Commit 40c2df86 authored by Umang Yadav's avatar Umang Yadav
Browse files

Merge branch 'develop' into fp8_rocblas

parents 0a8edad5 b8202d61
...@@ -647,8 +647,8 @@ struct find_broadcast_transpose ...@@ -647,8 +647,8 @@ struct find_broadcast_transpose
{ {
auto transpose = r.result; auto transpose = r.result;
auto transpose_lens = transpose->get_shape().lens(); auto transpose_lens = transpose->get_shape().lens();
auto bcast_ins = r.instructions["bcast_ins"]; auto bcast_ins = r.instructions["bcast_ins"];
auto input = bcast_ins->inputs().front(); auto input = bcast_ins->inputs().front();
// scalar transformation does not need extra transpose // scalar transformation does not need extra transpose
if(not input->get_shape().scalar()) if(not input->get_shape().scalar())
{ {
......
...@@ -232,16 +232,16 @@ else() ...@@ -232,16 +232,16 @@ else()
string(REGEX REPLACE " /[^ ]+\\.(a|so) " " " HIP_COMPILER_FLAGS "${HIP_COMPILER_FLAGS}") string(REGEX REPLACE " /[^ ]+\\.(a|so) " " " HIP_COMPILER_FLAGS "${HIP_COMPILER_FLAGS}")
endforeach() endforeach()
message(STATUS "Hip compiler flags: ${HIP_COMPILER_FLAGS}") message(STATUS "Hip compiler flags: \"${HIP_COMPILER_FLAGS}\"")
target_compile_definitions(migraphx_gpu PRIVATE target_compile_definitions(migraphx_gpu PRIVATE
"-DMIGRAPHX_HIP_COMPILER=${CMAKE_CXX_COMPILER}" -DMIGRAPHX_HIP_COMPILER="${CMAKE_CXX_COMPILER}"
"-DMIGRAPHX_HIP_COMPILER_FLAGS=${HIP_COMPILER_FLAGS}" -DMIGRAPHX_HIP_COMPILER_FLAGS="${HIP_COMPILER_FLAGS}"
) )
if(DEFINED CMAKE_CXX_COMPILER_LAUNCHER) if(DEFINED CMAKE_CXX_COMPILER_LAUNCHER)
execute_process(COMMAND which ${CMAKE_CXX_COMPILER_LAUNCHER} OUTPUT_VARIABLE MIGRAPHX_HIP_COMPILER_LAUNCHER) execute_process(COMMAND which ${CMAKE_CXX_COMPILER_LAUNCHER} OUTPUT_VARIABLE MIGRAPHX_HIP_COMPILER_LAUNCHER)
string(STRIP "${MIGRAPHX_HIP_COMPILER_LAUNCHER}" MIGRAPHX_HIP_COMPILER_LAUNCHER) string(STRIP "${MIGRAPHX_HIP_COMPILER_LAUNCHER}" MIGRAPHX_HIP_COMPILER_LAUNCHER)
target_compile_definitions(migraphx_gpu PRIVATE "-DMIGRAPHX_HIP_COMPILER_LAUNCHER=${MIGRAPHX_HIP_COMPILER_LAUNCHER}") target_compile_definitions(migraphx_gpu PRIVATE -DMIGRAPHX_HIP_COMPILER_LAUNCHER="${MIGRAPHX_HIP_COMPILER_LAUNCHER}")
endif() endif()
endif() endif()
......
...@@ -284,16 +284,20 @@ std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_sr ...@@ -284,16 +284,20 @@ std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_sr
bool is_hip_clang_compiler() bool is_hip_clang_compiler()
{ {
static const auto result = ends_with(MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER), "clang++"); static const auto result = fs::path{MIGRAPHX_HIP_COMPILER}.stem() == "clang++";
return result; return result;
} }
#ifdef MIGRAPHX_HIP_COMPILER_LAUNCHER
bool has_compiler_launcher() bool has_compiler_launcher()
{ {
static const auto result = fs::exists(MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER_LAUNCHER)); static const auto result = fs::exists(MIGRAPHX_HIP_COMPILER_LAUNCHER);
return result; return result;
} }
#endif
src_compiler assemble(src_compiler compiler) src_compiler assemble(src_compiler compiler)
{ {
compiler.out_ext = ".S"; compiler.out_ext = ".S";
...@@ -306,8 +310,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std ...@@ -306,8 +310,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
{ {
assert(not srcs.empty()); assert(not srcs.empty());
if(not is_hip_clang_compiler()) if(not is_hip_clang_compiler())
MIGRAPHX_THROW("Unknown hip compiler: " + MIGRAPHX_THROW("Unknown hip compiler: " MIGRAPHX_HIP_COMPILER);
std::string(MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER)));
if(params.find("-std=") == std::string::npos) if(params.find("-std=") == std::string::npos)
params += " --std=c++17"; params += " --std=c++17";
...@@ -323,14 +326,14 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std ...@@ -323,14 +326,14 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
params += " -DMIGRAPHX_DEBUG"; params += " -DMIGRAPHX_DEBUG";
params += " -Wno-unused-command-line-argument -Wno-cuda-compat "; params += " -Wno-unused-command-line-argument -Wno-cuda-compat ";
params += MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER_FLAGS); params += MIGRAPHX_HIP_COMPILER_FLAGS;
src_compiler compiler; src_compiler compiler;
compiler.flags = params; compiler.flags = params;
compiler.compiler = MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER); compiler.compiler = MIGRAPHX_HIP_COMPILER;
#ifdef MIGRAPHX_HIP_COMPILER_LAUNCHER #ifdef MIGRAPHX_HIP_COMPILER_LAUNCHER
if(has_compiler_launcher()) if(has_compiler_launcher())
compiler.launcher = MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER_LAUNCHER); compiler.launcher = MIGRAPHX_HIP_COMPILER_LAUNCHER;
#endif #endif
if(enabled(MIGRAPHX_GPU_DUMP_SRC{})) if(enabled(MIGRAPHX_GPU_DUMP_SRC{}))
{ {
...@@ -354,7 +357,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std ...@@ -354,7 +357,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
bool hip_has_flags(const std::vector<std::string>& flags) bool hip_has_flags(const std::vector<std::string>& flags)
{ {
src_compiler compiler; src_compiler compiler;
compiler.compiler = MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER); compiler.compiler = MIGRAPHX_HIP_COMPILER;
compiler.flags = compiler.flags =
join_strings(flags, " ") + " -x hip -c --offload-arch=gfx900 --cuda-device-only"; join_strings(flags, " ") + " -x hip -c --offload-arch=gfx900 --cuda-device-only";
......
...@@ -168,6 +168,7 @@ struct compile_plan ...@@ -168,6 +168,7 @@ struct compile_plan
} }
const compiled_result& benchmark(problem_cache& pc) const const compiled_result& benchmark(problem_cache& pc) const
{ {
const auto trace_level = value_of(MIGRAPHX_TRACE_BENCHMARKING{});
if(results.empty()) if(results.empty())
MIGRAPHX_THROW("No configs to tune"); MIGRAPHX_THROW("No configs to tune");
if(results.size() == 1) if(results.size() == 1)
...@@ -178,9 +179,10 @@ struct compile_plan ...@@ -178,9 +179,10 @@ struct compile_plan
} }
if(not config) if(not config)
MIGRAPHX_THROW("Multiple kernels without config"); MIGRAPHX_THROW("Multiple kernels without config");
std::cout << "Benchmarking " << preop.name() << ": " << results.size() << " configs" if(trace_level > 0)
<< std::endl; std::cout << "Benchmarking " << preop.name() << ": " << results.size() << " configs"
if(enabled(MIGRAPHX_TRACE_BENCHMARKING{})) << std::endl;
if(trace_level > 1)
std::cout << "Problem: " << config->problem << std::endl; std::cout << "Problem: " << config->problem << std::endl;
std::vector<double> times; std::vector<double> times;
times.reserve(results.size()); times.reserve(results.size());
...@@ -189,22 +191,23 @@ struct compile_plan ...@@ -189,22 +191,23 @@ struct compile_plan
config->solutions.begin(), config->solutions.begin(),
std::back_inserter(times), std::back_inserter(times),
[&](const auto& cr, const auto& solution) { [&](const auto& cr, const auto& solution) {
if(enabled(MIGRAPHX_TRACE_BENCHMARKING{})) if(trace_level > 1)
std::cout << "Benchmarking solution: " << solution << std::endl; std::cout << "Benchmarking solution: " << solution << std::endl;
if(not cr.has_value()) if(not cr.has_value())
{ {
if(enabled(MIGRAPHX_TRACE_BENCHMARKING{})) if(trace_level > 1)
std::cout << "No binary" << std::endl; std::cout << "No binary" << std::endl;
return std::numeric_limits<double>::max(); return std::numeric_limits<double>::max();
} }
auto t = time_op( auto t = time_op(
*ctx, cr->replace.code_object, to_shapes(cr->ins->inputs()), 20); *ctx, cr->replace.code_object, to_shapes(cr->ins->inputs()), 20);
if(enabled(MIGRAPHX_TRACE_BENCHMARKING{})) if(trace_level > 1)
std::cout << t << "ms" << std::endl; std::cout << t << "ms" << std::endl;
return t; return t;
}); });
auto i = std::distance(times.begin(), std::min_element(times.begin(), times.end())); auto i = std::distance(times.begin(), std::min_element(times.begin(), times.end()));
std::cout << "Fastest solution: " << config->solutions.at(i) << std::endl; if(trace_level > 0)
std::cout << "Fastest solution: " << config->solutions.at(i) << std::endl;
pc.insert(preop.name(), config->problem, config->solutions.at(i)); pc.insert(preop.name(), config->problem, config->solutions.at(i));
if(not results[i].has_value()) if(not results[i].has_value())
MIGRAPHX_THROW("No valid tuned compilation."); MIGRAPHX_THROW("No valid tuned compilation.");
......
...@@ -203,7 +203,8 @@ struct gemm_impl ...@@ -203,7 +203,8 @@ struct gemm_impl
d_stride = is_3inputs ? get_batch_stride(input_shapes[3]) : c_stride; d_stride = is_3inputs ? get_batch_stride(input_shapes[3]) : c_stride;
num_matrices = std::accumulate( num_matrices = std::accumulate(
out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>()); out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
if(num_matrices == 1 or (num_matrices > 1 and b_stride == 0)) strided_batched = num_matrices > 1;
if(strided_batched and b_stride == 0 and input_shapes[0].standard())
{ {
// If the batch dimension of B is broadcasted, then we can // If the batch dimension of B is broadcasted, then we can
// multiply m by the batch_size and use rocblas_gemm_ex // multiply m by the batch_size and use rocblas_gemm_ex
......
...@@ -118,6 +118,7 @@ MIGRAPHX_DEVICE_MATH(erf, ::erf) ...@@ -118,6 +118,7 @@ MIGRAPHX_DEVICE_MATH(erf, ::erf)
MIGRAPHX_DEVICE_MATH(exp, ::exp) MIGRAPHX_DEVICE_MATH(exp, ::exp)
MIGRAPHX_DEVICE_MATH(floor, ::floor) MIGRAPHX_DEVICE_MATH(floor, ::floor)
MIGRAPHX_DEVICE_MATH(isnan, ::isnan) MIGRAPHX_DEVICE_MATH(isnan, ::isnan)
MIGRAPHX_DEVICE_MATH(isinf, ::isinf)
MIGRAPHX_DEVICE_MATH(log, ::log) MIGRAPHX_DEVICE_MATH(log, ::log)
MIGRAPHX_DEVICE_MATH(pow, ::pow) MIGRAPHX_DEVICE_MATH(pow, ::pow)
MIGRAPHX_DEVICE_MATH(remainder, ::remainder) MIGRAPHX_DEVICE_MATH(remainder, ::remainder)
...@@ -152,6 +153,7 @@ MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, ceil, ::hceil) ...@@ -152,6 +153,7 @@ MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, ceil, ::hceil)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, cos, ::hcos) MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, cos, ::hcos)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, exp, ::hexp) MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, exp, ::hexp)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, floor, ::hfloor) MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, floor, ::hfloor)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, isinf, ::__hisinf)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, isnan, ::__hisnan) MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, isnan, ::__hisnan)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, log, ::hlog) MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, log, ::hlog)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, rsqrt, ::hrsqrt) MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, rsqrt, ::hrsqrt)
...@@ -276,6 +278,7 @@ MIGRAPHX_DEVICE_MATH_VEC(erf) ...@@ -276,6 +278,7 @@ MIGRAPHX_DEVICE_MATH_VEC(erf)
MIGRAPHX_DEVICE_MATH_VEC(exp) MIGRAPHX_DEVICE_MATH_VEC(exp)
MIGRAPHX_DEVICE_MATH_VEC(floor) MIGRAPHX_DEVICE_MATH_VEC(floor)
MIGRAPHX_DEVICE_MATH_VEC(fmod) MIGRAPHX_DEVICE_MATH_VEC(fmod)
MIGRAPHX_DEVICE_MATH_VEC(isinf)
MIGRAPHX_DEVICE_MATH_VEC(isnan) MIGRAPHX_DEVICE_MATH_VEC(isnan)
MIGRAPHX_DEVICE_MATH_VEC(log) MIGRAPHX_DEVICE_MATH_VEC(log)
MIGRAPHX_DEVICE_MATH_VEC(max) MIGRAPHX_DEVICE_MATH_VEC(max)
......
...@@ -25,5 +25,5 @@ ...@@ -25,5 +25,5 @@
#define MIGRAPHX_VERSION_MAJOR @PROJECT_VERSION_MAJOR@ #define MIGRAPHX_VERSION_MAJOR @PROJECT_VERSION_MAJOR@
#define MIGRAPHX_VERSION_MINOR @PROJECT_VERSION_MINOR@ #define MIGRAPHX_VERSION_MINOR @PROJECT_VERSION_MINOR@
#define MIGRAPHX_VERSION_PATCH @PROJECT_VERSION_PATCH@ #define MIGRAPHX_VERSION_PATCH @PROJECT_VERSION_PATCH@
#define MIGRAPHX_VERSION_TWEAK @PROJECT_VERSION_TWEAK@ #define MIGRAPHX_VERSION_TWEAK "@PROJECT_VERSION_TWEAK@"
// clang-format on // clang-format on
...@@ -198,4 +198,29 @@ TEST_CASE(set_loop_default_iter_num) ...@@ -198,4 +198,29 @@ TEST_CASE(set_loop_default_iter_num)
EXPECT(out_shapes[1].lengths() == out_lens1); EXPECT(out_shapes[1].lengths() == out_lens1);
} }
TEST_CASE(set_loop_limit_iterations)
{
migraphx::onnx_options option;
option.set_default_loop_iterations(15);
option.set_limit_loop_iterations(10);
auto p = migraphx::parse_onnx("loop_default_test.onnx", option);
auto out_shapes = p.get_output_shapes();
std::vector<std::size_t> out_lens0 = {1};
EXPECT(out_shapes[0].lengths() == out_lens0);
std::vector<std::size_t> out_lens1 = {10, 1};
EXPECT(out_shapes[1].lengths() == out_lens1);
}
TEST_CASE(set_loop_limit_iterations2)
{
migraphx::onnx_options option;
option.set_limit_loop_iterations(10);
auto p = migraphx::parse_onnx("loop_test_implicit_tripcnt.onnx", option);
auto out_shapes = p.get_output_shapes();
std::vector<std::size_t> out_lens0 = {1};
EXPECT(out_shapes[0].lengths() == out_lens0);
std::vector<std::size_t> out_lens1 = {10, 1};
EXPECT(out_shapes[1].lengths() == out_lens1);
}
int main(int argc, const char* argv[]) { test::run(argc, argv); } int main(int argc, const char* argv[]) { test::run(argc, argv); }
...@@ -317,4 +317,59 @@ TEST_CASE(loop_test) ...@@ -317,4 +317,59 @@ TEST_CASE(loop_test)
} }
} }
TEST_CASE(loop_test_limit_max_iter)
{
auto run_prog = [&](int64_t limit_max_iterations) {
migraphx::onnx_options parse_options;
parse_options.set_limit_loop_iterations(limit_max_iterations);
auto p = migraphx::parse_onnx("loop_test_implicit_tripcnt.onnx", parse_options);
auto shapes_before = p.get_output_shapes();
migraphx::compile_options options;
options.set_offload_copy();
p.compile(migraphx::target("gpu"), options);
auto shapes_after = p.get_output_shapes();
CHECK(shapes_before.size() == 2);
CHECK(bool{shapes_before.front() == shapes_after.front()});
migraphx::program_parameters pp;
auto param_shapes = p.get_parameter_shapes();
auto aas = param_shapes["a"];
std::vector<float> xd = {1.0f};
pp.add("a", migraphx::argument(aas, xd.data()));
auto bbs = param_shapes["b"];
std::vector<float> yd = {2.0};
pp.add("b", migraphx::argument(bbs, yd.data()));
auto cs = param_shapes["keep_going_cond"];
bool cond = true;
pp.add("keep_going_cond", migraphx::argument(cs, &cond));
auto outputs = p.eval(pp);
auto output = outputs[0];
std::vector<std::vector<float>> ret;
ret.push_back(output.as_vector<float>());
output = outputs[1];
ret.push_back(output.as_vector<float>());
return ret;
};
{
auto result_vector = run_prog(5);
std::vector<float> gold0 = {2.0f};
EXPECT(result_vector.at(0) == gold0);
std::vector<float> gold1 = {-2, 4, 0, 0, 0};
EXPECT(result_vector.at(1) == gold1);
}
{
auto result_vector = run_prog(20);
std::vector<float> gold0 = {2.0f};
EXPECT(result_vector.at(0) == gold0);
std::vector<float> gold1 = {-2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
EXPECT(result_vector.at(1) == gold1);
}
}
int main(int argc, const char* argv[]) { test::run(argc, argv); } int main(int argc, const char* argv[]) { test::run(argc, argv); }
2eeafc37bca21dc8bf337dda7020b486543162d7 b7b8b5b2ce80edb33990c7ae0fedac6ae3c623f4
...@@ -3858,6 +3858,64 @@ def instance_norm_val_3d_test(): ...@@ -3858,6 +3858,64 @@ def instance_norm_val_3d_test():
return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor]) return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])
@onnx_test()
def isinf_half_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])
node = onnx.helper.make_node(
'IsInf',
inputs=['t1'],
outputs=['t2'],
)
return ([node], [t1], [t2])
@onnx_test()
def isinf_neg_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])
node = onnx.helper.make_node(
'IsInf',
detect_negative=[1],
detect_positive=[0],
inputs=['t1'],
outputs=['t2'],
)
return ([node], [t1], [t2])
@onnx_test()
def isinf_double_pos_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.DOUBLE, [2, 3])
t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])
node = onnx.helper.make_node(
'IsInf',
detect_negative=[0],
detect_positive=[1],
inputs=['t1'],
outputs=['t2'],
)
return ([node], [t1], [t2])
@onnx_test()
def isinf_no_detect_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])
node = onnx.helper.make_node(
'IsInf',
detect_negative=[0],
detect_positive=[0],
inputs=['t1'],
outputs=['t2'],
)
return ([node], [t1], [t2])
@onnx_test() @onnx_test()
def isnan_float_test(): def isnan_float_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3]) t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
...@@ -4276,6 +4334,50 @@ def loop_test(): ...@@ -4276,6 +4334,50 @@ def loop_test():
return ([node], [iter, cond, a, b], [b_loop, uout]) return ([node], [iter, cond, a, b], [b_loop, uout])
@onnx_test()
def loop_test_implicit_tripcnt():
body = helper.make_graph([
helper.make_node("Add", ["a", "b_in"], ["my_local"]),
helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
helper.make_node("Greater", ["my_local", "a_sub_b_in"],
["keep_going"]),
helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
["user_defined_vals"]),
], "body", [
helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
], [
helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
[1]),
])
iter = helper.make_tensor(name='max_trip_count',
data_type=TensorProto.INT64,
dims=[1],
vals=[15])
node = helper.make_node(
"Loop",
inputs=["max_trip_count", "keep_going_cond", "b"],
outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
body=body)
a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
[1])
b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
uout = helper.make_tensor_value_info('user_defined_vals_loop',
TensorProto.FLOAT, [2, 1])
return ([node], [cond, a, b], [b_loop, uout], [iter])
@onnx_test() @onnx_test()
def lpnormalization_axis_error_test(): def lpnormalization_axis_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3]) x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
...@@ -8929,6 +9031,20 @@ def upsample_test(): ...@@ -8929,6 +9031,20 @@ def upsample_test():
return ([node], [X], [Y], [scale_tensor]) return ([node], [X], [Y], [scale_tensor])
@onnx_test()
def upsample_ver7_test():
X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])
node = onnx.helper.make_node('Upsample',
inputs=['X'],
outputs=['Y'],
mode='nearest',
scales=[1.0, 1.0, 2.0, 3.0])
return ([node], [X], [Y])
@onnx_test() @onnx_test()
def variable_batch_test(): def variable_batch_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
......
 isinf_half_test:N

t1t2"IsInfisinf_half_testZ
t1



b
t2
 

B
\ No newline at end of file
 loop_test_implicit_tripcnt:

max_trip_count
keep_going_cond
bb_loop my_local_loopuser_defined_vals_loop"Loop*
body2

a
b_inmy_local"Add

a
b_in
a_sub_b_in"Sub
+
my_local
a_sub_b_in
keep_going"Greater
0
a_sub_b_in
a_sub_b_inuser_defined_vals"AddbodyZ
iteration_num

Z
keep_going_inp
 
Z
b_in

b
keep_going
 
b
a_sub_b_in

b
my_local

b
user_defined_vals

loop_test_implicit_tripcnt*:Bmax_trip_countZ
keep_going_cond
 
Z
a

Z
b

b
b_loop

b(
user_defined_vals_loop


B
\ No newline at end of file
...@@ -3413,6 +3413,82 @@ TEST_CASE(if_tuple_test) ...@@ -3413,6 +3413,82 @@ TEST_CASE(if_tuple_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(isinf_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::half_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto ret = mm->add_instruction(migraphx::make_op("isinf"), t1);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_half_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isinf_neg_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto is_inf = mm->add_instruction(migraphx::make_op("isinf"), t1);
auto zero_l = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0}});
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), zero_l);
auto is_neg = mm->add_instruction(migraphx::make_op("less"), t1, mb_zero);
if(is_neg->get_shape().type() != migraphx::shape::bool_type)
{
is_neg = mm->add_instruction(
migraphx::make_op("convert", {{"target_type", migraphx::shape::bool_type}}), is_neg);
}
auto ret = mm->add_instruction(migraphx::make_op("logical_and"), is_inf, is_neg);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_neg_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isinf_double_pos_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::double_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto is_inf = mm->add_instruction(migraphx::make_op("isinf"), t1);
auto zero_l = mm->add_literal(migraphx::literal{migraphx::shape::double_type, {0}});
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), zero_l);
auto is_neg = mm->add_instruction(migraphx::make_op("greater"), t1, mb_zero);
if(is_neg->get_shape().type() != migraphx::shape::bool_type)
{
is_neg = mm->add_instruction(
migraphx::make_op("convert", {{"target_type", migraphx::shape::bool_type}}), is_neg);
}
auto ret = mm->add_instruction(migraphx::make_op("logical_and"), is_inf, is_neg);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_double_pos_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isinf_no_detect_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
mm->add_parameter("t1", s);
auto ret = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}),
mm->add_literal(migraphx::literal{migraphx::shape{migraphx::shape::bool_type}, {false}}));
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_no_detect_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isnan_float_test) TEST_CASE(isnan_float_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -6481,9 +6557,8 @@ TEST_CASE(resize_nonstd_input_test) ...@@ -6481,9 +6557,8 @@ TEST_CASE(resize_nonstd_input_test)
auto tx = auto tx =
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), inx); mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), inx);
mm->add_instruction(migraphx::make_op("undefined")); mm->add_instruction(migraphx::make_op("undefined"));
auto tx_cont = mm->add_instruction(migraphx::make_op("contiguous"), tx);
auto lrsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {8}}}), tx_cont); auto lrsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {8}}}), tx);
auto r = mm->add_instruction(migraphx::make_op("gather", {{"axis", 0}}), lrsp, li); auto r = mm->add_instruction(migraphx::make_op("gather", {{"axis", 0}}), lrsp, li);
mm->add_return({r}); mm->add_return({r});
...@@ -8342,6 +8417,27 @@ TEST_CASE(upsample_test) ...@@ -8342,6 +8417,27 @@ TEST_CASE(upsample_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(upsample_ver7_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sx{migraphx::shape::float_type, {1, 1, 2, 2}};
auto ix = mm->add_parameter("X", sx);
migraphx::shape si{migraphx::shape::int32_type, {1, 1, 4, 6}};
std::vector<int> ind = {0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3};
auto li = mm->add_literal(migraphx::literal(si, ind));
auto rsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {4}}}), ix);
auto r = mm->add_instruction(migraphx::make_op("gather", {{"axis", 0}}), rsp, li);
mm->add_return({r});
auto prog = migraphx::parse_onnx("upsample_ver7_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(unknown_test_throw_print_error) TEST_CASE(unknown_test_throw_print_error)
{ {
migraphx::onnx_options options; migraphx::onnx_options options;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment