Unverified Commit 3ae5f9ed authored by Chris Austen's avatar Chris Austen Committed by GitHub
Browse files

Merge branch 'develop' into concat2

parents 6d5a34d2 785ff7d7
......@@ -1897,12 +1897,17 @@ TEST_CASE(simplify_split_add_relu_reshape)
auto concatb = m2.add_instruction(b, concat);
auto sum = m2.add_instruction(migraphx::make_op("add"), input, concatb);
auto relu = m2.add_instruction(migraphx::make_op("relu"), sum);
auto rsp = m2.add_instruction(migraphx::make_op("reshape", {{"dims", {3, 8}}}), relu);
auto slc1 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {0}}, {"ends", {4}}}), rsp);
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {0}}, {"ends", {1}}}), relu);
auto rsp1 = m2.add_instruction(migraphx::make_op("reshape", {{"dims", {3, 4}}}), slc1);
auto slc2 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {4}}, {"ends", {8}}}), rsp);
auto add = m2.add_instruction(migraphx::make_op("add"), slc1, slc2);
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {1}}, {"ends", {2}}}), relu);
auto rsp2 = m2.add_instruction(migraphx::make_op("reshape", {{"dims", {3, 4}}}), slc2);
auto add = m2.add_instruction(migraphx::make_op("add"), rsp1, rsp2);
m2.add_instruction(pass_op{}, add);
}
EXPECT(m1.sort() == m2.sort());
......@@ -2323,9 +2328,7 @@ TEST_CASE(simplify_dot_horiz_reshape)
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {0}}, {"ends", {4}}}), dot);
auto y = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {4}}, {"ends", {8}}}), dot);
auto x_cont = m2.add_instruction(migraphx::make_op("contiguous"), x);
auto x_rsp =
m2.add_instruction(migraphx::make_op("reshape", {{"dims", {3, 4, 2, 2}}}), x_cont);
auto x_rsp = m2.add_instruction(migraphx::make_op("reshape", {{"dims", {3, 4, 2, 2}}}), x);
auto y_rsp =
m2.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}, {"steps", {2}}}), y);
auto sum = m2.add_instruction(migraphx::make_op("add"), {x_rsp, y_rsp});
......@@ -2688,12 +2691,8 @@ void reorder_reshape_slice()
{
s = migraphx::shape{migraphx::shape::float_type, {BS, 128, 1920}, {165120, 1, 128}};
}
auto input = m2.add_parameter("input", s);
auto rsp_input = input;
if(TransposeInput)
{
rsp_input = m2.add_instruction(migraphx::make_op("contiguous"), {input});
}
auto input = m2.add_parameter("input", s);
auto rsp_input = input;
std::vector<int64_t> lens = {static_cast<int64_t>(BS), 128, 30, 64};
auto r = m2.add_instruction(migraphx::make_op("reshape", {{"dims", lens}}), rsp_input);
......@@ -2976,9 +2975,8 @@ TEST_CASE(reorder_reshape_slice_multi_rsp)
auto input = m2.add_parameter("input", s);
auto t1 = m2.add_instruction(
migraphx::make_op("transpose", {{"permutation", {2, 0, 3, 1, 4}}}), input);
auto c_t1 = m2.add_instruction(migraphx::make_op("contiguous"), t1);
auto rsp1 =
m2.add_instruction(migraphx::make_op("reshape", {{"dims", {384, 128, 80}}}), c_t1);
m2.add_instruction(migraphx::make_op("reshape", {{"dims", {384, 128, 80}}}), t1);
auto slc0 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {256}}, {"ends", {384}}}), rsp1);
auto slc1 = m2.add_instruction(
......@@ -2993,9 +2991,8 @@ TEST_CASE(reorder_reshape_slice_multi_rsp)
auto dot = m2.add_instruction(migraphx::make_op("dot"), slc2, c_t_slc1);
auto c_t1_1 = m2.add_instruction(migraphx::make_op("contiguous"), t1);
auto rsp2 =
m2.add_instruction(migraphx::make_op("reshape", {{"dims", {12, 32, 128, 80}}}), c_t1_1);
m2.add_instruction(migraphx::make_op("reshape", {{"dims", {12, 32, 128, 80}}}), t1);
auto slc2_1 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {4}}, {"ends", {8}}}), rsp2);
......@@ -3372,9 +3369,8 @@ TEST_CASE(dot_fusion_reshape)
auto s1 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {320}}, {"ends", {640}}}), d);
auto cont0 = m2.add_instruction(migraphx::make_op("contiguous"), s0);
auto r0 =
m2.add_instruction(migraphx::make_op("reshape", {{"dims", {2, 4096, 8, 40}}}), cont0);
m2.add_instruction(migraphx::make_op("reshape", {{"dims", {2, 4096, 8, 40}}}), s0);
m2.add_return({r0, s1});
};
......
......@@ -155,29 +155,187 @@ TEST_CASE(after_split_dyn_broadcast_match)
EXPECT(p0 == p1);
}
TEST_CASE(const_slice_3input)
TEST_CASE(const_slice_2input_ends_axes)
{
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m0.add_parameter("data", s);
auto slice_ins = m0.add_instruction(
auto input = m0.add_parameter("data", s);
migraphx::shape s1{migraphx::shape::int32_type, {1}};
auto input_starts = m0.add_literal(migraphx::literal{s1, {0}});
auto slice_ins = m0.add_instruction(
migraphx::make_op("slice", {{"ends", {3}}, {"axes", {0}}}), input, input_starts);
m0.add_return({slice_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m1.add_parameter("data", s);
auto slice_ins = m1.add_instruction(
migraphx::make_op("slice", {{"starts", {0}}, {"ends", {3}}, {"axes", {0}}}), input);
m1.add_return({slice_ins});
}
EXPECT(m0 == m1);
}
TEST_CASE(const_slice_2input_starts_axes)
{
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m0.add_parameter("data", s);
migraphx::shape s1{migraphx::shape::int32_type, {1}};
auto input_ends = m0.add_literal(migraphx::literal{s1, {3}});
auto slice_ins = m0.add_instruction(
migraphx::make_op("slice", {{"starts", {0}}, {"axes", {0}}}), input, input_ends);
m0.add_return({slice_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m1.add_parameter("data", s);
auto input = m1.add_parameter("data", s);
auto slice_ins = m1.add_instruction(
migraphx::make_op("slice", {{"starts", {0}}, {"ends", {3}}, {"axes", {0}}}), input);
m1.add_return({slice_ins});
}
EXPECT(m0 == m1);
}
TEST_CASE(const_slice_2input_starts_ends)
{
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m0.add_parameter("data", s);
migraphx::shape s1{migraphx::shape::int32_type, {1}};
auto input_starts = m1.add_literal(migraphx::literal{s1, {0}});
auto input_ends = m1.add_literal(migraphx::literal{s1, {3}});
auto slice_ins = m1.add_instruction(
auto input_axes = m0.add_literal(migraphx::literal{s1, {0}});
auto slice_ins = m0.add_instruction(
migraphx::make_op("slice", {{"starts", {0}}, {"ends", {3}}}), input, input_axes);
m0.add_return({slice_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m1.add_parameter("data", s);
auto slice_ins = m1.add_instruction(
migraphx::make_op("slice", {{"starts", {0}}, {"ends", {3}}, {"axes", {0}}}), input);
m1.add_return({slice_ins});
}
EXPECT(m0 == m1);
}
TEST_CASE(const_slice_3input_axes_only)
{
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m0.add_parameter("data", s);
migraphx::shape s1{migraphx::shape::int32_type, {1}};
auto input_starts = m0.add_literal(migraphx::literal{s1, {0}});
auto input_ends = m0.add_literal(migraphx::literal{s1, {3}});
auto slice_ins = m0.add_instruction(
migraphx::make_op("slice", {{"axes", {0}}}), input, input_starts, input_ends);
m0.add_return({slice_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m1.add_parameter("data", s);
auto slice_ins = m1.add_instruction(
migraphx::make_op("slice", {{"starts", {0}}, {"ends", {3}}, {"axes", {0}}}), input);
m1.add_return({slice_ins});
}
EXPECT(m0 == m1);
}
TEST_CASE(const_slice_3input_ends_only)
{
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m0.add_parameter("data", s);
migraphx::shape s1{migraphx::shape::int32_type, {1}};
auto input_starts = m0.add_literal(migraphx::literal{s1, {0}});
auto input_axes = m0.add_literal(migraphx::literal{s1, {0}});
auto slice_ins = m0.add_instruction(
migraphx::make_op("slice", {{"ends", {3}}}), input, input_starts, input_axes);
m0.add_return({slice_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m1.add_parameter("data", s);
auto slice_ins = m1.add_instruction(
migraphx::make_op("slice", {{"starts", {0}}, {"ends", {3}}, {"axes", {0}}}), input);
m1.add_return({slice_ins});
}
EXPECT(m0 == m1);
}
TEST_CASE(const_slice_3inputs_starts_only)
{
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m0.add_parameter("data", s);
migraphx::shape s1{migraphx::shape::int32_type, {1}};
auto input_ends = m0.add_literal(migraphx::literal{s1, {3}});
auto input_axes = m0.add_literal(migraphx::literal{s1, {0}});
auto slice_ins = m0.add_instruction(
migraphx::make_op("slice", {{"starts", {0}}}), input, input_ends, input_axes);
m0.add_return({slice_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {6, 4, 4}};
auto input = m1.add_parameter("data", s);
auto slice_ins = m1.add_instruction(
migraphx::make_op("slice", {{"starts", {0}}, {"ends", {3}}, {"axes", {0}}}), input);
m1.add_return({slice_ins});
}
EXPECT(m0 == m1);
}
TEST_CASE(const_slice_2input_ends_axes_dyn)
{
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {{6, 6}, {2, 4, {2, 4}}, {2, 4, {2, 4}}}};
auto input = m0.add_parameter("data", s);
migraphx::shape s1{migraphx::shape::int32_type, {1}};
auto input_starts = m0.add_literal(migraphx::literal{s1, {0}});
auto slice_ins = m0.add_instruction(
migraphx::make_op("slice", {{"ends", {3}}, {"axes", {0}}}), input, input_starts);
m0.add_return({slice_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {{6, 6}, {2, 4, {2, 4}}, {2, 4, {2, 4}}}};
auto input = m1.add_parameter("data", s);
auto slice_ins = m1.add_instruction(
migraphx::make_op("slice", {{"starts", {0}}, {"ends", {3}}, {"axes", {0}}}), input);
m1.add_return({slice_ins});
}
run_pass(m1);
EXPECT(m0 == m1);
}
......@@ -237,4 +395,180 @@ TEST_CASE(const_slice_4input)
EXPECT(m0 == m1);
}
TEST_CASE(static_dimensions_of0)
{
// dead_code_elimination will get rid of atan
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {2, 4, 4}};
auto input = m0.add_parameter("data", s);
auto atan_ins = m0.add_instruction(migraphx::make_op("atan"), input);
auto dimensions_of_ins =
m0.add_instruction(migraphx::make_op("dimensions_of", {{"end", 3}}), atan_ins);
m0.add_return({dimensions_of_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {2, 4, 4}};
m1.add_parameter("data", s);
migraphx::shape lit_shape{migraphx::shape::int64_type, {3}};
std::vector<int64_t> lit_data = {2, 4, 4};
auto lit_ins = m1.add_literal(migraphx::literal{lit_shape, lit_data});
m1.add_return({lit_ins});
}
EXPECT(m0 == m1);
}
TEST_CASE(static_dimensions_of1)
{
// dead_code_elimination will get rid of atan
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {{2, 4, {2, 4}}, {4, 4}, {4, 4}}};
auto input = m0.add_parameter("data", s);
auto atan_ins = m0.add_instruction(migraphx::make_op("atan"), input);
auto dimensions_of_ins = m0.add_instruction(
migraphx::make_op("dimensions_of", {{"start", 1}, {"end", 3}}), atan_ins);
m0.add_return({dimensions_of_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {{2, 4, {2, 4}}, {4, 4}, {4, 4}}};
m1.add_parameter("data", s);
migraphx::shape lit_shape{migraphx::shape::int64_type, {2}};
std::vector<int64_t> lit_data = {4, 4};
auto lit_ins = m1.add_literal(migraphx::literal{lit_shape, lit_data});
m1.add_return({lit_ins});
}
EXPECT(m0 == m1);
}
// Does nothing because the dynamic_dimensions from start to end
// are not all fixed
TEST_CASE(static_dimensions_of_nonfixed)
{
// dead_code_elimination will get rid of atan
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {{2, 4, {2, 4}}, {4, 8}, {4, 8}}};
auto input = m0.add_parameter("data", s);
auto atan_ins = m0.add_instruction(migraphx::make_op("atan"), input);
auto dimensions_of_ins = m0.add_instruction(
migraphx::make_op("dimensions_of", {{"start", 1}, {"end", 3}}), atan_ins);
m0.add_return({dimensions_of_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {{2, 4, {2, 4}}, {4, 8}, {4, 8}}};
auto input = m1.add_parameter("data", s);
auto atan_ins = m1.add_instruction(migraphx::make_op("atan"), input);
auto dimensions_of_ins = m1.add_instruction(
migraphx::make_op("dimensions_of", {{"start", 1}, {"end", 3}}), atan_ins);
m1.add_return({dimensions_of_ins});
}
EXPECT(m0 == m1);
}
TEST_CASE(constant_alloc_reshape)
{
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {3, 32}};
auto input = m0.add_parameter("data", s);
migraphx::shape lit_s{migraphx::shape::int64_type, {3}};
auto literal_ins = m0.add_literal(migraphx::literal{lit_s, {3, 4, 8}});
auto alloc_ins = m0.add_instruction(
migraphx::make_op("allocate", {{"buf_type", migraphx::shape::float_type}}),
literal_ins);
auto reshape_ins = m0.add_instruction(migraphx::make_op("reshape"), input, alloc_ins);
m0.add_return({reshape_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {3, 32}};
auto input = m1.add_parameter("data", s);
auto reshape_ins =
m1.add_instruction(migraphx::make_op("reshape", {{"dims", {3, 4, 8}}}), input);
m1.add_return({reshape_ins});
}
EXPECT(m0 == m1);
}
// A more contrived example to test static dimensions_of and constant reshape
TEST_CASE(static_dimensions_of_to_constant_alloc_reshape)
{
migraphx::module m0;
{
migraphx::shape input_shape{migraphx::shape::float_type, {3, 4, 8}};
auto x_param = m0.add_parameter("x", input_shape);
auto dimensions_of_ins =
m0.add_instruction(migraphx::make_op("dimensions_of", {{"end", 3}}), x_param);
migraphx::shape lit_shape{migraphx::shape::int64_type, {1}};
auto lit0 = m0.add_literal(migraphx::literal{lit_shape, {0}});
auto gather_ins =
m0.add_instruction(migraphx::make_op("gather", {{"axis", 0}}), dimensions_of_ins, lit0);
auto slice_ins = m0.add_instruction(
migraphx::make_op("slice", {{"starts", {1}}, {"ends", {3}}, {"axes", {0}}}),
dimensions_of_ins);
auto reduce_ins =
m0.add_instruction(migraphx::make_op("reduce_prod", {{"axes", {0}}}), slice_ins);
auto concat_ins =
m0.add_instruction(migraphx::make_op("concat", {{"axis", 0}}), gather_ins, reduce_ins);
auto alloc_ins = m0.add_instruction(
migraphx::make_op("allocate", {{"buf_type", migraphx::shape::float_type}}), concat_ins);
auto reshape_ins = m0.add_instruction(migraphx::make_op("reshape"), x_param, alloc_ins);
m0.add_return({reshape_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {3, 4, 8}};
auto x_param = m1.add_parameter("x", s);
auto reshape_ins =
m1.add_instruction(migraphx::make_op("reshape", {{"dims", {3, 32}}}), x_param);
m1.add_return({reshape_ins});
}
EXPECT(m0 == m1);
}
TEST_CASE(const_alloc_fill)
{
migraphx::module m0;
{
migraphx::shape val_shape{migraphx::shape::int64_type, {1}, {0}};
std::vector<int64_t> lit_data = {3};
auto value_lit = m0.add_literal(migraphx::literal{val_shape, lit_data});
migraphx::shape lit_s{migraphx::shape::int64_type, {3}};
auto output_dim_lit = m0.add_literal(migraphx::literal{lit_s, {3, 4, 4}});
auto alloc_ins = m0.add_instruction(
migraphx::make_op("allocate", {{"buf_type", migraphx::shape::int64_type}}),
output_dim_lit);
auto ret = m0.add_instruction(migraphx::make_op("fill"), value_lit, alloc_ins);
m0.add_return({ret});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape lit_shape{migraphx::shape::int64_type, {3, 4, 4}};
std::vector<int64_t> lit_data(3 * 4 * 4, 3);
auto ret = m1.add_literal(migraphx::literal{lit_shape, lit_data});
m1.add_return({ret});
}
EXPECT(m0 == m1);
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -44,20 +44,34 @@ void run_pass(migraphx::module& m)
sqdq.apply(m);
}
migraphx::instruction_ref add_quantize_op(migraphx::module& m,
const std::string& name,
migraphx::instruction_ref x,
migraphx::instruction_ref broadcast_scale(migraphx::module& m,
migraphx::instruction_ref scale,
migraphx::instruction_ref shift)
const std::vector<std::size_t>& out_lens,
std::size_t axis)
{
auto lens = x->get_shape().lens();
if(scale->get_shape().lens() == out_lens)
return scale;
migraphx::instruction_ref scale_mb;
if(scale->get_shape().lens().front() == 1)
auto scale_lens = scale->get_shape().lens();
if(scale_lens.front() == 1 and scale_lens.size() == 1)
scale_mb =
m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", lens}}), scale);
m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", out_lens}}), scale);
else
scale_mb = m.add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", lens}}), scale);
migraphx::make_op("broadcast", {{"axis", axis}, {"out_lens", out_lens}}), scale);
return scale_mb;
}
migraphx::instruction_ref add_quantize_op(migraphx::module& m,
const std::string& name,
migraphx::instruction_ref x,
migraphx::instruction_ref scale,
migraphx::instruction_ref shift,
std::size_t q_axis = 1)
{
auto lens = x->get_shape().lens();
auto scale_mb = broadcast_scale(m, scale, lens, q_axis);
auto shift_mb =
m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", lens}}), shift);
return m.add_instruction(migraphx::make_op(name), x, scale_mb, shift_mb);
......@@ -66,19 +80,26 @@ migraphx::instruction_ref add_quantize_op(migraphx::module& m,
migraphx::instruction_ref add_quantize_op(migraphx::module& m,
const std::string& name,
migraphx::instruction_ref x,
migraphx::instruction_ref scale)
migraphx::instruction_ref scale,
std::size_t q_axis = 1)
{
auto lens = x->get_shape().lens();
migraphx::instruction_ref scale_mb;
if(scale->get_shape().lens().front() == 1)
scale_mb =
m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", lens}}), scale);
else
scale_mb = m.add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", lens}}), scale);
auto lens = x->get_shape().lens();
auto scale_mb = broadcast_scale(m, scale, lens, q_axis);
return m.add_instruction(migraphx::make_op(name), x, scale_mb);
}
migraphx::instruction_ref add_scale_mul(migraphx::module& m,
migraphx::instruction_ref scale1,
migraphx::instruction_ref scale2,
std::size_t axis1,
std::size_t axis2,
const std::vector<std::size_t>& out_lens)
{
auto scale1_mb = broadcast_scale(m, scale1, out_lens, axis1);
auto scale2_mb = broadcast_scale(m, scale2, out_lens, axis2);
return m.add_instruction(migraphx::make_op("mul"), scale1_mb, scale2_mb);
}
TEST_CASE(remove_qdq)
{
migraphx::shape sh1{migraphx::shape::float_type, {100, 100}};
......@@ -159,18 +180,62 @@ TEST_CASE(dot)
m1.add_return({dot});
}
migraphx::module m2;
{
auto t1 = m2.add_parameter("t1", sh1);
auto t2 = m2.add_parameter("t2", sh2);
auto scale = m2.add_literal(0.5f);
auto zero = m2.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2);
auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, dot->get_shape().lens());
auto d3 = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
m2.add_return({d3});
}
run_pass(m1);
EXPECT(m1 == m2);
}
TEST_CASE(dot_multi_scale)
{
migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};
migraphx::shape sh3{migraphx::shape::float_type, {1280}};
migraphx::module m1;
{
auto t1 = m1.add_parameter("t1", sh1);
auto t2 = m1.add_parameter("t2", sh2);
auto scale1 = m1.add_literal(migraphx::generate_literal(sh3, 0));
auto scale2 = m1.add_literal(0.4f);
auto zero = m1.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m1, "quantizelinear", t1, scale1, zero, 0);
auto d1 = add_quantize_op(m1, "dequantizelinear", q1, scale1, zero, 0);
auto q2 = add_quantize_op(m1, "quantizelinear", t2, scale2, zero, 1);
auto d2 = add_quantize_op(m1, "dequantizelinear", q2, scale2, zero, 1);
auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
m1.add_return({dot});
}
migraphx::module m2;
{
auto t1 = m2.add_parameter("t1", sh1);
auto t2 = m2.add_parameter("t2", sh2);
auto scale = m2.add_literal(0.5f);
auto scale1 = m2.add_literal(migraphx::generate_literal(sh3, 0));
auto scale2 = m2.add_literal(0.4f);
auto zero = m2.add_literal(std::int8_t{0});
auto scale1 = m2.add_literal(0.25f);
auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2);
auto d3 = add_quantize_op(m2, "dequantizelinear", dot, scale1);
auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale1, zero, 0);
auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale2, zero, 1);
auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2);
auto out_scale = add_scale_mul(m2, scale1, scale2, 0, 1, dot->get_shape().lens());
auto d3 = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
m2.add_return({d3});
}
......@@ -178,6 +243,180 @@ TEST_CASE(dot)
EXPECT(m1 == m2);
}
TEST_CASE(dot_broadcasted)
{
migraphx::shape sh1{migraphx::shape::float_type, {2, 1280, 1000}};
migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};
migraphx::module m1;
{
auto t1 = m1.add_parameter("t1", sh1);
auto t2 = m1.add_parameter("t2", sh2);
auto scale = m1.add_literal(0.5f);
auto zero = m1.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
auto d1 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
auto q2 = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
auto d2 = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
auto d2_mb = m1.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {2, 1000, 1024}}}), d2);
auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2_mb);
m1.add_return({dot});
}
migraphx::module m2;
{
auto t1 = m2.add_parameter("t1", sh1);
auto t2 = m2.add_parameter("t2", sh2);
auto scale = m2.add_literal(0.5f);
auto zero = m2.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
auto q2_mb = m2.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {2, 1000, 1024}}}), q2);
auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2_mb);
auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, dot->get_shape().lens());
auto d3 = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
m2.add_return({d3});
}
run_pass(m1);
EXPECT(m1 == m2);
}
TEST_CASE(dot_transposed)
{
migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
migraphx::shape sh2{migraphx::shape::float_type, {1024, 1000}};
migraphx::module m1;
{
auto t1 = m1.add_parameter("t1", sh1);
auto t2 = m1.add_parameter("t2", sh2);
auto scale = m1.add_literal(0.5f);
auto zero = m1.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
auto d1 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
auto q2 = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
auto d2 = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
auto d2_t =
m1.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), d2);
auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2_t);
m1.add_return({dot});
}
migraphx::module m2;
{
auto t1 = m2.add_parameter("t1", sh1);
auto t2 = m2.add_parameter("t2", sh2);
auto scale = m2.add_literal(0.5f);
auto zero = m2.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
auto q2_t =
m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), q2);
auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2_t);
auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, dot->get_shape().lens());
auto d3 = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
m2.add_return({d3});
}
run_pass(m1);
EXPECT(m1 == m2);
}
TEST_CASE(dot_multi_scale_transposed_broadcasted)
{
migraphx::shape sh1{migraphx::shape::float_type, {2, 3, 1280, 1000}};
migraphx::shape sh2{migraphx::shape::float_type, {1024, 1000}};
migraphx::shape sh3{migraphx::shape::float_type, {1280}};
migraphx::shape sh4{migraphx::shape::float_type, {1024}};
migraphx::module m1;
{
auto t1 = m1.add_parameter("t1", sh1);
auto t2 = m1.add_parameter("t2", sh2);
auto scale1 = m1.add_literal(migraphx::generate_literal(sh3, 0));
auto scale2 = m1.add_literal(migraphx::generate_literal(sh4, 0));
auto zero = m1.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m1, "quantizelinear", t1, scale1, zero, 2);
auto d1 = add_quantize_op(m1, "dequantizelinear", q1, scale1, zero, 2);
auto q2 = add_quantize_op(m1, "quantizelinear", t2, scale2, zero, 0);
auto d2 = add_quantize_op(m1, "dequantizelinear", q2, scale2, zero, 0);
auto d2_t =
m1.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), d2);
auto d2_mb = m1.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {2, 3, 1000, 1024}}}), d2_t);
auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2_mb);
m1.add_return({dot});
}
migraphx::module m2;
{
auto t1 = m2.add_parameter("t1", sh1);
auto t2 = m2.add_parameter("t2", sh2);
auto scale1 = m2.add_literal(migraphx::generate_literal(sh3, 0));
auto scale2 = m2.add_literal(migraphx::generate_literal(sh4, 0));
auto zero = m2.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale1, zero, 2);
auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale2, zero, 0);
auto q2_t =
m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), q2);
auto q2_mb = m2.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {2, 3, 1000, 1024}}}), q2_t);
auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2_mb);
auto out_scale = add_scale_mul(m2, scale1, scale2, 2, 3, dot->get_shape().lens());
auto d3 = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
m2.add_return({d3});
}
run_pass(m1);
EXPECT(m1 == m2);
}
TEST_CASE(dot_multi_scale_unsupported_axis)
{
migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};
migraphx::shape sh3{migraphx::shape::float_type, {1000}};
migraphx::module m1;
{
auto t1 = m1.add_parameter("t1", sh1);
auto t2 = m1.add_parameter("t2", sh2);
auto scale1 = m1.add_literal(migraphx::generate_literal(sh3, 0));
auto scale2 = m1.add_literal(0.4f);
auto zero = m1.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m1, "quantizelinear", t1, scale1, zero, 1);
auto d1 = add_quantize_op(m1, "dequantizelinear", q1, scale1, zero, 1);
auto q2 = add_quantize_op(m1, "quantizelinear", t2, scale2, zero, 1);
auto d2 = add_quantize_op(m1, "dequantizelinear", q2, scale2, zero, 1);
auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
m1.add_return({dot});
}
migraphx::module m2;
{
auto t1 = m2.add_parameter("t1", sh1);
auto t2 = m2.add_parameter("t2", sh2);
auto dot = m2.add_instruction(migraphx::make_op("dot"), t1, t2);
m2.add_return({dot});
}
run_pass(m1);
EXPECT(m1 == m2);
}
TEST_CASE(dot_non_zero_point)
{
migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
......@@ -269,18 +508,18 @@ TEST_CASE(dot_add)
migraphx::module m2;
{
auto t1 = m2.add_parameter("t1", sh1);
auto t2 = m2.add_parameter("t2", sh2);
auto ab = m2.add_parameter("ab", sh3);
auto scale = m2.add_literal(0.5f);
auto zero = m2.add_literal(std::int8_t{0});
auto scale1 = m2.add_literal(0.25f);
auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2);
auto d3 = add_quantize_op(m2, "dequantizelinear", dot, scale1);
auto add = m2.add_instruction(migraphx::make_op("add"), d3, ab);
auto t1 = m2.add_parameter("t1", sh1);
auto t2 = m2.add_parameter("t2", sh2);
auto ab = m2.add_parameter("ab", sh3);
auto scale = m2.add_literal(0.5f);
auto zero = m2.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2);
auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, dot->get_shape().lens());
auto d3 = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
auto add = m2.add_instruction(migraphx::make_op("add"), d3, ab);
m2.add_return({add});
}
......@@ -320,26 +559,80 @@ TEST_CASE(conv)
auto weights = m2.add_parameter("weights", s4);
auto scale = m2.add_literal(0.5f);
auto zero = m2.add_literal(std::int8_t{0});
auto scale1 = m2.add_literal(0.25f);
auto q1 = add_quantize_op(m2, "quantizelinear", input, scale, zero);
auto c1 = m2.add_instruction(migraphx::make_op("quant_convolution",
auto q1 = add_quantize_op(m2, "quantizelinear", input, scale, zero);
auto c1 = m2.add_instruction(migraphx::make_op("quant_convolution",
{{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"dilation", {1, 1}},
{"group", 1},
{"padding_mode", 0}}),
q1,
weights);
auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, c1->get_shape().lens());
auto d6 = add_quantize_op(m2, "dequantizelinear", c1, out_scale);
m2.add_return({d6});
}
run_pass(m1);
EXPECT(m1 == m2);
}
TEST_CASE(conv_multi_scale)
{
migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};
migraphx::shape s8{migraphx::shape::float_type, {1280}};
migraphx::module m1;
{
auto input = m1.add_parameter("input", s7);
auto weights = m1.add_parameter("weights", s4);
auto w_scale = m1.add_literal(migraphx::generate_literal(s8, 0));
auto inp_scale = m1.add_literal(0.5f);
auto zero = m1.add_literal(std::int8_t{0});
auto d1 = add_quantize_op(m1, "dequantizelinear", weights, w_scale, zero, 0);
auto q1 = add_quantize_op(m1, "quantizelinear", input, inp_scale, zero);
auto d5 = add_quantize_op(m1, "dequantizelinear", q1, inp_scale, zero);
auto c1 = m1.add_instruction(migraphx::make_op("convolution",
{{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"dilation", {1, 1}},
{"group", 1},
{"padding_mode", 0}}),
q1,
d5,
d1);
m1.add_return({c1});
}
migraphx::module m2;
{
auto input = m2.add_parameter("input", s7);
auto weights = m2.add_parameter("weights", s4);
auto w_scale = m2.add_literal(migraphx::generate_literal(s8, 0));
auto inp_scale = m2.add_literal(0.5f);
auto zero = m2.add_literal(std::int8_t{0});
auto q_inp = add_quantize_op(m2, "quantizelinear", input, inp_scale, zero);
auto c1 = m2.add_instruction(migraphx::make_op("quant_convolution",
{{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"dilation", {1, 1}},
{"group", 1},
{"padding_mode", 0}}),
q_inp,
weights);
auto d6 = add_quantize_op(m2, "dequantizelinear", c1, scale1);
m2.add_return({d6});
auto out_scale = add_scale_mul(m2, inp_scale, w_scale, 1, 1, c1->get_shape().lens());
auto d1 = add_quantize_op(m2, "dequantizelinear", c1, out_scale);
m2.add_return({d1});
}
run_pass(m1);
EXPECT(m1 == m2);
}
TEST_CASE(conv_multi_scale)
TEST_CASE(conv_multi_scale_unsupported_axis)
{
migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};
......@@ -430,20 +723,20 @@ TEST_CASE(conv_bias_add)
auto scale = m2.add_literal(0.5f);
auto zero = m2.add_literal(std::int8_t{0});
auto zero32 = m2.add_literal(std::int32_t{0});
auto scale1 = m2.add_literal(0.25f);
auto d2 = add_quantize_op(m2, "dequantizelinear", bias, scale, zero32);
auto q1 = add_quantize_op(m2, "quantizelinear", input, scale, zero);
auto c1 = m2.add_instruction(migraphx::make_op("quant_convolution",
{{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"dilation", {1, 1}},
{"group", 1},
{"padding_mode", 0}}),
auto d2 = add_quantize_op(m2, "dequantizelinear", bias, scale, zero32);
auto q1 = add_quantize_op(m2, "quantizelinear", input, scale, zero);
auto c1 = m2.add_instruction(migraphx::make_op("quant_convolution",
{{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"dilation", {1, 1}},
{"group", 1},
{"padding_mode", 0}}),
q1,
weights);
auto d6 = add_quantize_op(m2, "dequantizelinear", c1, scale1);
auto b1 = m2.add_instruction(
auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, c1->get_shape().lens());
auto d6 = add_quantize_op(m2, "dequantizelinear", c1, out_scale);
auto b1 = m2.add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
auto a1 = m2.add_instruction(migraphx::make_op("add"), d6, b1);
m2.add_return({a1});
......@@ -495,6 +788,7 @@ TEST_CASE(conv_pooling_dot)
{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"lengths", {7, 7}},
{"dilations", {1, 1}},
{"ceil_mode", 0}}),
a1);
auto fl = m1.add_instruction(migraphx::make_op("flatten", {{"axis", 1}}), ap);
......@@ -519,22 +813,21 @@ TEST_CASE(conv_pooling_dot)
auto scale = m2.add_literal(0.5f);
auto zero = m2.add_literal(std::int8_t{0});
auto zero32 = m2.add_literal(std::int32_t{0});
auto scale1 = m2.add_literal(0.25f);
auto scale2 = m2.add_literal(0.25f);
auto d2 = add_quantize_op(m2, "dequantizelinear", bias, scale, zero32);
auto d3 = add_quantize_op(m2, "dequantizelinear", ab, scale, zero);
auto q1 = add_quantize_op(m2, "quantizelinear", input, scale, zero);
auto c1 = m2.add_instruction(migraphx::make_op("quant_convolution",
{{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"dilation", {1, 1}},
{"group", 1},
{"padding_mode", 0}}),
auto d2 = add_quantize_op(m2, "dequantizelinear", bias, scale, zero32);
auto d3 = add_quantize_op(m2, "dequantizelinear", ab, scale, zero);
auto q1 = add_quantize_op(m2, "quantizelinear", input, scale, zero);
auto c1 = m2.add_instruction(migraphx::make_op("quant_convolution",
{{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"dilation", {1, 1}},
{"group", 1},
{"padding_mode", 0}}),
q1,
weights);
auto d5 = add_quantize_op(m2, "dequantizelinear", c1, scale1);
auto bc1 = m2.add_instruction(
auto out_scale1 = add_scale_mul(m2, scale, scale, 1, 1, c1->get_shape().lens());
auto d5 = add_quantize_op(m2, "dequantizelinear", c1, out_scale1);
auto bc1 = m2.add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
auto a1 = m2.add_instruction(migraphx::make_op("add"), d5, bc1);
auto ap =
......@@ -543,12 +836,14 @@ TEST_CASE(conv_pooling_dot)
{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"lengths", {7, 7}},
{"dilations", {1, 1}},
{"ceil_mode", 0}}),
a1);
auto fl = m2.add_instruction(migraphx::make_op("flatten", {{"axis", 1}}), ap);
auto q4 = add_quantize_op(m2, "quantizelinear", fl, scale, zero);
auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q4, db);
auto d9 = add_quantize_op(m2, "dequantizelinear", dot, scale2);
auto fl = m2.add_instruction(migraphx::make_op("flatten", {{"axis", 1}}), ap);
auto q4 = add_quantize_op(m2, "quantizelinear", fl, scale, zero);
auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q4, db);
auto out_scale2 = add_scale_mul(m2, scale, scale, 1, 0, dot->get_shape().lens());
auto d9 = add_quantize_op(m2, "dequantizelinear", dot, out_scale2);
auto mb1 =
m2.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1000}}}), d3);
auto a2 = m2.add_instruction(migraphx::make_op("add"), d9, mb1);
......@@ -603,6 +898,7 @@ TEST_CASE(mobilenet_snippet)
{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"lengths", {7, 7}},
{"dilations", {1, 1}},
{"ceil_mode", 0}}),
d6);
auto q3 = add_quantize_op(mm, "quantizelinear", ap, scale, zero);
......
......@@ -888,9 +888,8 @@ TEST_CASE(optimize_resize)
std::vector<int64_t> mb_dims = {1, 2, 2, 2, 2, 3};
auto mbx =
m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", mb_dims}}), rspx);
auto std_mb = m.add_instruction(migraphx::make_op("contiguous"), mbx);
std::vector<int64_t> orig_dims = {1, 2, 4, 6};
auto rmb = m.add_instruction(migraphx::make_op("reshape", {{"dims", orig_dims}}), std_mb);
auto rmb = m.add_instruction(migraphx::make_op("reshape", {{"dims", orig_dims}}), mbx);
auto r = m.add_instruction(migraphx::make_op("softmax", {{"axis", 1}}), rmb);
m.add_return({r});
......@@ -1300,10 +1299,9 @@ TEST_CASE(transpose_contiguous_reshape_unary)
m2.add_instruction(migraphx::make_op("reshape", {{"dims", {2, 2, 2, 2, 5, 5}}}), x);
auto transpose_ins = m2.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 3, 4, 1, 5, 2}}}), reshape_ins1);
auto relu = m2.add_instruction(migraphx::make_op("relu"), transpose_ins);
auto cont_ins = m2.add_instruction(migraphx::make_op("contiguous"), relu);
auto relu = m2.add_instruction(migraphx::make_op("relu"), transpose_ins);
auto reshape_ins2 =
m2.add_instruction(migraphx::make_op("reshape", {{"dims", {2, 2, 10, 10}}}), cont_ins);
m2.add_instruction(migraphx::make_op("reshape", {{"dims", {2, 2, 10, 10}}}), relu);
m2.add_instruction(pass_op{}, reshape_ins2);
}
EXPECT(m1 == m2);
......@@ -1328,8 +1326,7 @@ TEST_CASE(transpose_contiguous_squeeze_unary)
auto transpose_ins =
m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 3, 1}}}), x);
auto rsqrt = m2.add_instruction(migraphx::make_op("rsqrt"), transpose_ins);
auto cont_ins = m2.add_instruction(migraphx::make_op("contiguous"), rsqrt);
auto sq_ins = m2.add_instruction(migraphx::make_op("squeeze", {{"axes", {1}}}), cont_ins);
auto sq_ins = m2.add_instruction(migraphx::make_op("squeeze", {{"axes", {1}}}), rsqrt);
m2.add_instruction(pass_op{}, sq_ins);
}
EXPECT(m1 == m2);
......@@ -1345,7 +1342,7 @@ TEST_CASE(transpose_contiguous_unsqueeze_unary)
auto cont_ins = m1.add_instruction(migraphx::make_op("contiguous"), transpose_ins);
auto unsq_ins =
m1.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}}), cont_ins);
auto round = m1.add_instruction(migraphx::make_op("round"), unsq_ins);
auto round = m1.add_instruction(migraphx::make_op("nearbyint"), unsq_ins);
m1.add_instruction(pass_op{}, round);
}
run_pass(m1);
......@@ -1354,10 +1351,8 @@ TEST_CASE(transpose_contiguous_unsqueeze_unary)
auto x = m2.add_parameter("x", {migraphx::shape::float_type, {2, 8, 5, 5}});
auto transpose_ins =
m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 3, 1}}}), x);
auto round = m2.add_instruction(migraphx::make_op("round"), transpose_ins);
auto cont_ins = m2.add_instruction(migraphx::make_op("contiguous"), round);
auto unsq_ins =
m2.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}}), cont_ins);
auto round = m2.add_instruction(migraphx::make_op("nearbyint"), transpose_ins);
auto unsq_ins = m2.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}}), round);
m2.add_instruction(pass_op{}, unsq_ins);
}
EXPECT(m1 == m2);
......
......@@ -27,16 +27,21 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_round : verify_program<test_round>
struct gemm_2args_mm_8 : verify_program<gemm_2args_mm_8>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape a_shape{migraphx::shape::float_type, {2, 128, 32}, {4096, 1, 128}};
migraphx::shape b_shape{migraphx::shape::float_type, {32, 32}};
auto a = mm->add_parameter("a", a_shape);
auto b = mm->add_parameter("b", b_shape);
auto bb = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {2, 32, 32}}}), b);
mm->add_instruction(migraphx::make_op("dot"), a, bb);
migraphx::shape s{migraphx::shape::float_type, {2, 3, 4, 6}};
auto param = mm->add_parameter("x", s);
mm->add_instruction(migraphx::make_op("round"), param);
return p;
};
}
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct gemm_softmax_gemm_relu : verify_program<gemm_softmax_gemm_relu>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape m1_shape{migraphx::shape::half_type, {1, 12, 256, 256}};
migraphx::shape m2_shape{migraphx::shape::half_type, {1, 12, 256, 256}};
auto m2_elements = m2_shape.elements();
auto a = mm->add_parameter("1", m1_shape);
auto b = mm->add_parameter("2", m1_shape);
auto b1 = mm->add_parameter("3", m1_shape);
std::vector<float> eights(m2_elements, 0.125);
auto eight = mm->add_literal(migraphx::literal{m2_shape, eights});
std::vector<float> zeros(m2_elements, 0);
auto zero = mm->add_literal(migraphx::literal{m2_shape, zeros});
b = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), b);
auto gemm1 = mm->add_instruction(migraphx::make_op("dot"), a, b);
auto scale = mm->add_instruction(migraphx::make_op("mul"), gemm1, eight);
auto bias = mm->add_instruction(migraphx::make_op("add"), scale, zero);
auto softmax = mm->add_instruction(migraphx::make_op("softmax", {{"axis", 3}}), bias);
auto gemm2 = mm->add_instruction(migraphx::make_op("dot"), softmax, b1);
mm->add_instruction(migraphx::make_op("relu"), gemm2);
return p;
}
};
......@@ -35,7 +35,7 @@ struct test_avg_pooling_1d : verify_program<test_avg_pooling_1d>
auto* mm = p.get_main_module();
auto input =
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 3, 5}});
auto op = migraphx::op::pooling{migraphx::op::pooling_mode::average, {0}, {1}, {3}};
auto op = migraphx::op::pooling{migraphx::op::pooling_mode::average, {0}, {1}, {3}, {1}};
mm->add_instruction(op, input);
return p;
}
......
......@@ -36,7 +36,7 @@ struct test_avg_pooling_3d : verify_program<test_avg_pooling_3d>
auto input =
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 3, 5, 5, 5}});
auto op = migraphx::op::pooling{
migraphx::op::pooling_mode::average, {1, 1, 1}, {3, 3, 3}, {3, 3, 3}};
migraphx::op::pooling_mode::average, {1, 1, 1}, {3, 3, 3}, {3, 3, 3}, {1, 1, 1}};
mm->add_instruction(op, input);
return p;
}
......
......@@ -36,7 +36,7 @@ struct test_avg_pooling_3d_opt : verify_program<test_avg_pooling_3d_opt>
auto input =
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 2, 3, 3, 3}});
auto op = migraphx::op::pooling{
migraphx::op::pooling_mode::average, {0, 0, 0}, {1, 1, 1}, {3, 3, 3}};
migraphx::op::pooling_mode::average, {0, 0, 0}, {1, 1, 1}, {3, 3, 3}, {1, 1, 1}};
mm->add_instruction(op, input);
return p;
}
......
......@@ -37,7 +37,7 @@ struct test_avg_pooling_ceil_3d : verify_program<test_avg_pooling_ceil_3d>
auto input =
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 3, 5, 5, 5}});
auto op = migraphx::op::pooling{
migraphx::op::pooling_mode::average, {1, 1, 1}, {3, 3, 3}, {3, 3, 3}, true};
migraphx::op::pooling_mode::average, {1, 1, 1}, {3, 3, 3}, {3, 3, 3}, {1, 1, 1}, true};
mm->add_instruction(op, input);
return p;
}
......
......@@ -36,7 +36,7 @@ struct test_avg_pooling_pad : verify_program<test_avg_pooling_pad>
auto* mm = p.get_main_module();
auto input =
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 3, 7}});
auto op = migraphx::op::pooling{migraphx::op::pooling_mode::average, {2}, {1}, {3}};
auto op = migraphx::op::pooling{migraphx::op::pooling_mode::average, {2}, {1}, {3}, {1}};
mm->add_instruction(op, input);
return p;
}
......
......@@ -47,7 +47,8 @@ struct test_concat_pooling : verify_program<test_concat_pooling>
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0}},
{"stride", {1, 1}},
{"lengths", {8, 8}}}),
{"lengths", {8, 8}},
{"dilations", {1, 1}}}),
concat_t);
mm->add_instruction(migraphx::make_op("relu"), pooling);
return p;
......
......@@ -76,7 +76,8 @@ struct test_conv_bn_relu_pooling : verify_program<test_conv_bn_relu_pooling>
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1}},
{"stride", {2, 2}},
{"lengths", {3, 3}}}),
{"lengths", {3, 3}},
{"dilations", {1, 1}}}),
relu);
return p;
}
......
......@@ -92,7 +92,8 @@ struct test_conv_bn_relu_pooling2 : verify_program<test_conv_bn_relu_pooling2>
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1}},
{"stride", {2, 2}},
{"lengths", {3, 3}}}),
{"lengths", {3, 3}},
{"dilations", {1, 1}}}),
relu);
return p;
}
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
struct test_lstm_bidirct_3args_layout : verify_program<test_lstm_bidirct_3args_layout>
{
migraphx::program create_program() const
{
std::size_t batch_size = 2;
std::size_t seq_len = 3;
std::size_t hidden_size = 5;
std::size_t input_size = 8;
std::size_t num_dirct = 2;
float clip = 0.0f;
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape in_shape{migraphx::shape::float_type, {batch_size, seq_len, input_size}};
migraphx::shape w_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, input_size}};
migraphx::shape r_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, hidden_size}};
auto seq = mm->add_parameter("seq", in_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
auto hs = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hidden_size},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::bidirectional)},
{"clip", clip}}),
seq,
w,
r);
std::vector<int64_t> perm_hid{2, 0, 1, 3};
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm_hid}}), hs);
return p;
}
std::string section() const { return "rnn"; }
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/op/common.hpp>
struct test_lstm_bidirct_last_layout : verify_program<test_lstm_bidirct_last_layout>
{
migraphx::program create_program() const
{
std::size_t batch_size = 2;
std::size_t seq_len = 3;
std::size_t hidden_size = 5;
std::size_t input_size = 8;
std::size_t num_dirct = 2;
float clip = 0.0f;
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape in_shape{migraphx::shape::float_type, {batch_size, seq_len, input_size}};
migraphx::shape w_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, input_size}};
migraphx::shape r_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, hidden_size}};
migraphx::shape b_shape{migraphx::shape::float_type, {num_dirct, 8 * hidden_size}};
migraphx::shape ih_shape{migraphx::shape::float_type, {batch_size, num_dirct, hidden_size}};
migraphx::shape ic_shape{migraphx::shape::float_type, {batch_size, num_dirct, hidden_size}};
migraphx::shape pph_shape{migraphx::shape::float_type, {num_dirct, 3 * hidden_size}};
auto seq = mm->add_parameter("seq", in_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
auto bias = mm->add_parameter("bias", b_shape);
auto ih = mm->add_parameter("ih", ih_shape);
auto ic = mm->add_parameter("ic", ic_shape);
auto pph = mm->add_parameter("pph", pph_shape);
auto und = mm->add_instruction(migraphx::make_op("undefined"));
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
ih = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ih);
ic = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ic);
auto output = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hidden_size},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::bidirectional)},
{"clip", clip}}),
seq,
w,
r,
bias,
und,
ih,
ic,
pph);
auto last_output = mm->add_instruction(migraphx::make_op("rnn_last_hs_output"), output);
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), last_output);
return p;
}
std::string section() const { return "rnn"; }
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/op/common.hpp>
struct test_lstm_forward_hs_layout : verify_program<test_lstm_forward_hs_layout>
{
migraphx::program create_program() const
{
std::size_t batch_size = 2;
std::size_t seq_len = 3;
std::size_t hidden_size = 5;
std::size_t input_size = 8;
std::size_t num_dirct = 1;
float clip = 0.0f;
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape in_shape{migraphx::shape::float_type, {batch_size, seq_len, input_size}};
migraphx::shape w_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, input_size}};
migraphx::shape r_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, hidden_size}};
migraphx::shape b_shape{migraphx::shape::float_type, {num_dirct, 8 * hidden_size}};
migraphx::shape ih_shape{migraphx::shape::float_type, {batch_size, num_dirct, hidden_size}};
migraphx::shape ic_shape{migraphx::shape::float_type, {batch_size, num_dirct, hidden_size}};
migraphx::shape pph_shape{migraphx::shape::float_type, {num_dirct, 3 * hidden_size}};
auto seq = mm->add_parameter("seq", in_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
auto bias = mm->add_parameter("bias", b_shape);
auto ih = mm->add_parameter("ih", ih_shape);
auto ic = mm->add_parameter("ic", ic_shape);
auto pph = mm->add_parameter("pph", pph_shape);
auto und = mm->add_instruction(migraphx::make_op("undefined"));
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
ih = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ih);
ic = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ic);
auto hs = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hidden_size},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::forward)},
{"clip", clip}}),
seq,
w,
r,
bias,
und,
ih,
ic,
pph);
std::vector<int64_t> perm_hid{2, 0, 1, 3};
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm_hid}}), hs);
return p;
}
std::string section() const { return "rnn"; }
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
struct test_lstm_forward_last_layout : verify_program<test_lstm_forward_last_layout>
{
migraphx::program create_program() const
{
std::size_t batch_size = 2;
std::size_t seq_len = 3;
std::size_t hidden_size = 5;
std::size_t input_size = 8;
std::size_t num_dirct = 1;
float clip = 0.0f;
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape in_shape{migraphx::shape::float_type, {batch_size, seq_len, input_size}};
migraphx::shape w_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, input_size}};
migraphx::shape r_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, hidden_size}};
migraphx::shape b_shape{migraphx::shape::float_type, {num_dirct, 8 * hidden_size}};
migraphx::shape ih_shape{migraphx::shape::float_type, {batch_size, num_dirct, hidden_size}};
migraphx::shape l_shape{migraphx::shape::int32_type, {batch_size}};
migraphx::shape ic_shape{migraphx::shape::float_type, {batch_size, num_dirct, hidden_size}};
migraphx::shape pph_shape{migraphx::shape::float_type, {num_dirct, 3 * hidden_size}};
auto seq = mm->add_parameter("seq", in_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
auto bias = mm->add_parameter("bias", b_shape);
auto ih = mm->add_parameter("ih", ih_shape);
auto len = mm->add_literal(migraphx::literal(l_shape, {1, 2}));
auto ic = mm->add_parameter("ic", ic_shape);
auto pph = mm->add_parameter("pph", pph_shape);
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
ih = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ih);
ic = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), ic);
auto output = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hidden_size},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::forward)},
{"clip", clip}}),
seq,
w,
r,
bias,
len,
ih,
ic,
pph);
auto last_output =
mm->add_instruction(migraphx::make_op("rnn_last_hs_output"), output, len);
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), last_output);
return p;
}
std::string section() const { return "rnn"; }
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
struct test_lstm_reverse_3args_cell_layout : verify_program<test_lstm_reverse_3args_cell_layout>
{
migraphx::program create_program() const
{
std::size_t batch_size = 2;
std::size_t seq_len = 3;
std::size_t hidden_size = 5;
std::size_t input_size = 8;
std::size_t num_dirct = 1;
float clip = 0.0f;
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape in_shape{migraphx::shape::float_type, {batch_size, seq_len, input_size}};
migraphx::shape w_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, input_size}};
migraphx::shape r_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, hidden_size}};
auto seq = mm->add_parameter("seq", in_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
auto hs = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hidden_size},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::reverse)},
{"clip", clip}}),
seq,
w,
r);
auto cell_output = mm->add_instruction(migraphx::make_op("rnn_last_cell_output"), hs);
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), cell_output);
return p;
}
std::string section() const { return "rnn"; }
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
struct test_lstm_reverse_3args_layout : verify_program<test_lstm_reverse_3args_layout>
{
migraphx::program create_program() const
{
std::size_t batch_size = 2;
std::size_t seq_len = 3;
std::size_t hidden_size = 5;
std::size_t input_size = 8;
std::size_t num_dirct = 1;
float clip = 0.0f;
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape in_shape{migraphx::shape::float_type, {batch_size, seq_len, input_size}};
migraphx::shape w_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, input_size}};
migraphx::shape r_shape{migraphx::shape::float_type,
{num_dirct, 4 * hidden_size, hidden_size}};
auto seq = mm->add_parameter("seq", in_shape);
auto w = mm->add_parameter("w", w_shape);
auto r = mm->add_parameter("r", r_shape);
std::vector<int64_t> perm{1, 0, 2};
seq = mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm}}), seq);
auto hs = mm->add_instruction(
migraphx::make_op(
"lstm",
{{"hidden_size", hidden_size},
{"actv_func",
migraphx::to_value(std::vector<migraphx::operation>{migraphx::make_op("sigmoid"),
migraphx::make_op("tanh"),
migraphx::make_op("tanh")})},
{"direction", migraphx::to_value(migraphx::op::rnn_direction::reverse)},
{"clip", clip}}),
seq,
w,
r);
std::vector<int64_t> perm_hid{2, 0, 1, 3};
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", perm_hid}}), hs);
return p;
}
std::string section() const { return "rnn"; }
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment