Unverified Commit 40fbef9b authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'develop' into threaded_nms

parents d164b151 aeb9f78c
......@@ -113,8 +113,7 @@ void subgraph::apply(module_pass_manager& mpm) const
// TODO(varunsh): this code may be replaceable by code in the fuse_pointwise pass
// assuming all FPGA instructions are in one contiguous range
pm->insert_instructions(pm->end(), first, last, {});
pm->insert_instructions(pm->end(), first, std::next(last), {});
migraphx::instruction_ref placeholder_ins;
for(auto it : iterator_for(mod))
{
......
......@@ -33,7 +33,7 @@ migraphx::shape x_model::get_shape() const { return shape; };
void x_model::set_shape(migraphx::shape s) { shape = s; }
x_model create_xmodel(const migraphx::module_ref mod)
x_model create_xmodel(migraphx::const_module_ref mod)
{
std::cout << "Calling an external function: create_xmodel!\n";
x_model xmodel;
......
......@@ -33,6 +33,11 @@ if(NOT TARGET MIOpen)
message(SEND_ERROR "Cant find miopen")
endif()
if(NOT WIN32)
# TODO: re-enable when CK is ported to Windows
find_package(composable_kernel 1.0.0 REQUIRED COMPONENTS jit_library)
endif()
if(BUILD_DEV)
set(MIGRAPHX_USE_HIPRTC OFF CACHE BOOL "Use hipRTC APIs")
else()
......@@ -40,12 +45,12 @@ else()
endif()
include(Embed)
file(GLOB KERNEL_FILES ${CONFIGURE_DEPENDS}
file(GLOB KERNEL_FILES CONFIGURE_DEPENDS
${CMAKE_CURRENT_SOURCE_DIR}/kernels/include/migraphx/kernels/*.hpp)
message(STATUS "KERNEL_FILES: ${KERNEL_FILES}")
add_embed_library(migraphx_kernels ${KERNEL_FILES})
add_embed_library(migraphx_kernels ${KERNEL_FILES} RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}/kernels/include/)
file(GLOB DEVICE_GPU_SRCS ${CONFIGURE_DEPENDS} ${CMAKE_CURRENT_SOURCE_DIR}/device/*.cpp)
file(GLOB DEVICE_GPU_SRCS CONFIGURE_DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/device/*.cpp)
add_library(migraphx_device ${DEVICE_GPU_SRCS})
add_library(compile_for_gpu INTERFACE)
......@@ -65,6 +70,8 @@ target_link_libraries(migraphx_device PUBLIC migraphx)
target_link_libraries(migraphx_device PRIVATE compile_for_gpu)
target_include_directories(migraphx_device PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>)
target_include_directories(migraphx_device PRIVATE $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/device/include>)
target_compile_options(migraphx_device PRIVATE -Wno-ignored-attributes)
migraphx_generate_export_header(migraphx_device DIRECTORY migraphx/gpu/device)
add_library(kernel_file_check EXCLUDE_FROM_ALL)
......@@ -80,7 +87,13 @@ target_link_libraries(kernel_file_check compile_for_gpu)
rocm_clang_tidy_check(kernel_file_check)
file(GLOB JIT_GPU_SRCS ${CONFIGURE_DEPENDS} ${CMAKE_CURRENT_SOURCE_DIR}/jit/*.cpp)
file(GLOB JIT_GPU_SRCS CONFIGURE_DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/jit/*.cpp)
if(WIN32)
# TODO: re-enable when CK is ported to Windows
list(REMOVE_ITEM JIT_GPU_SRCS ${CMAKE_CURRENT_SOURCE_DIR}/jit/ck_gemm.cpp)
endif()
add_library(migraphx_gpu
abs.cpp
analyze_streams.cpp
......@@ -95,6 +108,7 @@ add_library(migraphx_gpu
compile_miopen.cpp
compiler.cpp
device_name.cpp
fuse_ck.cpp
fuse_mlir.cpp
fuse_ops.cpp
gather.cpp
......@@ -123,11 +137,14 @@ add_library(migraphx_gpu
schedule_model.cpp
sync_device.cpp
target.cpp
time_op.cpp
topk.cpp
write_literals.cpp
${JIT_GPU_SRCS}
)
set_target_properties(migraphx_gpu PROPERTIES EXPORT_NAME gpu)
migraphx_generate_export_header(migraphx_gpu)
function(register_migraphx_gpu_ops PREFIX)
foreach(OP ${ARGN})
......@@ -169,7 +186,7 @@ register_op(migraphx_gpu
OPERATORS gpu::rocblas_gemm<op::dot> gpu::rocblas_gemm<op::quant_dot>
INCLUDES migraphx/gpu/context.hpp)
register_op(migraphx_gpu HEADER migraphx/gpu/convolution.hpp
OPERATORS gpu::miopen_convolution<op::convolution> gpu::miopen_convolution<op::deconvolution> gpu::miopen_convolution<op::quant_convolution>
OPERATORS gpu::miopen_convolution<op::convolution> gpu::miopen_convolution<op::convolution_backwards> gpu::miopen_convolution<op::quant_convolution>
INCLUDES migraphx/gpu/context.hpp)
rocm_set_soversion(migraphx_gpu ${MIGRAPHX_SO_VERSION})
rocm_clang_tidy_check(migraphx_gpu)
......@@ -181,7 +198,9 @@ if(MIGRAPHX_ENABLE_MLIR)
find_package(rocMLIR 1.0.0 CONFIG REQUIRED)
message(STATUS "Build with rocMLIR::rockCompiler ${rocMLIR_VERSION}")
target_compile_definitions(migraphx_gpu PRIVATE "-DMIGRAPHX_MLIR")
target_link_libraries(migraphx_gpu PUBLIC rocMLIR::rockCompiler)
# Make this private to avoid multiple inclusions of LLVM symbols.
# TODO: Fix rocMLIR's library to hide LLVM internals.
target_link_libraries(migraphx_gpu PRIVATE rocMLIR::rockCompiler)
endif()
if(MIGRAPHX_USE_HIPRTC)
......@@ -227,7 +246,12 @@ check_library_exists(MIOpen "miopenFindSolutions" "${MIOPEN_LOCATION}" HAS_FIND_
set(MIGRAPHX_USE_FIND_2_API "${HAS_FIND_2_API}" CACHE BOOL "")
if(MIGRAPHX_USE_FIND_2_API)
target_compile_definitions(migraphx_gpu PUBLIC -DMIGRAPHX_HAS_FIND_2_API)
check_library_exists(MIOpen "miopenSetFindOptionPreallocatedTensor" "${MIOPEN_LOCATION}" HAS_PREALLOCATION_API)
if(HAS_PREALLOCATION_API)
target_compile_definitions(migraphx_gpu PUBLIC -DMIGRAPHX_HAS_FIND_2_API -DMIGRAPHX_PREALLOCATE_MIOPEN_BUFFERS)
else()
target_compile_definitions(migraphx_gpu PUBLIC -DMIGRAPHX_HAS_FIND_2_API)
endif()
message(STATUS "MIGraphx is using Find-2.0 API of MIOpen")
else()
message(STATUS "MIGraphx is using legacy Find API in MIOpen")
......@@ -242,6 +266,10 @@ endif()
target_link_libraries(migraphx_gpu PUBLIC migraphx MIOpen roc::rocblas)
target_link_libraries(migraphx_gpu PRIVATE migraphx_device migraphx_kernels)
if(NOT WIN32)
# TODO: re-enable when CK is ported to Windows
target_link_libraries(migraphx_gpu PRIVATE composable_kernel::jit_library)
endif()
add_subdirectory(driver)
add_subdirectory(hiprtc)
......
......@@ -29,6 +29,7 @@
#include <migraphx/module.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/rewrite_quantization.hpp>
#include <migraphx/cpp_generator.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/instruction.hpp>
......@@ -171,7 +172,8 @@ std::string make_transformer_args(std::vector<std::string> transformers)
void generate_pointwise(cpp_generator& gg, const module& pm, const std::string& name)
{
module m = pm;
run_passes(m, {eliminate_common_subexpression{}, dead_code_elimination{}});
run_passes(m,
{rewrite_quantization{}, eliminate_common_subexpression{}, dead_code_elimination{}});
cpp_generator g;
g.fmap([](const std::string& fname) { return "migraphx::" + fname; });
g.add_point_op("where", "${function:where}(${0}, ${1}, ${2})");
......@@ -280,6 +282,14 @@ std::string generate_reduce(const module& m, const std::string& name)
not input->get_shape().broadcasted();
});
auto inner_names = names;
for(auto input : ins->inputs())
{
if(input->name() != "@param")
continue;
if(contains(tensors, input))
continue;
inner_names[input] += "[out_idx]";
}
for(auto input : tensors)
inner_names[input] += "_lambda_param";
auto call_function =
......@@ -308,6 +318,8 @@ std::string generate_reduce(const module& m, const std::string& name)
});
f.set_attributes({"__device__", "__attribute__((const))"}).set_generic_types(m).set_name(name);
f.add_generic_param("r");
f.add_generic_param("out_idx");
f.unused_param("out_idx");
g.create_function(f);
return g.str();
}
......
......@@ -56,9 +56,6 @@ MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_DUMP_SRC);
#ifdef MIGRAPHX_USE_HIPRTC
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_HIPRTC);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_HIPRTC_WORKAROUNDS);
std::string hiprtc_error(hiprtcResult err, const std::string& msg)
{
return "hiprtc: " + (hiprtcGetErrorString(err) + (": " + msg));
......@@ -194,6 +191,7 @@ std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_sr
options.push_back("-DMIGRAPHX_HAS_DPP=0");
options.push_back("-DMIGRAPHX_ENABLE_HIPRTC_WORKAROUNDS=1");
options.push_back("-Wno-reserved-identifier");
options.push_back("-Wno-unused-parameter");
options.push_back("-Wno-gnu-line-marker");
options.push_back("-Wno-old-style-cast");
}
......@@ -216,6 +214,15 @@ std::vector<std::vector<char>>
compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std::string& arch)
{
std::vector<hiprtc_src_file> hsrcs{srcs.begin(), srcs.end()};
if(enabled(MIGRAPHX_GPU_DUMP_SRC{}))
{
for(const auto& src : srcs)
{
if(src.path.extension() != ".cpp")
continue;
std::cout << std::string(src.content.first, src.len()) << std::endl;
}
}
auto p = dynamic_loader::path(&compile_hip_src_with_hiprtc);
auto driver = p.parent_path().parent_path() / "bin" / "migraphx-hiprtc-driver";
......
......@@ -135,10 +135,14 @@ compute_global_for(context& ctx, std::size_t n, std::size_t over)
std::size_t max_global = ctx.get_current_device().get_cu_count() *
ctx.get_current_device().get_max_workitems_per_cu();
return [n, over, max_global](std::size_t local) {
std::size_t groups = (n + local - 1) / local;
std::size_t max_blocks = max_global / local;
std::size_t nglobal = std::min(max_blocks * over, groups) * local;
return std::min(nglobal, n);
// hip require global workitems multiple of local workitems. It may degrade performance.
// [TODO]: consider adding "fno-hip-uniform-block" flag when it becomes available.
// https://reviews.llvm.org/D155213
std::size_t num_elements = ((n + local - 1) / local) * local;
std::size_t groups = (num_elements + local - 1) / local;
std::size_t max_blocks = max_global / local;
std::size_t nglobal = std::min(max_blocks * over, groups) * local;
return std::min(nglobal, num_elements);
};
}
......@@ -156,14 +160,14 @@ operation compile_hip_code_object(const std::string& content, hip_compile_option
assert(not options.inputs.empty());
assert(options.inputs.size() == options.virtual_inputs.size() or
options.virtual_inputs.empty());
std::vector<src_file> srcs;
std::vector<src_file> srcs = options.additional_src_files;
std::transform(migraphx_kernels().begin(),
migraphx_kernels().end(),
std::back_inserter(srcs),
[](auto&& p) {
auto&& name = p.first;
auto&& c = p.second;
auto path = fs::path{"migraphx"} / "kernels" / name;
auto path = name;
return src_file{path, c};
});
srcs.push_back(src_file{fs::path{"main.cpp"},
......
......@@ -79,7 +79,7 @@ void compile_miopen::apply(module& m) const
std::size_t ws = 0;
try
{
// for the regular convolution and deconvolution, this try would always succeed
// for the regular convolution and convolution_backwards, this try would always succeed
ws = compile(op, ins, int8_x4_format);
}
catch(migraphx::exception&)
......
......@@ -30,6 +30,7 @@
#include <migraphx/register_op.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/time_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -76,33 +77,201 @@ struct compiled_result
instruction_ref ins;
};
struct problem_cache
{
bool has(const std::string& name, const value& problem) const
{
return contains(cache, create_key(name, problem));
}
void insert(const std::string& name, const value& problem, const value& solution)
{
assert(not solution.is_null());
cache[create_key(name, problem)] = solution;
}
void mark(const std::string& name, const value& problem)
{
cache.insert(std::make_pair(create_key(name, problem), value{}));
}
optional<value> get(const std::string& name, const value& problem) const
{
auto it = cache.find(create_key(name, problem));
if(it == cache.end())
return nullopt;
return it->second;
}
static value create_key(const std::string& name, const value& problem)
{
return {{"name", name}, {"problem", problem}};
}
std::unordered_map<value, value> cache;
};
struct compile_plan
{
context* ctx;
operation preop;
instruction_ref ins;
optional<tuning_config> config = nullopt;
std::vector<optional<compiled_result>> results = {};
void update_config(bool exhaustive)
{
config = get_tuning_config(*ctx, ins, preop, exhaustive);
}
template <class Vector>
void insert_compiles(Vector& compiles, const value& solution, std::size_t i)
{
compiles.emplace_back([=] {
try
{
results[i] = compiled_result{compile(*ctx, ins, preop, solution), ins};
}
catch(...)
{
results[i] = nullopt;
}
});
}
template <class Vector>
void add_compiles(Vector& compiles, problem_cache& pc)
{
if(config.has_value())
{
const auto& problem = config->problem;
if(auto sol = pc.get(preop.name(), problem))
{
auto solution = sol.value();
// No solution yet until benchmarked so skip for now
if(solution.is_null())
return;
results.resize(1);
insert_compiles(compiles, solution, 0);
}
else
{
pc.mark(preop.name(), problem);
const auto& solutions = config->solutions;
results.resize(solutions.size());
for(auto i : range(solutions.size()))
{
auto solution = solutions[i];
insert_compiles(compiles, solution, i);
}
}
}
else
{
results.resize(1);
insert_compiles(compiles, value{}, 0);
}
}
const compiled_result& benchmark(problem_cache& pc) const
{
if(results.empty())
MIGRAPHX_THROW("No configs to tune");
if(results.size() == 1)
{
if(not results.front().has_value())
MIGRAPHX_THROW("No configs to tune");
return *results.front();
}
if(not config)
MIGRAPHX_THROW("Multiple kernels without config");
std::cout << "Benchmarking " << preop.name() << ": " << results.size() << " configs"
<< std::endl;
std::vector<double> times;
times.reserve(results.size());
std::transform(
results.begin(), results.end(), std::back_inserter(times), [&](const auto& cr) {
if(not cr.has_value())
return std::numeric_limits<double>::max();
return time_op(*ctx, cr->replace.code_object, to_shapes(cr->ins->inputs()), 20)
.first;
});
auto i = std::distance(times.begin(), std::min_element(times.begin(), times.end()));
std::cout << "Fastest solution: " << config->solutions.at(i) << std::endl;
pc.insert(preop.name(), config->problem, config->solutions.at(i));
if(not results[i].has_value())
MIGRAPHX_THROW("No valid tuned compilation.");
return *results[i];
}
void replace(module& m, problem_cache& pc) const
{
const auto& cr = benchmark(pc);
cr.replace.replace(m, cr.ins);
}
};
template <class F>
void par_compile(std::size_t n, F f)
{
if(n == 0)
return;
par_for(n, n / value_of(MIGRAPHX_GPU_COMPILE_PARALLEL{}, n), f);
auto d = value_of(MIGRAPHX_GPU_COMPILE_PARALLEL{});
if(d == 0)
d = n;
par_for(n, n / d, f);
}
void compile_ops::apply(module& m) const
struct compile_manager
{
std::vector<std::function<compiled_result()>> compiles;
problem_cache pc;
std::vector<compile_plan> cps;
bool exhaustive = false;
template <class... Ts>
void add_plan(Ts&&... xs)
{
cps.push_back({std::forward<Ts>(xs)...});
}
void update_configs()
{
par_compile(cps.size(), [&](auto i) { cps[i].update_config(exhaustive); });
}
void compile(module& m)
{
std::vector<std::function<void()>> compiles;
for(auto& cp : cps)
{
cp.add_compiles(compiles, pc);
}
par_compile(compiles.size(), [&](auto i) { compiles[i](); });
// Replace and/or benchmark
for(const auto& cp : cps)
{
if(cp.results.empty())
continue;
cp.replace(m, pc);
}
// Remove compile_plan already executed
cps.erase(std::remove_if(cps.begin(),
cps.end(),
[](const auto& cp) { return not cp.results.empty(); }),
cps.end());
}
};
void compile_ops::apply(module& m) const
{
compile_manager cm;
cm.exhaustive = exhaustive_tune;
// Find all precompile opes
for(auto ins : iterator_for(m))
{
if(ins->name() != "gpu::precompile_op")
continue;
operation preop = any_cast<precompile_op>(ins->get_operator()).op;
compiles.emplace_back([=]() -> compiled_result {
return {compile(*ctx, ins, preop), ins};
});
}
std::vector<compiled_result> results(compiles.size());
par_compile(compiles.size(), [&](auto i) { results[i] = compiles[i](); });
for(const auto& cr : results)
{
cr.replace(m, cr.ins);
cm.add_plan(ctx, preop, ins);
}
cm.update_configs();
cm.compile(m);
// Compile already tuned configs
cm.compile(m);
assert(cm.cps.empty());
}
} // namespace gpu
......
......@@ -28,33 +28,45 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
auto& compiler_map()
namespace {
struct compiler_handle
{
static std::unordered_map<std::string, compiler_compile> m; // NOLINT
return m;
}
compiler_compile compile;
compiler_compile_op compile_op;
compiler_tuning_config get_tuning_config;
};
} // namespace
auto& compiler_op_map()
auto& compiler_map()
{
static std::unordered_map<std::string, compiler_compile_op> m; // NOLINT
static std::unordered_map<std::string, compiler_handle> m; // NOLINT
return m;
}
void register_compiler(const std::string& name, compiler_compile c, compiler_compile_op cop)
void register_compiler(const std::string& name,
compiler_compile c,
compiler_compile_op cop,
compiler_tuning_config ctg)
{
compiler_map()[name] = std::move(c);
compiler_op_map()[name] = std::move(cop);
compiler_map()[name] = {std::move(c), std::move(cop), std::move(ctg)};
}
bool has_compiler_for(const std::string& name) { return compiler_map().count(name) > 0; }
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op)
compiler_replace
compile(context& ctx, instruction_ref ins, const operation& op, const value& solution)
{
return compiler_map().at(op.name())(ctx, ins, op);
return compiler_map().at(op.name()).compile(ctx, ins, op, solution);
}
operation
compile_op(const std::string& name, context& ctx, const std::vector<shape>& inputs, const value& v)
{
return compiler_op_map().at(name)(ctx, inputs, v);
return compiler_map().at(name).compile_op(ctx, inputs, v);
}
optional<tuning_config>
get_tuning_config(context& ctx, instruction_ref ins, const operation& op, bool exhaustive)
{
return compiler_map().at(op.name()).get_tuning_config(ctx, ins, op, exhaustive);
}
} // namespace gpu
......
......@@ -94,6 +94,10 @@ template <>
struct is_hip_type<std::uint8_t> : std::true_type
{
};
template <>
struct is_hip_type<std::int32_t> : std::true_type
{
};
template <class T, class V, MIGRAPHX_REQUIRES(is_hip_type<typename T::type>{})>
void hip_visitor_invoke(T as, V&& v)
......@@ -120,12 +124,10 @@ void hip_visit_all_impl(const shape& s, F f, V&& v, Ts&&... xs)
if(not std::all_of(
types.begin(), types.end(), [&](migraphx::shape::type_t t) { return t == s.type(); }))
MIGRAPHX_THROW("Types must be the same");
std::initializer_list<index_int> ranks = {
static_cast<index_int>(get_shape(xs).lens().size())...};
if(not std::all_of(
ranks.begin(), ranks.end(), [&](index_int r) { return r == s.lens().size(); }))
std::initializer_list<index_int> ranks = {static_cast<index_int>(get_shape(xs).ndim())...};
if(not std::all_of(ranks.begin(), ranks.end(), [&](index_int r) { return r == s.ndim(); }))
MIGRAPHX_THROW("Ranks must be the same");
visit_tensor_size(s.lens().size(), [&](auto ndim) {
visit_tensor_size(s.ndim(), [&](auto ndim) {
s.visit_type(hip_visitor([&](auto as) { v(f(xs, ndim, as)...); }));
});
}
......@@ -133,12 +135,10 @@ void hip_visit_all_impl(const shape& s, F f, V&& v, Ts&&... xs)
template <class V, class F, class... Ts>
void hip_visit_views_impl(const shape& s, F f, V&& v, Ts&&... xs)
{
std::initializer_list<index_int> ranks = {
static_cast<index_int>(get_shape(xs).lens().size())...};
if(not std::all_of(
ranks.begin(), ranks.end(), [&](index_int r) { return r == s.lens().size(); }))
std::initializer_list<index_int> ranks = {static_cast<index_int>(get_shape(xs).ndim())...};
if(not std::all_of(ranks.begin(), ranks.end(), [&](index_int r) { return r == s.ndim(); }))
MIGRAPHX_THROW("Ranks must be the same");
visit_tensor_size(s.lens().size(), [&](auto ndim) { v(f(xs, ndim)...); });
visit_tensor_size(s.ndim(), [&](auto ndim) { v(f(xs, ndim)...); });
}
template <class F>
......
......@@ -67,18 +67,19 @@ void multinomial(hipStream_t stream,
size_t class_size = arg0.get_shape().lens().back();
size_t sample_size = result.get_shape().lens().back();
hip_visit_all(arg0, arg1)([&](auto cdf, auto dist) {
result.visit([&](auto out) {
hip_visit_views(out)([&](auto output) {
gs_launch(stream, batch_size * sample_size)([=](auto i) __device__ {
auto idx = output.get_shape().multi(i);
auto cdf_begin = cdf.begin() + (idx.front() * class_size);
auto cdf_end = cdf_begin + class_size;
auto sample_iter =
upper_bound(cdf_begin, cdf_end, dist[i] * *(std::prev(cdf_end)));
output[i] = std::distance(cdf_begin, sample_iter);
visit_all(arg0, arg1)([&](auto cdf_host, auto dist_host) {
result.visit([&](auto output_host) {
hip_visit_views(cdf_host, dist_host, output_host)(
[&](auto cdf, auto dist, auto output) {
gs_launch(stream, batch_size * sample_size)([=](auto i) __device__ {
auto idx = output.get_shape().multi(i);
auto cdf_begin = cdf.begin() + (idx.front() * class_size);
auto cdf_end = cdf_begin + class_size;
auto* sample_iter =
upper_bound(cdf_begin, cdf_end, dist[i] * *(std::prev(cdf_end)));
output[i] = std::distance(cdf_begin, sample_iter);
});
});
});
});
});
}
......
......@@ -37,22 +37,26 @@ argument scatter(
hipStream_t stream, argument result, argument arg0, argument arg1, argument arg2, int64_t axis)
{
auto ds = arg0.get_shape();
auto inds = arg1.get_shape();
auto s1 = arg1.get_shape();
auto axis_dim_size = ds.lens()[axis];
hip_visit_all(result, arg0, inds)([&](auto output, auto data, auto s1) {
hip_visit_all(result, arg0, arg2)([&](auto output, auto data, auto update) {
auto* output_ptr = device_cast(output.data());
const auto* data_ptr = device_cast(data.data());
gs_launch(stream, ds.elements())([=](auto i) __device__ { output_ptr[i] = data_ptr[i]; });
hip_visit_all(arg1, arg2)([&](auto indices, auto update) {
const auto* upd_ptr = device_cast(update.data());
const auto* indices_ptr = device_cast(indices.data());
gs_launch(stream, inds.elements())([=](auto i) __device__ {
auto out_idx = s1.multi(i);
auto index = indices_ptr[i];
index = index < 0 ? index + axis_dim_size : index;
out_idx[axis] = index;
output[out_idx] = upd_ptr[i];
});
hip_visit_all(arg1)([&](auto indices) {
if constexpr(indices.get_shape().lens.size() == output.get_shape().lens.size())
{
const auto* upd_ptr = device_cast(update.data());
const auto* indices_ptr = device_cast(indices.data());
gs_launch(stream, s1.elements())([=](auto i) __device__ {
auto out_idx = indices.get_shape().multi(i);
auto index = indices_ptr[i];
index = index < 0 ? index + axis_dim_size : index;
out_idx[axis] = index;
output[out_idx] = upd_ptr[i];
});
}
});
});
......
......@@ -43,6 +43,8 @@ auto get_arch_name(rank<1>, const HipDeviceProp& props) -> decltype(std::string(
return std::string(props.gcnArchName);
}
std::string get_arch_name(const hipDeviceProp_t& props) { return get_arch_name(rank<1>{}, props); }
int get_device_id()
{
int device;
......@@ -58,7 +60,7 @@ std::string get_device_name()
auto status = hipGetDeviceProperties(&props, get_device_id());
if(status != hipSuccess)
MIGRAPHX_THROW("Failed to get device properties");
return get_arch_name(rank<1>{}, props);
return get_arch_name(props);
}
} // namespace gpu
......
......@@ -22,7 +22,7 @@
# THE SOFTWARE.
#####################################################################################
file(GLOB GPU_DRIVER_SRCS ${CONFIGURE_DEPENDS} ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp)
file(GLOB GPU_DRIVER_SRCS CONFIGURE_DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp)
add_executable(gpu-driver
${GPU_DRIVER_SRCS}
)
......
......@@ -22,7 +22,7 @@
* THE SOFTWARE.
*/
#include <migraphx/gpu/driver/action.hpp>
#include <migraphx/gpu/driver/perf.hpp>
#include <migraphx/gpu/time_op.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
......
......@@ -22,7 +22,7 @@
* THE SOFTWARE.
*/
#include <migraphx/gpu/driver/action.hpp>
#include <migraphx/gpu/driver/perf.hpp>
#include <migraphx/gpu/time_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/make_op.hpp>
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/fuse_ck.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct module;
namespace gpu {
struct ck_gemm
{
operation op = make_op("dot");
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.op, "op"));
}
std::string name() const { return "gpu::ck_gemm"; }
void check_gemm_shape(const shape& s) const
{
if(not contains(range(s.strides().rbegin(), s.strides().rbegin() + 3), 1))
MIGRAPHX_THROW("Invalid shape for ck_gemm");
}
shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
{
check_shapes{inputs, *this}.same_ndims();
if(inputs.size() < 2)
MIGRAPHX_THROW("should have at least two inputs.");
auto a = inputs[0];
auto b = inputs[1];
for(const auto& input : inputs)
check_gemm_shape(input);
auto r = op.compute_shape({a, b});
if(mods.empty())
return r;
return r.with_type(mods.front()->get_output_shapes().front().type());
}
};
MIGRAPHX_REGISTER_OP(ck_gemm);
namespace {
bool is_ck_supported_type(shape::type_t t)
{
return contains({shape::half_type, shape::int8_type, shape::int32_type}, t);
}
MIGRAPHX_PRED_MATCHER(is_ck_gemm, instruction_ref ins)
{
if(ins->name() != "dot" and ins->name() != "quant_dot")
return false;
if(not is_ck_supported_type(ins->get_shape().type()))
return false;
auto a = ins->inputs().front()->get_shape();
auto b = ins->inputs().back()->get_shape();
auto m = a.lens()[a.lens().size() - 2];
auto n = b.lens().back();
auto k = a.lens().back();
// Integer gemms must be divisible by 4 in ck
if(contains({shape::int8_type, shape::int32_type}, ins->get_shape().type()))
{
if(m % 4 != 0)
return false;
if(n % 4 != 0)
return false;
if(k % 4 != 0)
return false;
}
// Skipping GEMMs with a K dimension greater than 2048 is a course-grained strategy
// to avoid poor-performing GEMM kernels from CK
// To-do: Investigate a more precise strategy
return k <= 2048;
}
struct find_ck_gemm_pointwise
{
// Find a gemm followed by a pointwise operation.
auto matcher() const
{
auto gemm = match::skip(match::name("contiguous"))(
match::name("dot", "quant_dot")(is_ck_gemm().bind("gemm")));
return match::name("pointwise")(match::any_of[match::inputs()](gemm.bind("x")));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto ins = r.result;
auto gemm_ins = r.instructions["gemm"];
auto x_ins = r.instructions["x"]; // input after contiguous
auto* pm = ins->module_inputs().front();
auto names = pm->get_parameter_names();
std::sort(names.begin(), names.end());
auto inputs = ins->inputs();
auto gemm_it = std::find(inputs.begin(), inputs.end(), x_ins);
auto gemm_idx = gemm_it - inputs.begin();
if(gemm_ins->get_shape().type() != shape::int32_type and
ins->get_shape().type() != gemm_ins->get_shape().type())
return;
if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [](auto input) {
return not is_ck_supported_type(input->get_shape().type());
}))
return;
assert(gemm_it != inputs.end());
if(gemm_idx != 0)
{
auto first_param = pm->get_parameter(names[0]);
auto gemm_param = pm->get_parameter(names[gemm_idx]);
auto new_gemm_param = pm->add_parameter(names[0] + "_0", gemm_param->get_shape());
auto new_first_param =
pm->add_parameter(names[gemm_idx] + "_0", first_param->get_shape());
pm->replace_instruction(gemm_param, new_gemm_param);
pm->replace_instruction(first_param, new_first_param);
pm->remove_instruction(first_param);
pm->remove_instruction(gemm_param);
}
inputs.erase(gemm_it);
inputs.insert(inputs.begin(), gemm_ins->inputs().begin(), gemm_ins->inputs().end());
mpm.get_module().replace_instruction(ins, ck_gemm{gemm_ins->get_operator()}, inputs, {pm});
}
};
struct find_ck_gemm
{
auto matcher() const { return match::name("dot")(is_ck_gemm().bind("gemm")); }
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto ins = r.result;
mpm.get_module().replace_instruction(ins, ck_gemm{ins->get_operator()}, ins->inputs());
}
};
} // namespace
void fuse_ck::apply(module_pass_manager& mpm) const
{
match::find_matches(mpm, find_ck_gemm_pointwise{});
match::find_matches(mpm, find_ck_gemm{});
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -38,6 +38,27 @@ namespace gpu {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_MLIR);
bool mlir_enabled()
{
#ifdef MIGRAPHX_MLIR
const bool mlir_enabled = enabled(MIGRAPHX_ENABLE_MLIR{});
if(mlir_enabled)
{
return true;
}
else
{
std::cerr << "WARNING: MIGraphX built with MLIR but it is not enabled. Please set the env "
"var MIGRAPHX_ENABLE_MLIR to use MLIR kernel generator."
<< std::endl;
return false;
}
#else
return false;
#endif
}
#ifdef MIGRAPHX_MLIR
struct mlir_op
......@@ -58,8 +79,41 @@ struct mlir_op
MIGRAPHX_THROW("should have one submodule.");
if(inputs.size() < 2)
MIGRAPHX_THROW("should have at least two inputs.");
auto n = inputs.size();
return op.compute_shape({inputs[n - 2], inputs[n - 1]});
module_ref mod = mods[0];
auto type = mod->get_output_shapes().front().type();
std::unordered_map<instruction_ref, shape> ins_shapes;
size_t param_cnt = 0;
std::vector<std::string> names = mod->get_parameter_names();
std::sort(names.begin(), names.end());
for(std::string param_name : names)
{
ins_shapes[mod->get_parameter(param_name)] = inputs[param_cnt++];
}
for(auto ins : iterator_for(*mod))
{
if(ins->name() == "@param")
{
continue;
}
if(ins->name() == "@literal")
{
ins_shapes[ins] = ins->get_shape();
continue;
}
if(ins->name() == "@return")
{
return ins_shapes[ins->inputs().at(0)].with_type(type);
}
std::vector<shape> input_shapes;
input_shapes.resize(ins->inputs().size());
std::transform(ins->inputs().begin(),
ins->inputs().end(),
input_shapes.begin(),
[&](auto in) { return ins_shapes[in]; });
ins_shapes[ins] = ins->get_operator().compute_shape(input_shapes);
}
MIGRAPHX_THROW("No return found in the submodule");
}
};
MIGRAPHX_REGISTER_OP(mlir_op);
......@@ -68,7 +122,7 @@ namespace {
MIGRAPHX_PRED_MATCHER(is_mlir_conv, instruction_ref ins)
{
if(ins->name() != "convolution")
if(ins->name() != "convolution" and ins->name() != "quant_convolution")
return false;
value v = ins->get_operator().to_value();
auto group = v.at("group").to<int>();
......@@ -85,10 +139,121 @@ struct find_mlir_op
auto matcher() const
{
auto dot_or_conv = match::skip(match::name("contiguous"))(
match::any_of(match::name("dot"), is_mlir_conv()).bind("gemm_based_op"));
match::any_of(match::name("dot"), match::name("quant_dot"), is_mlir_conv())
.bind("gemm_based_op"));
return match::name("pointwise")(match::any_of[match::inputs()](dot_or_conv.bind("x")));
}
std::unordered_map<instruction_ref, instruction_ref>
create_param_map_with_literals(module_ref mm, const module* pm, const shape& shape) const
{
std::unordered_map<instruction_ref, instruction_ref> ins_map;
for(auto ins : iterator_for(*pm))
{
if(ins->name() != "@literal")
{
continue;
}
literal r = ins->get_literal();
instruction_ref literal = mm->add_literal(r);
instruction_ref mbcast = mm->add_instruction(
make_op("multibroadcast", {{"out_lens", shape.lens()}}), literal);
ins_map[ins] = mbcast;
}
return ins_map;
}
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op) const
{
std::vector<instruction_ref> top_inputs;
std::vector<instruction_ref> imm_inputs;
size_t input_cnt = 0;
for(instruction_ref input : gemm_based_op->inputs())
{
std::vector<operation> op_stream;
while(contains({"slice", "transpose", "contiguous", "reshape"}, input->name()))
{
op_stream.push_back(input->get_operator());
input = input->inputs().at(0);
}
top_inputs.push_back(input);
instruction_ref prev_input =
mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
for(const auto& op : reverse(op_stream))
{
prev_input = mm->add_instruction(op, {prev_input});
}
imm_inputs.push_back(prev_input);
}
instruction_ref new_gemm_based_op =
mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
return {new_gemm_based_op, top_inputs};
}
// Whitelist supported fusion options, including imposing type constraints
// for cases where MLIR only supports an operation (usually a pointwise function)
// on particular types.
bool is_pointwise_op_supported_by_mlir(const instruction& i) const
{
using type_t = shape::type_t;
const auto& name = i.name();
const auto result_type = i.get_shape().type();
const std::initializer_list<type_t> allowed_types = {type_t::float_type,
type_t::half_type,
type_t::int8_type,
type_t::int32_type,
type_t::bool_type};
// Preliminary type check.
if(not contains(allowed_types, result_type))
{
return false;
}
const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
const std::initializer_list<std::string> no_bool_ops = {"convolution",
"quant_convolution",
"dot",
"quant_dot",
"add",
"clip",
"relu",
"sub",
"mul",
"div",
"pow",
"where",
"quantizelinear",
"dequantizelinear",
"abs",
"neg"};
const std::initializer_list<std::string> fp_only_ops = {"ceil",
"erf",
"exp",
"floor",
"log",
"recip",
"rsqrt",
"sigmoid"
"softmax",
"tanh"};
bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
if(contains(any_type_ops, name))
return true;
if(result_type != type_t::bool_type && contains(no_bool_ops, name))
return true;
if(is_float && contains(fp_only_ops, name))
return true;
// Only conversions between floating types are known to be unambigiously
// supported.
if(is_float && name == "convert")
{
return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
});
}
return false;
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto ins = r.result;
......@@ -96,35 +261,25 @@ struct find_mlir_op
auto x_ins = r.instructions["x"]; // input after contiguous
auto* pm = ins->module_inputs().front();
auto names = pm->get_parameter_names();
// Whitelist pointwise operators
if(std::any_of(pm->begin(), pm->end(), [](const auto& i) {
return not contains(
{"@literal", "@param", "@return", "convolution", "dot", "add", "relu"},
i.name());
}))
return;
// Only fuse with fp32/fp16
if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [&](auto i) {
return not contains({shape::type_t::float_type, shape::type_t::half_type},
i->get_shape().type());
// Whitelist pointwise operators.
if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
return not is_pointwise_op_supported_by_mlir(i);
}))
return;
std::sort(names.begin(), names.end());
module_ref mm = mpm.create_module("mlir_" + pm->name());
mm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> param_map;
auto x = mm->add_parameter("x" + std::to_string(names.size()),
gemm_based_op->inputs().at(0)->get_shape());
auto w = mm->add_parameter("x" + std::to_string(names.size() + 1),
gemm_based_op->inputs().at(1)->get_shape());
auto conv = mm->add_instruction(gemm_based_op->get_operator(), {x, w});
std::unordered_map<instruction_ref, instruction_ref> param_map =
create_param_map_with_literals(mm, pm, gemm_based_op->get_shape());
auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, gemm_based_op);
std::transform(names.begin(),
names.end(),
ins->inputs().begin(),
std::inserter(param_map, param_map.end()),
[&](auto name, auto input) {
[&, &anchor_op = anchor_op](auto name, auto input) {
if(input == x_ins)
return std::make_pair(pm->get_parameter(name), conv);
return std::make_pair(pm->get_parameter(name), anchor_op);
return std::make_pair(pm->get_parameter(name),
mm->add_parameter(name, input->get_shape()));
});
......@@ -135,7 +290,7 @@ struct find_mlir_op
ins->inputs().end(),
std::back_inserter(inputs),
[&](auto input) { return input != gemm_based_op; });
inputs.insert(inputs.end(), gemm_based_op->inputs().begin(), gemm_based_op->inputs().end());
inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
mpm.get_module().replace_instruction(
ins, mlir_op{gemm_based_op->get_operator()}, inputs, {mm});
}
......@@ -148,17 +303,7 @@ struct find_mlir_op
void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
const bool mlir_enabled = enabled(MIGRAPHX_ENABLE_MLIR{});
if(mlir_enabled)
{
match::find_matches(mpm, find_mlir_op{});
}
else
{
std::cerr << "WARNING: MIGraphX built with MLIR but it is not enabled. Please set the env "
"var MIGRAPHX_ENABLE_MLIR to use MLIR kernel generator."
<< std::endl;
}
match::find_matches(mpm, find_mlir_op{});
#else
(void)mpm;
#endif
......
......@@ -165,7 +165,8 @@ struct fusion
const std::unordered_set<std::string>& get_supported_archs()
{
static std::unordered_set<std::string> supported_archs{"gfx900", "gfx906", "gfx908", "gfx1030"};
static std::unordered_set<std::string> supported_archs{
"gfx900", "gfx906", "gfx908", "gfx1030", "gfx940"};
return supported_archs;
}
......
......@@ -140,12 +140,10 @@ void gemm_impl(context& ctx,
compute_type = rocblas_datatype_f32_r;
}
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
rocblas_gemm_flags flag =
int8_x4_format ? rocblas_gemm_flags_pack_int8x4 : rocblas_gemm_flags_none;
#else
(void)int8_x4_format;
int flag = 0;
rocblas_gemm_flags flag = rocblas_gemm_flags_none;
#if ROCBLAS_VERSION_MAJOR < 3
if(int8_x4_format)
flag = rocblas_gemm_flags_pack_int8x4;
#endif
auto a_lens = args[0].get_shape().lens();
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment