Unverified Commit 3ae5f9ed authored by Chris Austen's avatar Chris Austen Committed by GitHub
Browse files

Merge branch 'develop' into concat2

parents 6d5a34d2 785ff7d7
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <iostream>
#include <vector>
#include <migraphx/gpu/gemm.hpp>
#include <hip/hip_runtime_api.h>
#include <migraphx/gpu/target.hpp>
#include <migraphx/verify.hpp>
#include <test.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/iterator_for.hpp>
// includes needed for run_lowering
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/auto_contiguous.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pass_manager.hpp>
// Abbreviated lowering; we don't need the usual cleanup passes for this test
void run_lowering(migraphx::program& p, bool offload_copy = false)
{
auto ctx = migraphx::gpu::context{};
migraphx::run_passes(
*p.get_main_module(),
{migraphx::auto_contiguous{}, migraphx::gpu::lowering{&ctx, offload_copy}});
}
/**
* Tests the automatic GEMM tuning feature. In the finalize() method of the gemm op,
* rocBLAS API functions are called to quickly benchmark all the GEMM solutions
* available in the currently installed rocBLAS library and choose the index of the fastest.
*/
TEST_CASE(gemm_tune_with_rocblas)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sa{migraphx::shape::float_type, {4, 2}};
migraphx::shape sb{migraphx::shape::float_type, {2, 3}};
auto a = mm->add_parameter("a", sa);
auto b = mm->add_parameter("b", sb);
migraphx::operation dot_op = migraphx::make_op("dot");
mm->add_instruction(dot_op, a, b);
// lowering adds gemm implementation for dot operator
run_lowering(p);
migraphx::target gpu_t = migraphx::gpu::target{};
migraphx::compile_options options;
options.exhaustive_tune = true;
p.compile(gpu_t, options);
migraphx::value solution_idx(0);
for(auto ins : iterator_for(*p.get_main_module()))
{
if(ins->name() == "gpu::gemm")
{
auto gemm_op = migraphx::get_operation(ins);
// tuned solution index is not deterministic, but anything other than 0
// (default, invalid, or not available) is good.
// gemm_op.to_value().debug_print();
solution_idx = gemm_op.to_value()["solution_idx"];
break;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT(0 != solution_idx.to<std::size_t>());
#else
EXPECT(0 == solution_idx.to<std::size_t>());
#endif
}
// GEMM tuning of a strided-batch matrix; invokes rocblas_gemm_strided_batched_ex
TEST_CASE(gemm_tune_strided)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sa{migraphx::shape::float_type, {4, 2, 2}};
migraphx::shape sb{migraphx::shape::float_type, {4, 2, 2}};
migraphx::shape s_output{migraphx::shape::float_type, {4, 2, 2}};
auto a = mm->add_parameter("a", sa);
auto b = mm->add_parameter("b", sb);
auto output = mm->add_parameter("out", s_output);
auto gemm_oper = migraphx::make_op("gpu::gemm", {{"beta", 2}});
mm->add_instruction(gemm_oper, a, b, output);
migraphx::target gpu_t = migraphx::gpu::target{};
migraphx::compile_options options;
options.exhaustive_tune = true;
p.compile(gpu_t, options);
migraphx::value solution_idx(0);
for(auto ins : iterator_for(*p.get_main_module()))
{
if(ins->name() == "gpu::gemm")
{
auto gemm_op = migraphx::get_operation(ins);
auto gemmv = gemm_op.to_value();
// tuned solution index is not deterministic, but anything other than 0
// (default, invalid, or not available) is good.
solution_idx = gemm_op.to_value()["solution_idx"];
break;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT(0 != solution_idx.to<std::size_t>());
#else
EXPECT(0 == solution_idx.to<std::size_t>());
#endif
}
// GEMM tuning of a strided-batch matrix; created by lowering
TEST_CASE(gemm_tune_strided_lowered)
{
migraphx::program p;
auto* mm = p.get_main_module();
// At time of writing this test, gemm_impl considers a shape is strided if it has
// at least three dimensions and the 3rd-to-last is nonzero, invoking
// rocblas_gemm_strided_batched_ex. Also, DOT operator requires all dimensions except the last
// two to be equal.
migraphx::shape sa{migraphx::shape::float_type, {4, 2, 5}};
migraphx::shape sb{migraphx::shape::float_type, {4, 5, 3}};
auto a = mm->add_parameter("a", sa);
auto b = mm->add_parameter("b", sb);
migraphx::operation dot_op = migraphx::make_op("dot");
mm->add_instruction(dot_op, a, b);
// lowering adds gemm implementation for dot operator
run_lowering(p);
migraphx::target gpu_t = migraphx::gpu::target{};
migraphx::compile_options options;
options.exhaustive_tune = true;
p.compile(gpu_t, options);
migraphx::value solution_idx(0);
for(auto ins : iterator_for(*p.get_main_module()))
{
if(ins->name() == "gpu::gemm")
{
auto gemm_op = migraphx::get_operation(ins);
// tuned solution index is not deterministic, but anything other than 0
// (default, invalid, or not available) is good.
solution_idx = gemm_op.to_value()["solution_idx"];
break;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT(0 != solution_idx.to<std::size_t>());
#else
EXPECT(0 == solution_idx.to<std::size_t>());
#endif
}
TEST_CASE(gemm_tune_invalid_sol_index)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sa{migraphx::shape::float_type, {4, 2}};
migraphx::shape sb{migraphx::shape::float_type, {2, 3}};
migraphx::shape s_output{migraphx::shape::float_type, {4, 3}};
auto a = mm->add_parameter("a", sa);
auto b = mm->add_parameter("b", sb);
auto output = mm->add_parameter("out", s_output);
auto gemm_oper = migraphx::make_op("gpu::gemm", {{"solution_idx", 987654321}});
mm->add_instruction(gemm_oper, a, b, output);
migraphx::target gpu_t = migraphx::gpu::target{};
migraphx::compile_options options;
options.exhaustive_tune = true;
p.compile(gpu_t, options);
migraphx::value solution_idx(0);
for(auto ins : iterator_for(*p.get_main_module()))
{
if(ins->name() == "gpu::gemm")
{
auto gemm_op = migraphx::get_operation(ins);
auto gemmv = gemm_op.to_value();
// given invalid starting index, should return default 0
solution_idx = gemm_op.to_value()["solution_idx"];
break;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT(0 == solution_idx.to<std::size_t>());
#else
EXPECT(0 != solution_idx.to<std::size_t>());
#endif
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -139,7 +139,8 @@ const std::string math_template = R"__migraphx__(
#include <migraphx/kernels/pointwise.hpp>
#include <migraphx/kernels/math.hpp>
#include <migraphx/kernels/types.hpp>
using namespace migraphx;
namespace migraphx {
extern "C" {
__global__ void kernel(${type}* p)
{
......@@ -148,6 +149,7 @@ __global__ void kernel(${type}* p)
}
}
}
int main() {}
......@@ -348,7 +350,10 @@ TEST_CASE(compile_math)
auto vec_sizes = {2, 4, 6};
for(auto&& t : migraphx::shape::types())
{
if(contains({migraphx::shape::bool_type, migraphx::shape::tuple_type}, t))
if(contains({migraphx::shape::bool_type,
migraphx::shape::fp8e4m3fnuz_type,
migraphx::shape::tuple_type},
t))
continue;
auto name = migraphx::shape::cpp_type(t);
if(t == migraphx::shape::half_type)
......@@ -396,7 +401,10 @@ TEST_CASE(assert_type_min_max)
migraphx::gpu::hip_compile_options options;
for(auto&& t : migraphx::shape::types())
{
if(contains({migraphx::shape::bool_type, migraphx::shape::tuple_type}, t))
if(contains({migraphx::shape::bool_type,
migraphx::shape::fp8e4m3fnuz_type,
migraphx::shape::tuple_type},
t))
continue;
auto name = migraphx::shape::cpp_type(t);
if(t == migraphx::shape::half_type)
......
......@@ -24,6 +24,7 @@
#include <atomic>
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdio>
#include <cstdlib>
......
......@@ -47,7 +47,11 @@ compile_function(const std::string& src, const std::string& flags, const std::st
{
migraphx::src_compiler compiler;
compiler.flags = flags + "-std=c++14 -fPIC -shared";
#ifdef _WIN32
compiler.output = "simple.dll";
#else
compiler.output = "libsimple.so";
#endif
migraphx::src_file f{"main.cpp", src};
auto image = compiler.compile({f});
return migraphx::dynamic_loader{image}.get_function<F>(fname);
......
2eeafc37bca21dc8bf337dda7020b486543162d7
a5537f2f563d4975c7e6121a7eb260bbbfd9455a
averagepool_dilate_test:
Y
xy" AveragePool*
dilations@*
kernel_shape@*
pads@@*
strides@averagepool_dilate_testZ
x



b
y



B
\ No newline at end of file
......@@ -276,6 +276,22 @@ def averagepool_1d_test():
return ([node], [x], [out])
@onnx_test()
def averagepool_dilate_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4, 2])
node = onnx.helper.make_node('AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2],
strides=[1],
pads=[1, 1],
dilations=[3])
return ([node], [x], [y])
@onnx_test()
def averagepool_3d_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
......@@ -4484,6 +4500,177 @@ def lrn_test():
return ([node], [x], [y])
@onnx_test()
def lstm_bi_layout_cell_test():
seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [2, 80, 10])
r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [2, 80, 20])
bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [2, 160])
seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 2, 20])
c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 2, 20])
pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [2, 60])
cellout = helper.make_tensor_value_info('cellout', TensorProto.FLOAT,
[3, 2, 20])
node = onnx.helper.make_node(
'LSTM',
inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
outputs=['', '', 'cellout'],
activations=['sigmoid', 'tanh', 'tanh'],
clip=0,
direction='bidirectional',
hidden_size=20,
input_forget=1,
layout=1)
return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [cellout])
@onnx_test()
def lstm_bi_layout_last_test():
seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [2, 80, 10])
r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [2, 80, 20])
bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [2, 160])
seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 2, 20])
c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 2, 20])
pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [2, 60])
hs = helper.make_tensor_value_info('hs', TensorProto.FLOAT, [3, 5, 2, 20])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
[3, 2, 20])
node = onnx.helper.make_node(
'LSTM',
inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
outputs=['hs', 'output'],
activations=['sigmoid', 'tanh', 'tanh'],
clip=0,
direction='bidirectional',
hidden_size=20,
input_forget=1,
layout=1)
return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [hs, output])
@onnx_test()
def lstm_f_layout_hs_test():
seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 80, 10])
r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [1, 80, 20])
bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1, 160])
seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 1, 20])
c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 1, 20])
pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [1, 60])
hs = helper.make_tensor_value_info('hs', TensorProto.FLOAT, [3, 5, 1, 20])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
[3, 1, 20])
node = onnx.helper.make_node(
'LSTM',
inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
outputs=['hs', 'output'],
activations=['sigmoid', 'tanh', 'tanh'],
clip=0,
direction='forward',
hidden_size=20,
input_forget=1,
layout=1)
return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [hs, output])
@onnx_test()
def lstm_f_layout_cell_test():
seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 80, 10])
r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [1, 80, 20])
bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1, 160])
seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 1, 20])
c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 1, 20])
pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [1, 60])
cellout = helper.make_tensor_value_info('cellout', TensorProto.FLOAT,
[3, 1, 20])
node = onnx.helper.make_node(
'LSTM',
inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
outputs=['', '', 'cellout'],
activations=['sigmoid', 'tanh', 'tanh'],
clip=0,
direction='forward',
hidden_size=20,
input_forget=1,
layout=1)
return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [cellout])
@onnx_test()
def lstm_r_layout_test():
seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 80, 10])
r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [1, 80, 20])
bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1, 160])
seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 1, 20])
c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 1, 20])
pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [1, 60])
hs = helper.make_tensor_value_info('hs', TensorProto.FLOAT, [3, 5, 1, 20])
node = onnx.helper.make_node(
'LSTM',
inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
outputs=['hs'],
activations=['sigmoid', 'tanh', 'tanh'],
clip=0,
direction='reverse',
hidden_size=20,
input_forget=1,
layout=1)
return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [hs])
@onnx_test()
def lstm_r_layout_hs_cell_test():
seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 80, 10])
r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [1, 80, 20])
bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1, 160])
seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 1, 20])
c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 1, 20])
pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [1, 60])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
[3, 1, 20])
cellout = helper.make_tensor_value_info('cellout', TensorProto.FLOAT,
[3, 1, 20])
node = onnx.helper.make_node(
'LSTM',
inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
outputs=['', 'output', 'cellout'],
activations=['sigmoid', 'tanh', 'tanh'],
clip=0,
direction='reverse',
hidden_size=20,
input_forget=1,
layout=1)
return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [output, cellout])
@onnx_test()
def matmul_bmbm_test():
m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
......@@ -4711,6 +4898,22 @@ def maxpool_notset_test():
return ([node], [x], [y])
@onnx_test()
def maxpool_dilate_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4, 2])
node = onnx.helper.make_node('MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2],
strides=[1],
pads=[1, 1],
dilations=[3])
return ([node], [x], [y])
@onnx_test()
def maxpool_same_upper_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
......@@ -5791,6 +5994,263 @@ def qlinearadd_bcast_test():
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearaveragepool_1d_test():
x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 32])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.05])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
[0])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 31])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.05])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
[16])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[2],
)
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearaveragepool_2d_test():
x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 4, 4])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.05])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
[0])
y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 3, 3, 3])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.015])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
[16])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[2, 2],
)
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearaveragepool_2d_ceil_test():
x = helper.make_tensor_value_info('x', TensorProto.UINT8, [1, 1, 4, 4])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.UINT8, [],
[0])
y = helper.make_tensor_value_info('y', TensorProto.UINT8, [1, 1, 2, 2])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.05])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.UINT8, [],
[0])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[3, 3],
strides=[2, 2],
ceil_mode=True,
)
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearaveragepool_2d_dilations_test():
x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 1, 4, 4])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
[0])
y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 1, 2, 2])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.25])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
[84])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[2, 2],
strides=[1, 1],
dilations=[2, 2],
ceil_mode=True,
)
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearaveragepool_2d_pads_count_include_pad_test():
x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 4, 4])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.05])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
[0])
y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 3, 6, 6])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.01])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
[32])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[2, 2, 2, 2],
count_include_pad=1,
)
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearaveragepool_2d_same_lower_test():
x = helper.make_tensor_value_info('x', TensorProto.UINT8, [1, 3, 4, 4])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.UINT8, [],
[0])
y = helper.make_tensor_value_info('y', TensorProto.UINT8, [1, 3, 4, 4])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.5])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.UINT8, [],
[0])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad="SAME_LOWER",
)
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearaveragepool_2d_same_upper_test():
x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 4, 4])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
[32])
y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 3, 4, 4])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.25])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
[0])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad="SAME_UPPER",
)
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearaveragepool_2d_strides_test():
x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 8, 8])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.05])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
[0])
y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 3, 2, 2])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.05])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
[8])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[5, 5],
strides=[2, 2],
)
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearaveragepool_3d_test():
x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 3, 3, 3])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.05])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
[0])
y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 3, 2, 2, 2])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.02])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
[0])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[2, 2, 2],
)
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearaveragepool_notset_test():
x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 1, 5, 5])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
[0])
y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 1, 1, 1])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.5])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
[10])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[6, 6],
strides=[2, 2],
pads=[0, 0, 1, 1],
channels_last=0,
auto_pad='NOTSET')
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearaveragepool_nt_cip_test():
x = helper.make_tensor_value_info('x', TensorProto.UINT8, [1, 1, 5, 5])
x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
x_zero_point = helper.make_tensor('x_zero_point', TensorProto.UINT8, [],
[0])
y = helper.make_tensor_value_info('y', TensorProto.UINT8, [1, 1, 1, 1])
y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.5])
y_zero_point = helper.make_tensor('y_zero_point', TensorProto.UINT8, [],
[10])
node = onnx.helper.make_node(
'QLinearAveragePool',
inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],
kernel_shape=[6, 6],
strides=[2, 2],
pads=[0, 0, 1, 1],
channels_last=0,
auto_pad='NOTSET',
count_include_pad=1)
return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])
@onnx_test()
def qlinearconv_test():
# https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__QLinearConv.html
......@@ -5923,6 +6383,26 @@ def qlinearglobalavgpool_test():
return ([n], [x], [y], [sc_x, z_pt_x, sc_y, z_pt_y])
@onnx_test()
def qlinearleakyrelu_test():
x = helper.make_tensor_value_info('X', TensorProto.INT8, [64])
sc_x = helper.make_tensor('X_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_x = helper.make_tensor('X_zero_point', TensorProto.INT8, [], [0])
sc_y = helper.make_tensor('Y_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_y = helper.make_tensor('Y_zero_point', TensorProto.INT8, [], [10])
y = helper.make_tensor_value_info('Y', TensorProto.INT8, [64])
node = onnx.helper.make_node(
'QLinearLeakyRelu',
inputs=['X', 'X_scale', 'X_zero_point', 'Y_scale', 'Y_zero_point'],
outputs=['Y'],
alpha=1.1,
)
return ([node], [x], [y], [sc_x, zero_pt_x, sc_y, zero_pt_y])
def qlinearmatmul_1D_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [8])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
......@@ -6008,6 +6488,81 @@ def qlinearmatmul_3D_test():
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearmul_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [64])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])
b = helper.make_tensor_value_info('B', TensorProto.UINT8, [64])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [], [16])
sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [],
[100])
c = helper.make_tensor_value_info('C', TensorProto.UINT8, [64])
node = onnx.helper.make_node(
'QLinearMul',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearmul_bcast_test():
a = helper.make_tensor_value_info('A', TensorProto.INT8, [64])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.INT8, [], [0])
b = helper.make_tensor_value_info('B', TensorProto.INT8, [1, 1, 64])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.INT8, [], [128])
sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.15])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.INT8, [], [32])
c = helper.make_tensor_value_info('C', TensorProto.INT8, [1, 1, 64])
node = onnx.helper.make_node(
'QLinearMul',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearsigmoid_test():
x = helper.make_tensor_value_info('X', TensorProto.INT8, [64])
sc_x = helper.make_tensor('X_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_x = helper.make_tensor('X_zero_point', TensorProto.INT8, [], [0])
sc_y = helper.make_tensor('Y_scale', TensorProto.FLOAT, [], [0.0035])
zero_pt_y = helper.make_tensor('Y_zero_point', TensorProto.INT8, [],
[-128])
y = helper.make_tensor_value_info('Y', TensorProto.INT8, [64])
node = onnx.helper.make_node(
'QLinearSigmoid',
inputs=['X', 'X_scale', 'X_zero_point', 'Y_scale', 'Y_zero_point'],
outputs=['Y'],
)
return ([node], [x], [y], [sc_x, zero_pt_x, sc_y, zero_pt_y])
@onnx_test()
def quantizelinear_test():
arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
......@@ -7087,6 +7642,16 @@ def roialign_test():
return ([node], [x, roi, bi], [y])
@onnx_test()
def round_half_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [4, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [4, 4])
node = onnx.helper.make_node('Round', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test()
def scatter_add_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
......@@ -7147,8 +7712,7 @@ def scatter_none_test():
return ([node], [x, i, u], [y])
@onnx_test()
def scatternd_add_test():
def make_scatternd_test(reduction="none"):
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
[2, 1, 2])
......@@ -7160,44 +7724,39 @@ def scatternd_add_test():
node = onnx.helper.make_node('ScatterND',
inputs=['data', 'indices', 'updates'],
outputs=['output'],
reduction="add")
reduction=reduction)
return ([node], [data, indices, updates], [output])
@onnx_test()
def scatternd_add_test():
return make_scatternd_test("add")
@onnx_test()
def scatternd_mul_test():
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
[2, 1, 2])
updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
[2, 1, 2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
[2, 2, 2])
return make_scatternd_test("mul")
node = onnx.helper.make_node('ScatterND',
inputs=['data', 'indices', 'updates'],
outputs=['output'],
reduction="mul")
return ([node], [data, indices, updates], [output])
@onnx_test()
def scatternd_max_test():
return make_scatternd_test("max")
@onnx_test()
def scatternd_min_test():
return make_scatternd_test("min")
@onnx_test()
def scatternd_test():
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
[2, 1, 2])
updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
[2, 1, 2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
[2, 2, 2])
return make_scatternd_test()
node = onnx.helper.make_node('ScatterND',
inputs=['data', 'indices', 'updates'],
outputs=['output'])
return ([node], [data, indices, updates], [output])
@onnx_test()
def scatternd_invalid_reduction_test():
return make_scatternd_test("invalid")
@onnx_test()
......@@ -8006,6 +8565,32 @@ def slice_var_input_dyn1():
return ([node], [data, starts, ends, axes], [output])
@onnx_test()
def slice_var_input_default_steps():
step = np.array([1, 1])
step_tensor = helper.make_tensor(name="step",
data_type=TensorProto.INT64,
dims=step.shape,
vals=step.astype(int))
arg_step = helper.make_node("Constant",
inputs=[],
outputs=['arg_step'],
value=step_tensor)
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
starts = helper.make_tensor_value_info('starts', TensorProto.INT64, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.INT64, [2])
axes = helper.make_tensor_value_info('axes', TensorProto.INT64, [2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node(
'Slice',
inputs=['data', 'starts', 'ends', 'axes', 'arg_step'],
outputs=['output'])
return ([arg_step, node], [data, starts, ends, axes], [output])
@onnx_test()
def slice_var_input_steps_error():
step = np.array([2, 1])
......@@ -8019,9 +8604,9 @@ def slice_var_input_steps_error():
value=step_tensor)
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
starts = helper.make_tensor_value_info('starts', TensorProto.FLOAT, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.FLOAT, [2])
axes = helper.make_tensor_value_info('axes', TensorProto.FLOAT, [2])
starts = helper.make_tensor_value_info('starts', TensorProto.INT64, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.INT64, [2])
axes = helper.make_tensor_value_info('axes', TensorProto.INT64, [2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node(
......@@ -8958,6 +9543,97 @@ def undefined_test():
return ([node], [x], [y])
@onnx_test()
def unique_dynamic_sorted_test():
x = helper.make_tensor_value_info('X', TensorProto.FLOAT, [6])
y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [4])
y_ind = helper.make_tensor_value_info('indices', TensorProto.INT64, [4])
x_ind = helper.make_tensor_value_info('inverse_indices', TensorProto.INT64,
[6])
count = helper.make_tensor_value_info('counts', TensorProto.INT64, [4])
node = onnx.helper.make_node(
'Unique',
inputs=['X'],
outputs=['Y', 'indices', 'inverse_indices', 'counts'],
axis=0,
sorted=1)
return ([node], [x], [y, y_ind, x_ind, count])
@onnx_test()
def unique_dynamic_sorted_3D_test():
x = helper.make_tensor_value_info('X', TensorProto.INT64, [4, 4, 4])
y = helper.make_tensor_value_info('Y', TensorProto.INT64, [16])
y_ind = helper.make_tensor_value_info('indices', TensorProto.INT64, [16])
x_ind = helper.make_tensor_value_info('inverse_indices', TensorProto.INT64,
[64])
count = helper.make_tensor_value_info('counts', TensorProto.INT64, [16])
node = onnx.helper.make_node(
'Unique',
inputs=['X'],
outputs=['Y', 'indices', 'inverse_indices', 'counts'],
sorted=1)
return ([node], [x], [y, y_ind, x_ind, count])
@onnx_test()
def unique_dynamic_unsorted_test():
x = helper.make_tensor_value_info('X', TensorProto.FLOAT, [6])
y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [4])
y_ind = helper.make_tensor_value_info('indices', TensorProto.INT64, [4])
x_ind = helper.make_tensor_value_info('inverse_indices', TensorProto.INT64,
[6])
count = helper.make_tensor_value_info('counts', TensorProto.INT64, [4])
node = onnx.helper.make_node(
'Unique',
inputs=['X'],
outputs=['Y', 'indices', 'inverse_indices', 'counts'],
axis=0,
sorted=0)
return ([node], [x], [y, y_ind, x_ind, count])
@onnx_test()
def unique_sorted_test():
x = helper.make_tensor('X', TensorProto.FLOAT, [6], [2, 1, 1, 3, 4, 3])
y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [4])
y_ind = helper.make_tensor_value_info('indices', TensorProto.INT64, [4])
x_ind = helper.make_tensor_value_info('inverse_indices', TensorProto.INT64,
[6])
count = helper.make_tensor_value_info('counts', TensorProto.INT64, [4])
node = onnx.helper.make_node(
'Unique',
inputs=['X'],
outputs=['Y', 'indices', 'inverse_indices', 'counts'],
axis=0,
sorted=1)
return ([node], [], [y, y_ind, x_ind, count], [x])
@onnx_test()
def unique_unsorted_test():
x = helper.make_tensor('X', TensorProto.FLOAT, [6], [2, 1, 1, 3, 4, 3])
y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [4])
y_ind = helper.make_tensor_value_info('indices', TensorProto.INT64, [4])
x_ind = helper.make_tensor_value_info('inverse_indices', TensorProto.INT64,
[6])
count = helper.make_tensor_value_info('counts', TensorProto.INT64, [4])
node = onnx.helper.make_node(
'Unique',
inputs=['X'],
outputs=['Y', 'indices', 'inverse_indices', 'counts'],
axis=0,
sorted=0)
return ([node], [], [y, y_ind, x_ind, count], [x])
@onnx_test()
def unknown_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
......@@ -9031,6 +9707,20 @@ def upsample_test():
return ([node], [X], [Y], [scale_tensor])
@onnx_test()
def upsample_ver7_test():
X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])
node = onnx.helper.make_node('Upsample',
inputs=['X'],
outputs=['Y'],
mode='nearest',
scales=[1.0, 1.0, 2.0, 3.0])
return ([node], [X], [Y])
@onnx_test()
def variable_batch_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
......
maxpool_dilate_test:
U
xy"MaxPool*
dilations@*
kernel_shape@*
pads@@*
strides@maxpool_dilate_testZ
x



b
y



B
\ No newline at end of file
......@@ -1092,6 +1092,115 @@ TEST_CASE(lstm_forward)
}
}
TEST_CASE(lstm_forward_layout)
{
std::size_t sl = 5; // sequence len
std::size_t bs = 3; // batch size
std::size_t hs = 20; // hidden size
std::size_t is = 10; // input size
std::size_t nd = 1; // num directions
float clip = 0.0f;
int input_forget = 1;
migraphx::shape seq_shape{migraphx::shape::float_type, {bs, sl, is}};
migraphx::shape w_shape{migraphx::shape::float_type, {nd, 4 * hs, is}};
migraphx::shape r_shape{migraphx::shape::float_type, {nd, 4 * hs, hs}};
migraphx::shape bias_shape{migraphx::shape::float_type, {nd, 8 * hs}};
migraphx::shape sl_shape{migraphx::shape::int32_type, {bs}};
migraphx::shape ih_shape{migraphx::shape::float_type, {bs, nd, hs}};
migraphx::shape pph_shape{migraphx::shape::float_type, {nd, 3 * hs}};
// 8 args, hs and last output
{
migraphx::program p;
auto* mm = p.get_main_module();
auto seq = mm->add_parameter("seq", seq_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
auto bias = mm->add_parameter("bias", bias_shape);
auto seq_len = mm->add_parameter("seq_len", sl_shape);
auto ih = mm->add_parameter("h0", ih_shape);
auto ic = mm->add_parameter("c0", ih_shape);
auto pph = mm->add_parameter("pph", pph_shape);
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
ih = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ih);
ic = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ic);
auto out_hs = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hs},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::forward)},
{"clip", clip},
{"input_forget", input_forget}}),
seq,
w,
r,
bias,
seq_len,
ih,
ic,
pph);
auto last_output = mm->add_instruction(migraphx::make_op("rnn_last_hs_output"), out_hs);
std::vector<int64_t> perm_hid{2, 0, 1, 3};
out_hs = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm_hid}}),
out_hs);
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), last_output);
auto prog = optimize_onnx("lstm_f_layout_hs_test.onnx");
EXPECT(p == prog);
}
// 8 args, cell output
{
migraphx::program p;
auto* mm = p.get_main_module();
auto seq = mm->add_parameter("seq", seq_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
auto bias = mm->add_parameter("bias", bias_shape);
auto seq_len = mm->add_parameter("seq_len", sl_shape);
auto ih = mm->add_parameter("h0", ih_shape);
auto ic = mm->add_parameter("c0", ih_shape);
auto pph = mm->add_parameter("pph", pph_shape);
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
ih = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ih);
ic = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ic);
auto out_hs = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hs},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::forward)},
{"clip", clip},
{"input_forget", input_forget}}),
seq,
w,
r,
bias,
seq_len,
ih,
ic,
pph);
auto last_cell = mm->add_instruction(migraphx::make_op("rnn_last_cell_output"), out_hs);
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), last_cell);
auto prog = optimize_onnx("lstm_f_layout_cell_test.onnx");
EXPECT(p == prog);
}
}
// activation functions
TEST_CASE(lstm_forward_actv_func)
{
......@@ -1342,6 +1451,117 @@ TEST_CASE(lstm_reverse)
}
}
TEST_CASE(lstm_reverse_layout)
{
std::size_t sl = 5; // sequence len
std::size_t bs = 3; // batch size
std::size_t hs = 20; // hidden size
std::size_t is = 10; // input size
std::size_t nd = 1; // num directions
float clip = 0.0f;
int input_forget = 1;
migraphx::shape seq_shape{migraphx::shape::float_type, {bs, sl, is}};
migraphx::shape w_shape{migraphx::shape::float_type, {nd, 4 * hs, is}};
migraphx::shape r_shape{migraphx::shape::float_type, {nd, 4 * hs, hs}};
migraphx::shape bias_shape{migraphx::shape::float_type, {nd, 8 * hs}};
migraphx::shape sl_shape{migraphx::shape::int32_type, {bs}};
migraphx::shape ih_shape{migraphx::shape::float_type, {bs, nd, hs}};
migraphx::shape pph_shape{migraphx::shape::float_type, {nd, 3 * hs}};
// 8 args, hs output
{
migraphx::program p;
auto* mm = p.get_main_module();
auto seq = mm->add_parameter("seq", seq_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
auto bias = mm->add_parameter("bias", bias_shape);
auto seq_len = mm->add_parameter("seq_len", sl_shape);
auto ih = mm->add_parameter("h0", ih_shape);
auto ic = mm->add_parameter("c0", ih_shape);
auto pph = mm->add_parameter("pph", pph_shape);
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
ih = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ih);
ic = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ic);
auto out_hs = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hs},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::reverse)},
{"clip", clip},
{"input_forget", input_forget}}),
seq,
w,
r,
bias,
seq_len,
ih,
ic,
pph);
std::vector<int64_t> perm_hid{2, 0, 1, 3};
out_hs = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm_hid}}),
out_hs);
auto prog = optimize_onnx("lstm_r_layout_test.onnx");
EXPECT(p == prog);
}
// 8 args, last and cell output
{
migraphx::program p;
auto* mm = p.get_main_module();
auto seq = mm->add_parameter("seq", seq_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
auto bias = mm->add_parameter("bias", bias_shape);
auto seq_len = mm->add_parameter("seq_len", sl_shape);
auto ih = mm->add_parameter("h0", ih_shape);
auto ic = mm->add_parameter("c0", ih_shape);
auto pph = mm->add_parameter("pph", pph_shape);
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
ih = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ih);
ic = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ic);
auto out_hs = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hs},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::reverse)},
{"clip", clip},
{"input_forget", input_forget}}),
seq,
w,
r,
bias,
seq_len,
ih,
ic,
pph);
auto last_output = mm->add_instruction(migraphx::make_op("rnn_last_hs_output"), out_hs);
auto last_cell = mm->add_instruction(migraphx::make_op("rnn_last_cell_output"), out_hs);
last_output = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}),
last_output);
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), last_cell);
auto prog = optimize_onnx("lstm_r_layout_hs_cell_test.onnx");
EXPECT(p == prog);
}
}
TEST_CASE(lstm_bidirectional)
{
std::size_t sl = 5; // sequence len
......@@ -1594,6 +1814,118 @@ TEST_CASE(lstm_bidirectional)
}
}
TEST_CASE(lstm_bidirectional_layout)
{
std::size_t sl = 5; // sequence len
std::size_t bs = 3; // batch size
std::size_t hs = 20; // hidden size
std::size_t is = 10; // input size
std::size_t nd = 2; // num directions
float clip = 0.0f;
int input_forget = 1;
migraphx::shape seq_shape{migraphx::shape::float_type, {bs, sl, is}};
migraphx::shape w_shape{migraphx::shape::float_type, {nd, 4 * hs, is}};
migraphx::shape r_shape{migraphx::shape::float_type, {nd, 4 * hs, hs}};
migraphx::shape bias_shape{migraphx::shape::float_type, {nd, 8 * hs}};
migraphx::shape sl_shape{migraphx::shape::int32_type, {bs}};
migraphx::shape ih_shape{migraphx::shape::float_type, {bs, nd, hs}};
migraphx::shape pph_shape{migraphx::shape::float_type, {nd, 3 * hs}};
// 0 activation function
{
migraphx::program p;
auto* mm = p.get_main_module();
auto seq = mm->add_parameter("seq", seq_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
auto bias = mm->add_parameter("bias", bias_shape);
auto seq_len = mm->add_parameter("seq_len", sl_shape);
auto ih = mm->add_parameter("h0", ih_shape);
auto ic = mm->add_parameter("c0", ih_shape);
auto pph = mm->add_parameter("pph", pph_shape);
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
ih = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ih);
ic = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ic);
auto out_hs = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hs},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh"),
migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::bidirectional)},
{"clip", clip},
{"input_forget", input_forget}}),
seq,
w,
r,
bias,
seq_len,
ih,
ic,
pph);
auto last_output = mm->add_instruction(migraphx::make_op("rnn_last_hs_output"), out_hs);
std::vector<int64_t> perm_hid{2, 0, 1, 3};
out_hs = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm_hid}}),
out_hs);
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), last_output);
auto prog = optimize_onnx("lstm_bi_layout_last_test.onnx");
EXPECT(p == prog);
}
{
migraphx::program p;
auto* mm = p.get_main_module();
auto seq = mm->add_parameter("seq", seq_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
auto bias = mm->add_parameter("bias", bias_shape);
auto seq_len = mm->add_parameter("seq_len", sl_shape);
auto ih = mm->add_parameter("h0", ih_shape);
auto ic = mm->add_parameter("c0", ih_shape);
auto pph = mm->add_parameter("pph", pph_shape);
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
ih = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ih);
ic = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ic);
auto out_hs = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hs},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh"),
migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::bidirectional)},
{"clip", clip},
{"input_forget", input_forget}}),
seq,
w,
r,
bias,
seq_len,
ih,
ic,
pph);
auto last_cell = mm->add_instruction(migraphx::make_op("rnn_last_cell_output"), out_hs);
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), last_cell);
auto prog = optimize_onnx("lstm_bi_layout_cell_test.onnx");
EXPECT(p == prog);
}
}
TEST_CASE(lstm_bi_actv_funcs)
{
std::size_t sl = 5; // sequence len
......
......@@ -296,13 +296,32 @@ TEST_CASE(averagepool_1d_test)
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0}},
{"stride", {1}},
{"lengths", {3}}}),
{"lengths", {3}},
{"dilations", {1}}}),
l0);
auto prog = optimize_onnx("averagepool_1d_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(averagepool_dilate_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 4, 3}});
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1}},
{"stride", {1}},
{"lengths", {2}},
{"dilations", {3}}}),
input);
auto prog = optimize_onnx("averagepool_dilate_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(averagepool_3d_test)
{
migraphx::program p;
......@@ -312,7 +331,8 @@ TEST_CASE(averagepool_3d_test)
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0, 0, 0}},
{"stride", {1, 1, 1}},
{"lengths", {3, 3, 3}}}),
{"lengths", {3, 3, 3}},
{"dilations", {1, 1, 1}}}),
l0);
auto prog = optimize_onnx("averagepool_3d_test.onnx");
......@@ -332,6 +352,7 @@ TEST_CASE(averagepool_dyn_test)
{"mode", migraphx::op::pooling_mode::average},
{"stride", {2, 2, 2}},
{"lengths", {3, 3, 3}},
{"dilations", {1, 1, 1}},
{"padding", {1, 1, 1, 1, 1, 1}},
{"padding_mode", 0},
}),
......@@ -357,6 +378,7 @@ TEST_CASE(averagepool_dyn_autopad_test)
{"mode", migraphx::op::pooling_mode::average},
{"stride", {2, 2, 2}},
{"lengths", {3, 3, 3}},
{"dilations", {1, 1, 1}},
{"padding", {0, 0, 0, 0, 0, 0}},
{"padding_mode", migraphx::op::padding_mode_t::same_upper},
}),
......@@ -394,7 +416,8 @@ TEST_CASE(averagepool_notset_test)
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {2, 2, 2, 2}},
{"stride", {2, 2}},
{"lengths", {6, 6}}}),
{"lengths", {6, 6}},
{"dilations", {1, 1}}}),
input);
auto ret = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {1, 1}}, {"ends", {2, 2}}}), ins);
......@@ -415,7 +438,8 @@ TEST_CASE(averagepool_nt_cip_test)
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {6, 6}}}),
{"lengths", {6, 6}},
{"dilations", {1, 1}}}),
ins_pad);
mm->add_return({ret});
......@@ -437,6 +461,7 @@ TEST_CASE(averagepool_same_lower_test)
{"padding", {1, 1, 1, 1}},
{"stride", {1, 1}},
{"lengths", {2, 2}},
{"dilations", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::default_},
}),
input);
......@@ -459,7 +484,8 @@ TEST_CASE(averagepool_sl_cip_test)
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"lengths", {2, 2}}}),
{"lengths", {2, 2}},
{"dilations", {1, 1}}}),
ins_pad);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("averagepool_sl_cip_test.onnx");
......@@ -476,7 +502,8 @@ TEST_CASE(averagepool_same_upper_test)
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1, 1, 1}},
{"stride", {1, 1}},
{"lengths", {2, 2}}}),
{"lengths", {2, 2}},
{"dilations", {1, 1}}}),
input);
auto ret = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {1, 1}}, {"ends", {6, 6}}}), ins);
......@@ -1307,7 +1334,8 @@ TEST_CASE(conv_bn_relu_maxpool_test)
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {2, 2}}}),
{"lengths", {2, 2}},
{"dilations", {1, 1}}}),
l7);
auto prog = optimize_onnx("conv_bn_relu_maxpool_test.onnx");
......@@ -1505,7 +1533,8 @@ TEST_CASE(conv_relu_maxpool_test)
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {2, 2}}}),
{"lengths", {2, 2}},
{"dilations", {1, 1}}}),
l6);
auto prog = optimize_onnx("conv_relu_maxpool_test.onnx");
......@@ -1530,7 +1559,8 @@ TEST_CASE(conv_relu_maxpool_x2_test)
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {2, 2}}}),
{"lengths", {2, 2}},
{"dilations", {1, 1}}}),
l6);
auto l8 = mm->add_parameter("3", {migraphx::shape::float_type, {1, 5, 5, 5}});
......@@ -1546,7 +1576,8 @@ TEST_CASE(conv_relu_maxpool_x2_test)
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {2, 2}}}),
{"lengths", {2, 2}},
{"dilations", {1, 1}}}),
l13);
auto prog = optimize_onnx("conv_relu_maxpool_x2_test.onnx");
......@@ -4245,6 +4276,7 @@ TEST_CASE(lppool_l1_test)
{"padding", {0, 0}},
{"stride", {1}},
{"lengths", {3}},
{"dilations", {1}},
{"lp_order", 1}}),
l0);
auto prog = optimize_onnx("lppool_l1_test.onnx");
......@@ -4261,6 +4293,7 @@ TEST_CASE(lppool_l2_test)
{"padding", {0, 0}},
{"stride", {1}},
{"lengths", {3}},
{"dilations", {1}},
{"lp_order", 2}}),
l0);
auto prog = optimize_onnx("lppool_l2_test.onnx");
......@@ -4513,7 +4546,8 @@ TEST_CASE(maxpool_notset_test)
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 1, 1}},
{"stride", {2, 2}},
{"lengths", {6, 6}}}),
{"lengths", {6, 6}},
{"dilations", {1, 1}}}),
input);
auto prog = optimize_onnx("maxpool_notset_test.onnx");
......@@ -4521,6 +4555,24 @@ TEST_CASE(maxpool_notset_test)
EXPECT(p == prog);
}
TEST_CASE(maxpool_dilate_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 4, 3}});
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {1, 1}},
{"stride", {1}},
{"lengths", {2}},
{"dilations", {3}}}),
input);
auto prog = optimize_onnx("maxpool_dilate_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(maxpool_same_upper_test)
{
migraphx::program p;
......@@ -4530,7 +4582,8 @@ TEST_CASE(maxpool_same_upper_test)
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 1, 1}},
{"stride", {1, 1}},
{"lengths", {2, 2}}}),
{"lengths", {2, 2}},
{"dilations", {1, 1}}}),
input);
auto prog = optimize_onnx("maxpool_same_upper_test.onnx");
......@@ -4773,8 +4826,9 @@ TEST_CASE(multinomial_test)
migraphx::shape s{migraphx::shape::float_type, {1}};
std::vector<float> seed_data = {seed};
auto seed_input = mm->add_literal(migraphx::literal(s, seed_data));
auto rand_dummy =
mm->add_literal(migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}});
auto rand_dummy = mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::float_type, {batch_size, sample_size}},
std::vector<float>(batch_size * sample_size)});
auto randoms = mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
mm->add_instruction(migraphx::make_op("multinomial"), cdf, randoms);
......@@ -4925,8 +4979,9 @@ TEST_CASE(multinomial_int64_test)
auto seed_input = mm->add_literal(migraphx::literal(s, data));
// static size
auto rand_dummy =
mm->add_literal(migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}});
auto rand_dummy = mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::float_type, {batch_size, sample_size}},
std::vector<float>(batch_size * sample_size)});
auto randoms = mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
mm->add_instruction(migraphx::make_op("multinomial", {{"dtype", dtype}}), cdf, randoms);
auto prog = optimize_onnx("multinomial_int64_test.onnx");
......@@ -5542,6 +5597,54 @@ TEST_CASE(qlinearadd_test)
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearaveragepool_notset_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.5}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {0}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.5}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {10}});
auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::int8_type, {1, 1, 5, 5}});
auto scale_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 5, 5}}}), sc_x);
auto z_pt_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 5, 5}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y =
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {2, 2, 2, 2}},
{"stride", {2, 2}},
{"lengths", {6, 6}}}),
fp_x);
fp_y = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {1, 1}}, {"ends", {2, 2}}}), fp_y);
auto scale_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 1, 1}}}), sc_y);
auto z_pt_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 1, 1}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearaveragepool_notset_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(qlinearconv_test)
{
migraphx::program p;
......@@ -5642,6 +5745,46 @@ TEST_CASE(qlinearglobalavgpool_test)
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearleakyrelu_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::int8_type, {64}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {0}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {10}});
auto scale_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_x);
auto z_pt_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y = mm->add_instruction(migraphx::make_op("leaky_relu", {{"alpha", 1.1}}), fp_x);
auto scale_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_y);
auto z_pt_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearleakyrelu_test.onnx");
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearmatmul_1D_test)
{
migraphx::program p;
......@@ -5754,6 +5897,99 @@ TEST_CASE(qlinearmatmul_2D_test)
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearmul_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto a = mm->add_parameter("A", {migraphx::shape::uint8_type, {64}});
auto b = mm->add_parameter("B", {migraphx::shape::uint8_type, {64}});
auto sc_a = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_a = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {0}});
auto sc_b = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_b = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {16}});
auto sc_c = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_c = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {100}});
auto scale_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_a);
auto z_pt_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_a);
auto fp_a =
mm->add_instruction(migraphx::make_op("dequantizelinear"), a, scale_a_bcast, z_pt_a_bcast);
auto scale_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_b);
auto z_pt_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_b);
auto fp_b =
mm->add_instruction(migraphx::make_op("dequantizelinear"), b, scale_b_bcast, z_pt_b_bcast);
auto fp_c = mm->add_instruction(migraphx::make_op("mul"), fp_a, fp_b);
auto scale_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_c);
auto z_pt_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_c);
auto c =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_c, scale_c_bcast, z_pt_c_bcast);
mm->add_return({c});
auto prog = migraphx::parse_onnx("qlinearmul_test.onnx");
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearsigmoid_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::int8_type, {64}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {0}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.0035}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {-128}});
auto scale_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_x);
auto z_pt_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y = mm->add_instruction(migraphx::make_op("sigmoid"), fp_x);
auto scale_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_y);
auto z_pt_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearsigmoid_test.onnx");
EXPECT(p.sort() == prog.sort());
}
migraphx::instruction_ref insert_quantizelinear_clip(migraphx::module& m,
const migraphx::instruction_ref ins,
const migraphx::instruction_ref round,
......@@ -5788,9 +6024,9 @@ TEST_CASE(quantizelinear_test)
auto l1_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto s = round->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, round, s, 0, 255);
auto nearbyint = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto s = nearbyint->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, nearbyint, s, 0, 255);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::uint8_type)}}),
......@@ -5813,9 +6049,9 @@ TEST_CASE(quantizelinear_int32_test)
{{"target_type", migraphx::to_value(migraphx::shape::float_type)}}),
l0);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto s = round->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, round, s, 0, 255);
auto nearbyint = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto s = nearbyint->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, nearbyint, s, 0, 255);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::uint8_type)}}),
......@@ -5835,7 +6071,7 @@ TEST_CASE(quantizelinear_zero_point_test)
auto l1_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto round = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto l2_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l2);
l2_mbcast = mm->add_instruction(
......@@ -5868,7 +6104,7 @@ migraphx::program make_quantizelinear_axis_prog()
migraphx::make_op("broadcast", {{"axis", axis}, {"out_lens", input_lens}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_bcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto round = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto l2_bcast = mm->add_instruction(
migraphx::make_op("broadcast", {{"axis", axis}, {"out_lens", input_lens}}), l2);
l2_bcast = mm->add_instruction(
......@@ -6557,9 +6793,8 @@ TEST_CASE(resize_nonstd_input_test)
auto tx =
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), inx);
mm->add_instruction(migraphx::make_op("undefined"));
auto tx_cont = mm->add_instruction(migraphx::make_op("contiguous"), tx);
auto lrsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {8}}}), tx_cont);
auto lrsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {8}}}), tx);
auto r = mm->add_instruction(migraphx::make_op("gather", {{"axis", 0}}), lrsp, li);
mm->add_return({r});
......@@ -6998,7 +7233,7 @@ TEST_CASE(round_test)
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::double_type, {10, 5}});
mm->add_instruction(migraphx::make_op("round"), input);
mm->add_instruction(migraphx::make_op("nearbyint"), input);
auto prog = optimize_onnx("round_test.onnx");
EXPECT(p == prog);
......@@ -7042,20 +7277,35 @@ TEST_CASE(scatter_none_test)
EXPECT(p == prog);
}
TEST_CASE(scatternd_test)
void scatternd_test_base(const std::string& reduction, const std::string& onnx_file)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}});
auto l1 = mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}});
auto l2 = mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}});
auto r = mm->add_instruction(migraphx::make_op("scatternd_none"), l0, l1, l2);
auto r = mm->add_instruction(migraphx::make_op("scatternd_" + reduction), l0, l1, l2);
mm->add_return({r});
auto prog = migraphx::parse_onnx("scatternd_test.onnx");
auto prog = migraphx::parse_onnx(onnx_file);
EXPECT(p == prog);
}
TEST_CASE(scatternd_test) { scatternd_test_base("none", "scatternd_test.onnx"); }
TEST_CASE(scatternd_add_test) { scatternd_test_base("add", "scatternd_add_test.onnx"); }
TEST_CASE(scatternd_mul_test) { scatternd_test_base("mul", "scatternd_mul_test.onnx"); }
TEST_CASE(scatternd_max_test) { scatternd_test_base("max", "scatternd_max_test.onnx"); }
TEST_CASE(scatternd_min_test) { scatternd_test_base("min", "scatternd_min_test.onnx"); }
TEST_CASE(scatternd_invalid_reduction_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("scatternd_invalid_reduction_test.onnx"); }));
}
TEST_CASE(scatternd_dyn_test)
{
// dynamic input.
......@@ -7079,34 +7329,6 @@ TEST_CASE(scatternd_dyn_test)
EXPECT(p == prog);
}
TEST_CASE(scatternd_add_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}});
auto l1 = mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}});
auto l2 = mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}});
auto r = mm->add_instruction(migraphx::make_op("scatternd_add"), l0, l1, l2);
mm->add_return({r});
auto prog = migraphx::parse_onnx("scatternd_add_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(scatternd_mul_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}});
auto l1 = mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}});
auto l2 = mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}});
auto r = mm->add_instruction(migraphx::make_op("scatternd_mul"), l0, l1, l2);
mm->add_return({r});
auto prog = migraphx::parse_onnx("scatternd_mul_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(selu_test)
{
migraphx::program p;
......@@ -7654,6 +7876,25 @@ TEST_CASE(slice_var_input_dyn1)
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_default_steps)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto data =
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {{3, 8}, {2, 2}}});
auto starts = mm->add_parameter("starts", migraphx::shape{migraphx::shape::int64_type, {2}});
auto ends = mm->add_parameter("ends", migraphx::shape{migraphx::shape::int64_type, {2}});
auto axes = mm->add_parameter("axes", migraphx::shape{migraphx::shape::int64_type, {2}});
mm->add_literal({{migraphx::shape::int64_type, {2}}, {1, 1}});
auto ret = mm->add_instruction(migraphx::make_op("slice"), data, starts, ends, axes);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {3, 8};
auto prog = parse_onnx("slice_var_input_default_steps.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_steps_error)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("slice_var_input_steps_error.onnx"); }));
......@@ -8365,6 +8606,86 @@ TEST_CASE(undefined_test)
EXPECT(p == prog);
}
TEST_CASE(unique_dynamic_sorted_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {6}};
auto x = mm->add_parameter("X", s);
auto out = mm->add_instruction(migraphx::make_op("unique", {{"sorted", 1}, {"axis", 0}}), x);
auto y = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), out);
auto y_ind = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), out);
auto x_ind = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 2}}), out);
auto count = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 3}}), out);
mm->add_return({y, y_ind, x_ind, count});
auto prog = migraphx::parse_onnx("unique_dynamic_sorted_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(unique_dynamic_sorted_3D_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::int64_type, {4, 4, 4}};
auto x = mm->add_parameter("X", s);
auto out = mm->add_instruction(migraphx::make_op("unique", {{"sorted", 1}}), x);
auto y = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), out);
auto y_ind = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), out);
auto x_ind = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 2}}), out);
auto count = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 3}}), out);
mm->add_return({y, y_ind, x_ind, count});
auto prog = migraphx::parse_onnx("unique_dynamic_sorted_3D_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(unique_sorted_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s_x{migraphx::shape::float_type, {6}};
std::vector<float> x_data = {2, 1, 1, 3, 4, 3};
auto x = mm->add_literal(migraphx::literal(s_x, x_data));
auto out = mm->add_instruction(migraphx::make_op("unique", {{"sorted", 1}, {"axis", 0}}), x);
auto y = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), out);
auto y_idx = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), out);
auto x_idx = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 2}}), out);
auto count = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 3}}), out);
mm->add_return({y, y_idx, x_idx, count});
auto prog = migraphx::parse_onnx("unique_sorted_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(unique_unsorted_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s_x{migraphx::shape::float_type, {6}};
std::vector<float> x_data = {2, 1, 1, 3, 4, 3};
auto x = mm->add_literal(migraphx::literal(s_x, x_data));
auto out = mm->add_instruction(migraphx::make_op("unique", {{"sorted", 0}, {"axis", 0}}), x);
auto y = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), out);
auto y_idx = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), out);
auto x_idx = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 2}}), out);
auto count = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 3}}), out);
mm->add_return({y, y_idx, x_idx, count});
auto prog = migraphx::parse_onnx("unique_unsorted_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(unknown_test)
{
migraphx::program p;
......@@ -8418,6 +8739,27 @@ TEST_CASE(upsample_test)
EXPECT(p == prog);
}
TEST_CASE(upsample_ver7_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sx{migraphx::shape::float_type, {1, 1, 2, 2}};
auto ix = mm->add_parameter("X", sx);
migraphx::shape si{migraphx::shape::int32_type, {1, 1, 4, 6}};
std::vector<int> ind = {0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3};
auto li = mm->add_literal(migraphx::literal(si, ind));
auto rsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {4}}}), ix);
auto r = mm->add_instruction(migraphx::make_op("gather", {{"axis", 0}}), rsp, li);
mm->add_return({r});
auto prog = migraphx::parse_onnx("upsample_ver7_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(unknown_test_throw_print_error)
{
migraphx::onnx_options options;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment