
)
{
if
(
module_args
.
empty
())
return
compute_op
(
x
,
output
,
inputs
);
std
::
string
name
=
x
.
name
();
MIGRAPHX_THROW
(
"Not computable: "
+
name
);
}
...
...
@@ -307,9 +310,10 @@ auto compute_op(rank<3>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
);
}
...
...
@@ -497,7 +501,7 @@ lifetime get_lifetime_op(const T&)
#ifdef TYPE_ERASED_DECLARATION
// Type-erased interface for:
struct
operation
struct
MIGRAPHX_EXPORT
operation
{
//
std
::
string
name
()
const
;
...
...
@@ -571,7 +575,7 @@ struct operation
{
using
std
::
swap
;
auto
*
derived
=
this
->
any_cast
<
PrivateDetailTypeErasedT
>
();
if
(
derived
and
private_detail_te_handle_mem_var
.
u
nique
()
)
if
(
derived
and
private_detail_te_handle_mem_var
.
u
se_count
()
==
1
)
{
*
derived
=
std
::
forward
<
PrivateDetailTypeErasedT
>
(
value
);
}
...
...
@@ -1261,7 +1265,7 @@ struct operation
private_detail_te_handle_base_type
&
private_detail_te_get_handle
()
{
assert
(
private_detail_te_handle_mem_var
!=
nullptr
);
if
(
not
private_detail_te_handle_mem_var
.
u
nique
()
)
if
(
private_detail_te_handle_mem_var
.
u
se_count
()
>
1
)
private_detail_te_handle_mem_var
=
private_detail_te_handle_mem_var
->
clone
();
return
*
private_detail_te_handle_mem_var
;
}
...
...
@@ -1388,8 +1392,8 @@ bool has_finalize(const T& x)
return
detail
::
has_finalize_op
(
x
);
}
void
migraphx_to_value
(
value
&
v
,
const
operation
&
op
);
void
migraphx_from_value
(
const
value
&
v
,
operation
&
op
);
MIGRAPHX_EXPORT
void
migraphx_to_value
(
value
&
v
,
const
operation
&
op
);
MIGRAPHX_EXPORT
void
migraphx_from_value
(
const
value
&
v
,
operation
&
op
);
#endif
...
...
src/include/migraphx/operators.hpp
View file @
40fbef9b
...
...
@@ -45,9 +45,10 @@
#include <migraphx/op/contiguous.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/convolution_backwards.hpp>
#include <migraphx/op/cosh.hpp>
#include <migraphx/op/cos.hpp>
#include <migraphx/op/d
econvolution
.hpp>
#include <migraphx/op/d
imensions_of
.hpp>
#include <migraphx/op/div.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
...
...
Prev
1
…
3
4
5
6
7
8
9
10
11
…
22
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment