Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
3ed217c9
Commit
3ed217c9
authored
May 02, 2019
by
Paul
Browse files
Ensure reflect methods for all operators
parent
b2051bbc
Changes
29
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
534 additions
and
291 deletions
+534
-291
src/include/migraphx/op/abnormal_ops.hpp
src/include/migraphx/op/abnormal_ops.hpp
+5
-0
src/include/migraphx/op/concat.hpp
src/include/migraphx/op/concat.hpp
+7
-0
src/include/migraphx/op/leaky_relu.hpp
src/include/migraphx/op/leaky_relu.hpp
+8
-6
src/include/migraphx/operation.hpp
src/include/migraphx/operation.hpp
+11
-9
src/include/migraphx/reflect.hpp
src/include/migraphx/reflect.hpp
+18
-0
src/targets/cpu/lowering.cpp
src/targets/cpu/lowering.cpp
+367
-276
src/targets/gpu/include/migraphx/gpu/abs.hpp
src/targets/gpu/include/migraphx/gpu/abs.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/batchnorm.hpp
src/targets/gpu/include/migraphx/gpu/batchnorm.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/concat.hpp
src/targets/gpu/include/migraphx/gpu/concat.hpp
+6
-0
src/targets/gpu/include/migraphx/gpu/contiguous.hpp
src/targets/gpu/include/migraphx/gpu/contiguous.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/elu.hpp
src/targets/gpu/include/migraphx/gpu/elu.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/gather.hpp
src/targets/gpu/include/migraphx/gpu/gather.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/gemm.hpp
src/targets/gpu/include/migraphx/gpu/gemm.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/hip.hpp
src/targets/gpu/include/migraphx/gpu/hip.hpp
+14
-0
src/targets/gpu/include/migraphx/gpu/leaky_relu.hpp
src/targets/gpu/include/migraphx/gpu/leaky_relu.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/logsoftmax.hpp
src/targets/gpu/include/migraphx/gpu/logsoftmax.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/lrn.hpp
src/targets/gpu/include/migraphx/gpu/lrn.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/miopen.hpp
src/targets/gpu/include/migraphx/gpu/miopen.hpp
+23
-0
src/targets/gpu/include/migraphx/gpu/pad.hpp
src/targets/gpu/include/migraphx/gpu/pad.hpp
+6
-0
src/targets/gpu/include/migraphx/gpu/pooling.hpp
src/targets/gpu/include/migraphx/gpu/pooling.hpp
+6
-0
No files found.
src/include/migraphx/op/abnormal_ops.hpp
View file @
3ed217c9
...
...
@@ -39,6 +39,11 @@ struct undefined
struct
unknown
{
std
::
string
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
op
,
"op"
));
}
std
::
string
name
()
const
{
return
"unknown:"
+
op
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
input
)
const
{
...
...
src/include/migraphx/op/concat.hpp
View file @
3ed217c9
...
...
@@ -19,6 +19,13 @@ namespace op {
struct
concat
{
std
::
size_t
axis
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axis
,
"axis"
));
}
std
::
string
name
()
const
{
return
"concat"
;
}
std
::
vector
<
std
::
size_t
>
compute_offsets
(
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
...
...
src/include/migraphx/op/leaky_relu.hpp
View file @
3ed217c9
...
...
@@ -18,19 +18,21 @@ namespace op {
struct
leaky_relu
{
std
::
string
name
()
const
{
return
"leaky_relu"
;
}
float
alpha
;
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
}
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
));
}
std
::
string
name
()
const
{
return
"leaky_relu"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
}
};
}
// namespace op
...
...
src/include/migraphx/operation.hpp
View file @
3ed217c9
...
...
@@ -87,6 +87,8 @@ namespace operation_equal {
template
<
class
T
,
class
U
>
auto
operator
==
(
const
T
&
x
,
const
U
&
y
)
->
decltype
(
x
.
name
()
==
y
.
name
())
{
static_assert
(
is_reflectable
<
T
>
{}
or
sizeof
(
T
)
<=
1
,
"Missing equality operator or reflect method."
);
if
(
x
.
name
()
!=
y
.
name
())
return
false
;
const
auto
&
yy
=
any_cast
<
T
>
(
y
);
...
...
@@ -175,7 +177,7 @@ auto is_context_free_op(const T& x) -> decltype(is_context_free_op(
}
template
<
class
T
>
std
::
ptrdiff_
t
output_alias_op
(
rank
<
0
>
,
const
T
&
,
const
std
::
vector
<
shape
>&
)
in
t
output_alias_op
(
rank
<
0
>
,
const
T
&
,
const
std
::
vector
<
shape
>&
)
{
return
-
1
;
}
...
...
@@ -188,7 +190,7 @@ auto output_alias_op(rank<1>, const T& x, const std::vector<shape>& shapes)
}
template
<
class
T
>
std
::
ptrdiff_
t
output_alias_op
(
const
T
&
x
,
const
std
::
vector
<
shape
>&
shapes
)
in
t
output_alias_op
(
const
T
&
x
,
const
std
::
vector
<
shape
>&
shapes
)
{
return
output_alias_op
(
rank
<
1
>
{},
x
,
shapes
);
}
...
...
@@ -239,7 +241,7 @@ auto has_finalize_op(const T&) -> decltype(has_finalize_op(rank<1>{},
* std::string name() const;
* bool is_context_free() const;
* bool has_finalize() const;
*
std::ptrdiff_
t output_alias(const std::vector<shape>& input) const;
*
in
t output_alias(const std::vector<shape>& input) const;
* void finalize(context& ctx,const shape& output,const std::vector<shape>& input) ;
* shape compute_shape(const std::vector<shape>& input) const;
* argument compute(context& ctx,const shape& output,const std::vector<argument>& input) const;
...
...
@@ -325,7 +327,7 @@ struct operation
return
(
*
this
).
private_detail_te_get_handle
().
has_finalize
();
}
std
::
ptrdiff_
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
in
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
{
assert
((
*
this
).
private_detail_te_handle_mem_var
);
return
(
*
this
).
private_detail_te_get_handle
().
output_alias
(
input
);
...
...
@@ -383,7 +385,7 @@ struct operation
virtual
std
::
string
name
()
const
=
0
;
virtual
bool
is_context_free
()
const
=
0
;
virtual
bool
has_finalize
()
const
=
0
;
virtual
std
::
ptrdiff_
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
=
0
;
virtual
in
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
=
0
;
virtual
void
finalize
(
context
&
ctx
,
const
shape
&
output
,
const
std
::
vector
<
shape
>&
input
)
=
0
;
virtual
shape
compute_shape
(
const
std
::
vector
<
shape
>&
input
)
const
=
0
;
...
...
@@ -432,7 +434,7 @@ struct operation
bool
has_finalize
()
const
override
{
return
has_finalize_op
(
private_detail_te_value
);
}
std
::
ptrdiff_
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
override
in
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
override
{
return
output_alias_op
(
private_detail_te_value
,
input
);
...
...
src/include/migraphx/reflect.hpp
View file @
3ed217c9
...
...
@@ -11,6 +11,15 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace
detail
{
struct
reflect_placeholder
{
template
<
class
...
Ts
>
int
operator
()(
Ts
&&
...)
const
{
return
0
;
}
};
template
<
class
T
,
class
Selector
>
auto
reflect_impl
(
rank
<
1
>
,
T
&
x
,
Selector
f
)
->
decltype
(
T
::
reflect
(
x
,
f
))
{
...
...
@@ -23,8 +32,17 @@ auto reflect_impl(rank<0>, T&, Selector)
return
pack
();
}
template
<
class
T
>
auto
reflectable_impl
(
rank
<
1
>
,
T
&&
x
)
->
decltype
(
T
::
reflect
(
x
,
reflect_placeholder
{}),
std
::
true_type
{});
template
<
class
T
>
auto
reflectable_impl
(
rank
<
0
>
,
T
&&
)
->
decltype
(
std
::
false_type
{});
}
// namespace detail
template
<
class
T
>
using
is_reflectable
=
decltype
(
detail
::
reflectable_impl
(
rank
<
1
>
{},
std
::
declval
<
T
>
()));
template
<
class
T
,
class
Selector
>
auto
reflect
(
T
&
x
,
Selector
f
)
{
...
...
src/targets/cpu/lowering.cpp
View file @
3ed217c9
...
...
@@ -48,6 +48,12 @@ struct cpu_batch_norm_inference
{
op
::
batch_norm_inference
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::batch_norm_inference"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
...
...
@@ -107,6 +113,12 @@ struct cpu_lrn
{
op
::
lrn
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::lrn"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
@@ -144,6 +156,12 @@ struct cpu_convolution
{
op
::
convolution
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::convolution"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
@@ -190,6 +208,12 @@ struct cpu_im2col
{
op
::
im2col
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
static
std
::
string
name
()
{
return
"cpu::im2col"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
...
...
@@ -271,6 +295,12 @@ struct cpu_pooling
{
op
::
pooling
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::pooling_"
+
Op
::
name
();
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
@@ -315,20 +345,53 @@ struct cpu_pooling
}
};
struct
cpu_
contiguous
struct
cpu_
op
{
op
::
contiguous
op
;
std
::
string
name
()
const
{
return
"cpu::
contiguous"
;
}
op
eration
op
;
std
::
string
name
()
const
{
return
"cpu::
"
+
op
.
name
()
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
op
.
compute
(
output_shape
,
std
::
move
(
args
));
}
friend
bool
operator
==
(
const
cpu_op
&
x
,
const
cpu_op
&
y
)
{
return
x
.
op
==
y
.
op
;
}
friend
bool
operator
==
(
const
cpu_op
&
x
,
const
operation
&
y
)
{
if
(
x
.
name
()
!=
y
.
name
())
return
false
;
return
x
==
any_cast
<
cpu_op
>
(
y
);
}
friend
bool
operator
==
(
const
operation
&
x
,
const
cpu_op
&
y
)
{
return
y
==
x
;
}
};
// struct cpu_contiguous
// {
// op::contiguous op;
// std::string name() const { return "cpu::contiguous"; }
// shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
// argument compute(context&, const shape& output_shape, std::vector<argument> args) const
// {
// return op.compute(output_shape, std::move(args));
// }
// };
struct
cpu_pad
{
op
::
pad
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::contiguous"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
@@ -352,20 +415,26 @@ struct cpu_pad
}
};
struct
cpu_concat
{
op
::
concat
op
;
std
::
string
name
()
const
{
return
"cpu::concat"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
op
.
compute
(
output_shape
,
std
::
move
(
args
));
}
};
//
struct cpu_concat
//
{
//
op::concat op;
//
std::string name() const { return "cpu::concat"; }
//
shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
//
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
//
{
//
return op.compute(output_shape, std::move(args));
//
}
//
};
struct
cpu_gemm
{
op
::
dot
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::dot"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
...
...
@@ -408,161 +477,161 @@ struct cpu_gemm
}
};
struct
cpu_gather
{
op
::
gather
op
;
std
::
string
name
()
const
{
return
"cpu::gather"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
op
.
compute
(
output_shape
,
std
::
move
(
args
));
}
};
struct
identity_op
{
std
::
string
name
()
const
{
return
"cpu::identity"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
x
;
};
}
};
struct
abs_op
{
std
::
string
name
()
const
{
return
"cpu::abs"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
abs
(
make_signed
(
x
));
};
}
};
struct
exp_op
{
std
::
string
name
()
const
{
return
"cpu::exp"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
exp
(
x
);
};
}
};
struct
log_op
{
std
::
string
name
()
const
{
return
"cpu::log"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
log
(
x
);
};
}
};
struct
sin_op
{
std
::
string
name
()
const
{
return
"cpu::sin"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
sin
(
x
);
};
}
};
struct
cos_op
{
std
::
string
name
()
const
{
return
"cpu::cos"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
cos
(
x
);
};
}
};
struct
tan_op
{
std
::
string
name
()
const
{
return
"cpu::tan"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
tan
(
x
);
};
}
};
struct
asin_op
{
std
::
string
name
()
const
{
return
"cpu::asin"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
asin
(
x
);
};
}
};
struct
acos_op
{
std
::
string
name
()
const
{
return
"cpu::acos"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
acos
(
x
);
};
}
};
struct
atan_op
{
std
::
string
name
()
const
{
return
"cpu::atan"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
atan
(
x
);
};
}
};
struct
sinh_op
{
std
::
string
name
()
const
{
return
"cpu::sinh"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
sinh
(
x
);
};
}
};
struct
cosh_op
{
std
::
string
name
()
const
{
return
"cpu::cosh"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
cosh
(
x
);
};
}
};
struct
tanh_op
{
std
::
string
name
()
const
{
return
"cpu::tanh"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
tanh
(
x
);
};
}
};
struct
sigmoid_op
{
std
::
string
name
()
const
{
return
"cpu::sigmoid"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
1.
f
/
(
1.
f
+
std
::
exp
(
-
x
));
};
}
};
struct
neg_op
{
std
::
string
name
()
const
{
return
"cpu::neg"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
-
x
;
};
}
};
struct
relu_op
{
std
::
string
name
()
const
{
return
"cpu::relu"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
max
(
decltype
(
x
){
0
},
x
);
};
}
};
//
struct cpu_gather
//
{
//
op::gather op;
//
std::string name() const { return "cpu::gather"; }
//
shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
//
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
//
{
//
return op.compute(output_shape, std::move(args));
//
}
//
};
//
struct identity_op
//
{
//
std::string name() const { return "cpu::identity"; }
//
auto fcn() const
//
{
//
return [](auto x) { return x; };
//
}
//
};
//
struct abs_op
//
{
//
std::string name() const { return "cpu::abs"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::abs(make_signed(x)); };
//
}
//
};
//
struct exp_op
//
{
//
std::string name() const { return "cpu::exp"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::exp(x); };
//
}
//
};
//
struct log_op
//
{
//
std::string name() const { return "cpu::log"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::log(x); };
//
}
//
};
//
struct sin_op
//
{
//
std::string name() const { return "cpu::sin"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::sin(x); };
//
}
//
};
//
struct cos_op
//
{
//
std::string name() const { return "cpu::cos"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::cos(x); };
//
}
//
};
//
struct tan_op
//
{
//
std::string name() const { return "cpu::tan"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::tan(x); };
//
}
//
};
//
struct asin_op
//
{
//
std::string name() const { return "cpu::asin"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::asin(x); };
//
}
//
};
//
struct acos_op
//
{
//
std::string name() const { return "cpu::acos"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::acos(x); };
//
}
//
};
//
struct atan_op
//
{
//
std::string name() const { return "cpu::atan"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::atan(x); };
//
}
//
};
//
struct sinh_op
//
{
//
std::string name() const { return "cpu::sinh"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::sinh(x); };
//
}
//
};
//
struct cosh_op
//
{
//
std::string name() const { return "cpu::cosh"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::cosh(x); };
//
}
//
};
//
struct tanh_op
//
{
//
std::string name() const { return "cpu::tanh"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::tanh(x); };
//
}
//
};
//
struct sigmoid_op
//
{
//
std::string name() const { return "cpu::sigmoid"; }
//
auto fcn() const
//
{
//
return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
//
}
//
};
//
struct neg_op
//
{
//
std::string name() const { return "cpu::neg"; }
//
auto fcn() const
//
{
//
return [](auto x) { return -x; };
//
}
//
};
//
struct relu_op
//
{
//
std::string name() const { return "cpu::relu"; }
//
auto fcn() const
//
{
//
return [](auto x) { return std::max(decltype(x){0}, x); };
//
}
//
};
struct
leaky_relu_op
{
...
...
@@ -590,6 +659,12 @@ template <typename Op>
struct
cpu_unary
{
Op
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
.
op
,
f
);
}
std
::
string
name
()
const
{
return
op
.
name
();
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
inputs
.
front
();
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
@@ -646,6 +721,13 @@ struct softmax2d
struct
cpu_logsoftmax
{
op
::
logsoftmax
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::logsoftmax"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
...
...
@@ -712,86 +794,86 @@ struct cpu_logsoftmax
}
};
struct
add_op
{
std
::
string
name
()
const
{
return
"add"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
x
+
y
;
};
}
};
struct
sub_op
{
std
::
string
name
()
const
{
return
"sub"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
x
-
y
;
};
}
};
struct
mul_op
{
std
::
string
name
()
const
{
return
"mul"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
x
*
y
;
};
}
};
struct
div_op
{
std
::
string
name
()
const
{
return
"div"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
x
/
y
;
};
}
};
struct
max_op
{
std
::
string
name
()
const
{
return
"max"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
std
::
max
(
x
,
y
);
};
}
};
struct
min_op
{
std
::
string
name
()
const
{
return
"min"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
std
::
min
(
x
,
y
);
};
}
};
template
<
typename
Op
>
struct
cpu_binary
{
Op
op
;
std
::
string
name
()
const
{
return
"cpu::"
+
op
.
name
();
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
inputs
.
front
();
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
visit_all
(
result
,
args
[
0
],
args
[
1
])([
&
](
auto
output
,
auto
input1
,
auto
input2
)
{
if
(
input1
.
get_shape
().
packed
()
and
input2
.
get_shape
().
packed
())
{
std
::
transform
(
input1
.
begin
(),
input1
.
end
(),
input2
.
begin
(),
output
.
begin
(),
op
.
fcn
());
}
else
{
shape_for_each
(
output
.
get_shape
(),
[
&
](
const
auto
&
idx
)
{
output
(
idx
.
begin
(),
idx
.
end
())
=
op
.
fcn
()(
input1
(
idx
.
begin
(),
idx
.
end
()),
input2
(
idx
.
begin
(),
idx
.
end
()));
});
}
});
return
result
;
}
};
//
struct add_op
//
{
//
std::string name() const { return "add"; }
//
auto fcn() const
//
{
//
return [](auto x, auto y) { return x + y; };
//
}
//
};
//
struct sub_op
//
{
//
std::string name() const { return "sub"; }
//
auto fcn() const
//
{
//
return [](auto x, auto y) { return x - y; };
//
}
//
};
//
struct mul_op
//
{
//
std::string name() const { return "mul"; }
//
auto fcn() const
//
{
//
return [](auto x, auto y) { return x * y; };
//
}
//
};
//
struct div_op
//
{
//
std::string name() const { return "div"; }
//
auto fcn() const
//
{
//
return [](auto x, auto y) { return x / y; };
//
}
//
};
//
struct max_op
//
{
//
std::string name() const { return "max"; }
//
auto fcn() const
//
{
//
return [](auto x, auto y) { return std::max(x, y); };
//
}
//
};
//
struct min_op
//
{
//
std::string name() const { return "min"; }
//
auto fcn() const
//
{
//
return [](auto x, auto y) { return std::min(x, y); };
//
}
//
};
//
template <typename Op>
//
struct cpu_binary
//
{
//
Op op;
//
std::string name() const { return "cpu::" + op.name(); }
//
shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
//
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
//
{
//
argument result{output_shape};
//
visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
//
if(input1.get_shape().packed() and input2.get_shape().packed())
//
{
//
std::transform(
//
input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
//
}
//
else
//
{
//
shape_for_each(output.get_shape(), [&](const auto& idx) {
//
output(idx.begin(), idx.end()) =
//
op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
//
});
//
}
//
});
//
return result;
//
}
//
};
struct
cpu_apply
{
...
...
@@ -818,37 +900,37 @@ struct cpu_apply
apply_map
[
"batch_norm_inference"
]
=
extend_op
<
cpu_batch_norm_inference
,
op
::
batch_norm_inference
>
();
apply_map
[
"lrn"
]
=
extend_op
<
cpu_lrn
,
op
::
lrn
>
();
apply_map
[
"contiguous"
]
=
extend_op
<
cpu_contiguous
,
op
::
contiguous
>
();
apply_map
[
"pad"
]
=
extend_op
<
cpu_pad
,
op
::
pad
>
();
apply_map
[
"concat"
]
=
extend_op
<
cpu_concat
,
op
::
concat
>
();
apply_map
[
"gather"
]
=
extend_op
<
cpu_gather
,
op
::
gather
>
();
apply_map
[
"logsoftmax"
]
=
extend_op
<
cpu_logsoftmax
,
op
::
logsoftmax
>
();
apply_map
[
"leaky_relu"
]
=
extend_op
<
cpu_unary
<
leaky_relu_op
>
,
op
::
leaky_relu
>
();
apply_map
[
"logsoftmax"
]
=
extend_op
<
cpu_logsoftmax
,
op
::
logsoftmax
>
();
apply_map
[
"elu"
]
=
extend_op
<
cpu_unary
<
elu_op
>
,
op
::
elu
>
();
apply_map
[
"identity"
]
=
simple_op
<
cpu_unary
<
identity_op
>>
();
apply_map
[
"abs"
]
=
simple_op
<
cpu_unary
<
abs_op
>>
();
apply_map
[
"sinh"
]
=
simple_op
<
cpu_unary
<
sinh_op
>>
();
apply_map
[
"cosh"
]
=
simple_op
<
cpu_unary
<
cosh_op
>>
();
apply_map
[
"tanh"
]
=
simple_op
<
cpu_unary
<
tanh_op
>>
();
apply_map
[
"sigmoid"
]
=
simple_op
<
cpu_unary
<
sigmoid_op
>>
();
apply_map
[
"exp"
]
=
simple_op
<
cpu_unary
<
exp_op
>>
();
apply_map
[
"log"
]
=
simple_op
<
cpu_unary
<
log_op
>>
();
apply_map
[
"neg"
]
=
simple_op
<
cpu_unary
<
neg_op
>>
();
apply_map
[
"sin"
]
=
simple_op
<
cpu_unary
<
sin_op
>>
();
apply_map
[
"cos"
]
=
simple_op
<
cpu_unary
<
cos_op
>>
();
apply_map
[
"tan"
]
=
simple_op
<
cpu_unary
<
tan_op
>>
();
apply_map
[
"asin"
]
=
simple_op
<
cpu_unary
<
asin_op
>>
();
apply_map
[
"acos"
]
=
simple_op
<
cpu_unary
<
acos_op
>>
();
apply_map
[
"atan"
]
=
simple_op
<
cpu_unary
<
atan_op
>>
();
apply_map
[
"relu"
]
=
simple_op
<
cpu_unary
<
relu_op
>>
();
apply_map
[
"add"
]
=
simple_op
<
cpu_binary
<
add_op
>>
();
apply_map
[
"sub"
]
=
simple_op
<
cpu_binary
<
sub_op
>>
();
apply_map
[
"mul"
]
=
simple_op
<
cpu_binary
<
mul_op
>>
();
apply_map
[
"div"
]
=
simple_op
<
cpu_binary
<
div_op
>>
();
apply_map
[
"max"
]
=
simple_op
<
cpu_binary
<
max_op
>>
();
apply_map
[
"min"
]
=
simple_op
<
cpu_binary
<
min_op
>>
();
apply_map
[
"softmax"
]
=
simple_op
<
softmax2d
>
();
apply_map
[
"pad"
]
=
extend_op
<
cpu_pad
,
op
::
pad
>
();
// apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
// apply_map["concat"] = extend_op<cpu_concat, op::concat>();
// apply_map["gather"] = extend_op<cpu_gather, op::gather>();
// apply_map["identity"] = simple_op<cpu_unary<identity_op>>();
// apply_map["abs"] = simple_op<cpu_unary<abs_op>>();
// apply_map["sinh"] = simple_op<cpu_unary<sinh_op>>();
// apply_map["cosh"] = simple_op<cpu_unary<cosh_op>>();
// apply_map["tanh"] = simple_op<cpu_unary<tanh_op>>();
// apply_map["sigmoid"] = simple_op<cpu_unary<sigmoid_op>>();
// apply_map["exp"] = simple_op<cpu_unary<exp_op>>();
// apply_map["log"] = simple_op<cpu_unary<log_op>>();
// apply_map["neg"] = simple_op<cpu_unary<neg_op>>();
// apply_map["sin"] = simple_op<cpu_unary<sin_op>>();
// apply_map["cos"] = simple_op<cpu_unary<cos_op>>();
// apply_map["tan"] = simple_op<cpu_unary<tan_op>>();
// apply_map["asin"] = simple_op<cpu_unary<asin_op>>();
// apply_map["acos"] = simple_op<cpu_unary<acos_op>>();
// apply_map["atan"] = simple_op<cpu_unary<atan_op>>();
// apply_map["relu"] = simple_op<cpu_unary<relu_op>>();
// apply_map["add"] = simple_op<cpu_binary<add_op>>();
// apply_map["sub"] = simple_op<cpu_binary<sub_op>>();
// apply_map["mul"] = simple_op<cpu_binary<mul_op>>();
// apply_map["div"] = simple_op<cpu_binary<div_op>>();
// apply_map["max"] = simple_op<cpu_binary<max_op>>();
// apply_map["min"] = simple_op<cpu_binary<min_op>>();
}
void
apply
()
...
...
@@ -864,9 +946,18 @@ struct cpu_apply
{
apply_map
.
at
(
it
->
name
())(
it
);
}
else
if
(
is_context_free
(
it
->
get_operator
()))
{
apply_cpu_op
(
it
);
}
}
}
void
apply_cpu_op
(
instruction_ref
ins
)
{
prog
->
replace_instruction
(
ins
,
cpu_op
{
ins
->
get_operator
()},
ins
->
inputs
());
}
template
<
class
T
>
void
apply_simple_op
(
instruction_ref
ins
)
{
...
...
src/targets/gpu/include/migraphx/gpu/abs.hpp
View file @
3ed217c9
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_abs
{
shared
<
activation_descriptor
>
ad
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
gpu
::
reflect
(
self
.
ad
.
get
(),
f
);
}
std
::
string
name
()
const
{
return
"gpu::abs"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/batchnorm.hpp
View file @
3ed217c9
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_batch_norm_inference
{
op
::
batch_norm_inference
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::batch_norm_inference"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/concat.hpp
View file @
3ed217c9
...
...
@@ -14,6 +14,12 @@ struct hip_concat
{
op
::
concat
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::concat"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/contiguous.hpp
View file @
3ed217c9
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_contiguous
{
op
::
contiguous
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::contiguous"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
,
shape
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
;
...
...
src/targets/gpu/include/migraphx/gpu/elu.hpp
View file @
3ed217c9
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_elu
{
shared
<
activation_descriptor
>
ad
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
gpu
::
reflect
(
self
.
ad
.
get
(),
f
);
}
std
::
string
name
()
const
{
return
"gpu::elu"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/gather.hpp
View file @
3ed217c9
...
...
@@ -14,6 +14,13 @@ struct context;
struct
hip_gather
{
op
::
gather
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::gather"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/gemm.hpp
View file @
3ed217c9
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_gemm
{
op
::
dot
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::gemm"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/hip.hpp
View file @
3ed217c9
...
...
@@ -28,6 +28,13 @@ struct hip_allocate
{
shape
s
;
std
::
string
tag
{};
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
s
,
"shape"
),
f
(
self
.
tag
,
"tag"
));
}
std
::
string
name
()
const
{
return
"hip::allocate"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
...
...
@@ -43,6 +50,13 @@ struct hip_allocate
struct
hip_sync
{
std
::
string
tag
{};
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
tag
,
"tag"
));
}
std
::
string
name
()
const
{
return
"hip::sync"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
...
...
src/targets/gpu/include/migraphx/gpu/leaky_relu.hpp
View file @
3ed217c9
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_leaky_relu
{
shared
<
activation_descriptor
>
ad
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
gpu
::
reflect
(
self
.
ad
.
get
(),
f
);
}
std
::
string
name
()
const
{
return
"gpu::leaky_relu"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/logsoftmax.hpp
View file @
3ed217c9
...
...
@@ -25,6 +25,13 @@ namespace gpu {
struct
hip_logsoftmax
{
op
::
logsoftmax
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::logsoftmax"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/lrn.hpp
View file @
3ed217c9
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_lrn
{
shared
<
lrn_descriptor
>
ldesc
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
gpu
::
reflect
(
self
.
ldesc
.
get
(),
f
);
}
std
::
string
name
()
const
{
return
"gpu::lrn"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/miopen.hpp
View file @
3ed217c9
...
...
@@ -162,6 +162,29 @@ inline fused_operator_args make_fused_args()
return
make_obj
<
fused_operator_args
>
(
&
miopenCreateOperatorArgs
);
}
template
<
class
F
>
auto
reflect
(
miopenActivationDescriptor_t
ad
,
F
f
)
{
miopenActivationMode_t
mode
;
double
alpha
;
double
beta
;
double
gamma
;
miopenGetActivationDescriptor
(
ad
,
&
mode
,
&
alpha
,
&
beta
,
&
gamma
);
return
pack
(
f
(
mode
,
"mode"
),
f
(
alpha
,
"alpha"
),
f
(
beta
,
"beta"
),
f
(
gamma
,
"gamma"
));
}
template
<
class
F
>
auto
reflect
(
miopenLRNDescriptor_t
lrnd
,
F
f
)
{
miopenLRNMode_t
mode
;;
unsigned
int
n
;
double
alpha
;
double
beta
;
double
k
;
miopenGetLRNDescriptor
(
lrnd
,
&
mode
,
&
n
,
&
alpha
,
&
beta
,
&
k
);
return
pack
(
f
(
mode
,
"mode"
),
f
(
n
,
"n"
),
f
(
alpha
,
"alpha"
),
f
(
beta
,
"beta"
),
f
(
k
,
"k"
));
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/targets/gpu/include/migraphx/gpu/pad.hpp
View file @
3ed217c9
...
...
@@ -14,6 +14,12 @@ struct hip_pad
{
op
::
pad
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::pad"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/pooling.hpp
View file @
3ed217c9
...
...
@@ -16,6 +16,12 @@ struct miopen_pooling
op
::
pooling
op
;
shared
<
pooling_descriptor
>
pd
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::pooling"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment