Commit 3df20646 authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

manual merge

parents 1005a693 d0543c96
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_hsqrt : verify_program<test_hsqrt>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::half_type, {2, 3, 4, 6}};
auto param = mm->add_parameter("x", s);
auto param_abs = mm->add_instruction(migraphx::make_op("abs"), param);
mm->add_instruction(migraphx::make_op("sqrt"), param_abs);
return p;
}
};
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_nonstd_gather : verify_program<test_nonstd_gather>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3, 3}};
migraphx::shape s_indices{migraphx::shape::int32_type, {2, 2}};
std::vector<int> indices{1, 1, 0, 2};
auto d = mm->add_parameter("data", s);
auto td = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), d);
auto ind = mm->add_literal(migraphx::literal{s_indices, indices});
auto tind =
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), ind);
auto r = mm->add_instruction(migraphx::make_op("gather", {{"axis", 1}}), td, tind);
mm->add_return({r});
return p;
}
};
#!/usr/bin/env python3
import json
import argparse
import os
from sys import argv as sysargs
from sys import version_info as python_version
from sys import exit as sys_exit
import pandas as pd
from datetime import datetime
import venv
import shutil
if (python_version[0] < 3) or (python_version[0] < 3
and python_version[1] < 6):
raise Exception("Please utilize Python version 3.6 and above. Exiting...")
def parse_args():
parser = argparse.ArgumentParser(
description="Parser for MIGraphX ROCTX Markers")
parser.add_argument('--json-path',
type=str,
metavar='json-path',
help='Path to json file')
parser.add_argument('--out',
type=str,
metavar='out',
help='Output directory for run.')
parser.add_argument(
'--study-name',
type=str,
metavar='study-name',
help='Study-name is used for naming the output CSV file.')
parser.add_argument('--repeat',
type=int,
metavar='repeat',
help='Defines number of runs.',
default=2)
parser.add_argument('--parse',
default=False,
action='store_true',
help='Parses given JSON file.')
parser.add_argument('--clean',
default=False,
action='store_true',
help='Removes temporary paths')
parser.add_argument('--run',
type=str,
metavar='run',
help='Enables run and fetches run configs.')
parser.add_argument('--debug', default=False, action='store_true')
args = parser.parse_args()
return args
args = parse_args()
if not len(sysargs) > 1:
raise Exception("No arg is passed. Exiting...")
def parse(file):
with open(file, "r") as read_file:
data = json.load(read_file)
#Get marker names and first marker's time
list_names = []
first_marker = True
first_marker_time = 0
for i in data:
if (i):
if ("Marker start:" in i['name']) and (
i['name'] not in list_names):
list_names.append(i['name'])
if first_marker:
first_marker_time = i['ts']
first_marker = False
if (args.debug):
print(f"FIRST MARKER TIME DETERMINED: {first_marker_time}")
if (first_marker_time == 0):
raise ("FIRST MARKER TIME IS ZERO. EXITING...")
kernel_launch_info = [] #kernel description
kernel_launch_list = [] #kernel launch details
kernel_launch_time = [] #kernel execution time
for i in data:
if (i and i.get('args')):
try:
if (("KernelExecution" in i['args']['desc'])
and (i['ts'] >= first_marker_time)):
kernel_launch_info.append(i['args']['desc'])
kernel_launch_list.append(i)
kernel_launch_time.append(int(i['dur']))
except:
continue
max_index = kernel_launch_time.index(max(kernel_launch_time))
max_kernel_info = kernel_launch_list[max_index]
if (args.debug):
with open('rocTX_kernel_launch_list.txt', 'w') as f:
for i in kernel_launch_list:
f.write(f'{i}')
# Get timing information for each marker name
list_times_per_names = []
for name in list_names:
temp_list = []
for entry in data:
if (entry) and (
name == entry['name']
): # name can match on gpu or cpu side, for gpu, we need data from gpu markers.
if (("gpu::" in name)
and ("UserMarker frame:" in entry['args']['desc'])
): #gpu side information
temp_list.append(int(entry.get('dur')))
elif (("gpu::" not in name)
and ("Marker start:" in entry['args']['desc'])
): #cpu side information
temp_list.append(int(entry.get('dur')))
list_times_per_names.append(temp_list)
if (args.debug):
print(list_times_per_names)
sum_per_name = [] #TODO: refactor stat collection
for list in list_times_per_names:
sum_per_name.append(sum(list))
count_per_name = []
for list in list_times_per_names:
try:
count_per_name.append(len(list))
except:
count_per_name.append(0)
max_per_name = []
for list in list_times_per_names:
try:
max_per_name.append(max(list))
except:
max_per_name.append(0)
min_per_name = []
for list in list_times_per_names:
try:
min_per_name.append(min(list))
except:
min_per_name.append(0)
max_index_per_name = []
for list in list_times_per_names:
try:
max_index_per_name.append(list.index(max(list)))
except:
max_index_per_name.append(0)
max_occur_per_name = []
for list in list_times_per_names:
try:
max_occur_per_name.append(list.count(max(list)))
except:
max_occur_per_name.append(0)
total_time = sum(sum_per_name)
d = {
'SUM': sum_per_name,
'MIN': min_per_name,
'MAX': max_per_name,
'COUNT': count_per_name,
'MAX_INDEX': max_index_per_name,
'MAX_OCCUR': max_occur_per_name
}
df2 = pd.DataFrame(d)
df2.index = list_names
df2.sort_values(by=['SUM'], inplace=True, ascending=False)
if (args.debug):
print(df2)
print(f"\nTOTAL TIME: {total_time} us")
return df2, total_time, max_kernel_info
def run():
repeat_count = args.repeat
if (repeat_count == 0 or repeat_count == float('inf') or not repeat_count):
raise Exception("REPEAT COUNT CANNOT BE ZERO/INFINITY/NULL")
run_args = args.run
#configurations
configs = '--hip-trace --roctx-trace --flush-rate 10ms --timestamp on'
output_dir = f"-d {args.out}"
executable = f"/opt/rocm/bin/migraphx-driver roctx {run_args}"
process_args = configs + ' ' + output_dir + ' ' + executable
for i in range(repeat_count):
os.system('rocprof ' + process_args)
print("RUN COMPLETE.")
def clean():
shutil.rmtree('/tmp/rocm-profile-data/', ignore_errors=False)
def main():
if (args.clean):
clean()
sys_exit()
print("Initiating virtual environment...")
builder = venv.EnvBuilder(clear=True, with_pip=True)
builder.create('/tmp/rocm-profile-data/py/')
python_bin = '/tmp/rocm-profile-data/py' + '/bin/python'
file = args.json_path
if (args.study_name):
filename = args.study_name + ".csv"
else:
filename = "output" + datetime.now().strftime(
"%Y_%m_%d-%I:%M:%S_%p") + ".csv"
with open(filename, 'a') as f:
f.write(f"{args.run}\n")
if (args.run):
curr = os.path.abspath(os.getcwd())
rpd_path = '/tmp/rocm-profile-data/rocmProfileData/'
if not os.path.exists(rpd_path):
print("rocmProfileData DOES NOT EXIST. CLONING...")
os.system(
f"git clone https://github.com/ROCmSoftwarePlatform/rocmProfileData.git {rpd_path}"
)
os.chdir(rpd_path + "rocpd_python/")
os.system(python_bin + ' -m pip install --upgrade pip')
os.system(python_bin + ' setup.py install')
os.chdir(curr)
run()
os.chdir(curr + f"/{args.out}/")
out_path = os.popen(f"ls -td $PWD/*/*/ | head -{args.repeat}").read()
print(f"\nFOLLOWING PATHS WILL BE PARSED:\n{out_path}")
out_path = out_path.splitlines()
df_tot = pd.DataFrame()
tot_time = []
max_kernel_info_list = []
for path in out_path:
path = path.strip('\n')
print("\nPARSING OUTPUT PATH: " + path)
os.chdir(path)
os.system(
f"{python_bin} -m rocpd.rocprofiler_import --ops_input_file hcc_ops_trace.txt --api_input_file hip_api_trace.txt --roctx_input_file roctx_trace.txt trace.rpd"
)
os.system(
f"{python_bin} {rpd_path}/rpd2tracing.py trace.rpd trace.json")
os.chdir(curr)
df, total_time, path_max_kernel_info = parse(path + "trace.json")
max_kernel_info_list.append(path_max_kernel_info)
tot_time.append(total_time)
df_tot = pd.merge(df_tot,
df,
how='outer',
left_index=True,
right_index=True)
if (args.debug):
print("JSON FILE PATH: " + path + "trace.json")
df_tot.to_csv("rocTX_runs_dataframe.csv")
if (args.debug):
print(df_tot)
tmp_sum = df_tot.loc[:, df_tot.columns.str.contains('SUM')].astype(int)
tmp_min = df_tot.loc[:, df_tot.columns.str.contains('MIN')].astype(int)
tmp_max = df_tot.loc[:, df_tot.columns.str.match("^MAX_.$")].astype(
int)
tmp_count = df_tot.loc[:, df_tot.columns.str.match("COUNT")].astype(
int)
tmp_sum['SUM_avg'] = tmp_sum.mean(axis=1).astype(int)
tmp_min['MIN_avg'] = tmp_min.mean(axis=1).astype(int)
tmp_max['MAX_avg'] = tmp_max.mean(axis=1).astype(int)
df2 = tmp_sum['SUM_avg'].copy()
df2 = pd.merge(df2,
tmp_min['MIN_avg'],
how='outer',
left_index=True,
right_index=True)
df2 = pd.merge(df2,
tmp_max['MAX_avg'],
how='outer',
left_index=True,
right_index=True)
df2 = pd.merge(df2,
tmp_count['COUNT_x'],
how='outer',
left_index=True,
right_index=True)
df2.rename(columns={'COUNT_x': 'COUNT'}, inplace=True)
df2 = df2.loc[:, ~df2.columns.duplicated(
)] #there will be many COUNT_x in df2
df2.sort_values(by=['SUM_avg'], inplace=True, ascending=False)
if (args.debug):
pd.set_option('display.max_columns', None)
print(df_tot) #all data from all runs
print("\n*** RESULTS ***")
print(df2)
out_time = sum(tot_time) / len(tot_time)
print(f"\nAVG TOTAL TIME: {out_time} us\n")
df2.to_csv(filename, mode='a')
with open(filename, 'a') as f:
f.write(f"AVG TOTAL TIME: {out_time} us\n")
print(f"OUTPUT CSV FILE:\t{filename}")
if (args.debug):
#kernels that took the longest time printed
for item in max_kernel_info_list:
print(f"KERNEL NAME: {item['name']}\t\t{item['dur']}")
with open('rocTX_kernel_timing_details.txt', 'w') as f:
f.write(
"MOST TIME CONSUMING KERNELS IN EACH ITERATION (EXPECTED TO BE SAME KERNEL):\n"
)
for i in max_kernel_info_list:
f.write(f"KERNEL NAME: {i['name']}\t\t{i['dur']}\n")
print("KERNEL TIMING DETAILS:\trocTX_kernel_timing_details.txt")
print("ALL DATA FROM ALL RUNS:\trocTX_runs_dataframe.csv")
elif (args.parse):
if not (file):
raise Exception("JSON PATH IS NOT PROVIDED FOR PARSING.")
parse(file)
else:
raise Exception("PLEASE PROVIDE A COMMAND: RUN, PARSE, CLEAN")
if __name__ == "__main__":
main()
import os import os, sys
import numpy as np import numpy as np
import argparse import argparse
import onnx import onnx
...@@ -54,36 +54,112 @@ def read_pb_file(filename): ...@@ -54,36 +54,112 @@ def read_pb_file(filename):
tensor.ParseFromString(data_str) tensor.ParseFromString(data_str)
np_array = numpy_helper.to_array(tensor) np_array = numpy_helper.to_array(tensor)
return np_array return tensor.name, np_array
def wrapup_inputs(io_folder, parameter_names): def wrapup_inputs(io_folder, param_names):
index = 0
param_map = {} param_map = {}
for param_name in parameter_names: data_array = []
file_name = io_folder + '/input_' + str(index) + '.pb' name_array = []
data = read_pb_file(file_name) for i in range(len(param_names)):
param_map[param_name] = data file_name = io_folder + '/input_' + str(i) + '.pb'
index = index + 1 name, data = read_pb_file(file_name)
param_map[name] = data
data_array.append(data)
if name:
name_array.append(name)
if len(name_array) < len(data_array):
param_map = {}
for i in range(len(param_names)):
param_map[param_names[i]] = data_array[i]
return param_map
for name in param_names:
if not name in param_map.keys():
print("Input {} does not exist!".format(name))
sys.exit()
return param_map return param_map
def read_outputs(io_folder, out_num): def read_outputs(io_folder, out_names):
outputs = [] outputs = []
for i in range(out_num): data_array = []
name_array = []
for i in range(len(out_names)):
file_name = io_folder + '/output_' + str(i) + '.pb' file_name = io_folder + '/output_' + str(i) + '.pb'
data = read_pb_file(file_name) name, data = read_pb_file(file_name)
outputs.append(data) data_array.append(data)
if name:
name_array.append(name)
if len(name_array) < len(data_array):
return data_array
for name in out_names:
index = name_array.index(name)
outputs.append(data_array[index])
return outputs return outputs
def model_parameter_names(model_file_name):
with open(model_file_name, 'rb') as pfile:
data_str = pfile.read()
model_proto = onnx.ModelProto()
model_proto.ParseFromString(data_str)
init_names = set([(i.name) for i in model_proto.graph.initializer])
param_names = [
input.name for input in model_proto.graph.input
if input.name not in init_names
]
return param_names
def model_output_names(model_file_name):
with open(model_file_name, 'rb') as pfile:
data_str = pfile.read()
model_proto = onnx.ModelProto()
model_proto.ParseFromString(data_str)
output_names = [out.name for out in model_proto.graph.output]
return output_names
def get_input_shapes(sample_case, param_names):
param_shape_map = {}
name_array = []
shape_array = []
for i in range(len(param_names)):
file_name = sample_case + '/input_' + str(i) + '.pb'
name, data = read_pb_file(file_name)
param_shape_map[name] = data.shape
shape_array.append(data.shape)
if name:
name_array.append(name)
if len(name_array) < len(shape_array):
param_shape_map = {}
for i in range(len(param_names)):
param_shape_map[param_names[i]] = shape_array[i]
return param_shape_map
for name in param_names:
if not name in param_shape_map:
print("Input {} does not exist!".format(name))
sys.exit()
return param_shape_map
def run_one_case(model, param_map): def run_one_case(model, param_map):
# convert np array to model argument # convert np array to model argument
pp = {} pp = {}
for key, val in param_map.items(): for key, val in param_map.items():
print("input = {}".format(val))
pp[key] = migraphx.argument(val) pp[key] = migraphx.argument(val)
# run the model # run the model
...@@ -106,12 +182,11 @@ def check_correctness(gold_outputs, outputs, rtol=1e-3, atol=1e-3): ...@@ -106,12 +182,11 @@ def check_correctness(gold_outputs, outputs, rtol=1e-3, atol=1e-3):
out_num = len(gold_outputs) out_num = len(gold_outputs)
ret = True ret = True
for i in range(out_num): for i in range(out_num):
print("Expected value: \n{}".format(gold_outputs[i]))
print("Actual value: \n{}".format(outputs[i]))
if not np.allclose(gold_outputs[i], outputs[i], rtol, atol): if not np.allclose(gold_outputs[i], outputs[i], rtol, atol):
print("Output {} is incorrect ...".format(i)) print("\nOutput {} is incorrect ...".format(i))
print("Expected value: \n{}".format(gold_outputs[i])) print("Expected value: \n{}".format(gold_outputs[i]))
print("Actual value: \n{}".format(outputs[i])) print("......")
print("Actual value: \n{}\n".format(outputs[i]))
ret = False ret = False
return ret return ret
...@@ -142,21 +217,32 @@ def main(): ...@@ -142,21 +217,32 @@ def main():
# get model full path # get model full path
model_name = get_model_name(test_loc) model_name = get_model_name(test_loc)
model_path_name = test_loc + '/' + model_name model_path_name = test_loc + '/' + model_name
# read and compile model
model = migraphx.parse_onnx(model_path_name)
param_names = model.get_parameter_names()
output_shapes = model.get_output_shapes()
model.compile(migraphx.get_target(target)) # get param names
param_names = model_parameter_names(model_path_name)
# get output names
output_names = model_output_names(model_path_name)
# get test cases # get test cases
cases = get_test_cases(test_loc) cases = get_test_cases(test_loc)
sample_case = test_loc + '/' + cases[0]
param_shapes = get_input_shapes(sample_case, param_names)
for name, dims in param_shapes.items():
print("Input: {}, shape: {}".format(name, dims))
print()
# read and compile model
model = migraphx.parse_onnx(model_path_name, map_input_dims=param_shapes)
model.compile(migraphx.get_target(target))
# get test cases
case_num = len(cases) case_num = len(cases)
correct_num = 0 correct_num = 0
for case_name in cases: for case_name in cases:
io_folder = test_loc + '/' + case_name io_folder = test_loc + '/' + case_name
input_data = wrapup_inputs(io_folder, param_names) input_data = wrapup_inputs(io_folder, param_names)
gold_output_data = read_outputs(io_folder, len(output_shapes)) gold_outputs = read_outputs(io_folder, output_names)
# if input shape is different from model shape, reload and recompile # if input shape is different from model shape, reload and recompile
# model # model
...@@ -170,7 +256,7 @@ def main(): ...@@ -170,7 +256,7 @@ def main():
output_data = run_one_case(model, input_data) output_data = run_one_case(model, input_data)
# check output correctness # check output correctness
ret = check_correctness(gold_output_data, output_data) ret = check_correctness(gold_outputs, output_data)
if ret: if ret:
correct_num += 1 correct_num += 1
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment