Commit 3a4d36cf authored by charlie's avatar charlie
Browse files

Merge branch 'develop' of github.com:ROCmSoftwarePlatform/AMDMIGraphX into dyn_model_test

parents 6bec381f e19f78ae
......@@ -64,5 +64,10 @@ operation make_op_from_value(const std::string& name, const value& v)
});
}
operation make_json_op(const std::string& name, const std::string& s)
{
return make_op(name, from_json_string(convert_to_json(s)));
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -141,12 +141,12 @@ void module::set_bypass(bool b) { impl->bypass = b; }
void module::assign(const module& m)
{
// copy the impl
if(!impl)
if(not impl)
impl = std::make_unique<module_impl>();
*impl = *m.impl;
// clear instructions
if(!impl->instructions.empty())
if(not impl->instructions.empty())
{
impl->clear();
}
......@@ -346,7 +346,7 @@ instruction_ref module::replace_instruction(instruction_ref ins, instruction_ref
assert(out->valid(begin()));
}
// Replacement should not be dead code unless its the last instruction
assert(!rep->outputs().empty() or rep == std::prev(end()));
assert(not rep->outputs().empty() or rep == std::prev(end()));
// Output of the original instruction should only be the replacement or empty
assert(ins->outputs().empty() or std::all_of(ins->outputs().begin(),
ins->outputs().end(),
......@@ -385,9 +385,13 @@ instruction_ref module::move_instruction(instruction_ref src, instruction_ref ds
instruction_ref module::move_instructions(instruction_ref src, instruction_ref dst)
{
this->move_instruction(src, dst);
for(auto ins : src->inputs())
this->move_instruction(ins, src);
{
if(not contains(this->impl->instructions, ins))
continue;
this->move_instructions(ins, dst);
}
this->move_instruction(src, dst);
return src;
}
......@@ -598,7 +602,7 @@ instruction_ref module::validate() const
auto inputs = i.inputs();
bool check_order = std::all_of(
inputs.begin(), inputs.end(), [&](auto in) { return has_instruction(in); });
return !i.valid(impl->instructions.begin(), check_order);
return not i.valid(impl->instructions.begin(), check_order);
});
}
......@@ -754,7 +758,7 @@ void module::print_graph(std::ostream& os, bool brief) const
label = to_string(ins->get_operator());
os << "\t" << enclose_name(ins_names.at(ins)) << "[label=" << enclose_name(label) << "]";
os << ";" << std::endl;
if(!ins->inputs().empty())
if(not ins->inputs().empty())
{
for(auto&& arg : ins->inputs())
{
......@@ -788,12 +792,15 @@ static std::string cpp_var_name(const std::string& name)
static void print_make_op(std::ostream& os, const operation& op)
{
os << "migraphx::make_op(" << enclose_name(op.name());
auto v = op.to_value();
if(not v.empty())
{
os << ", "
<< "migraphx::from_json_string(" << enclose_name(to_json_string(v)) << ")";
os << "migraphx::make_json_op(" << enclose_name(op.name());
os << ", " << enclose_name(to_json_string(v));
}
else
{
os << "migraphx::make_op(" << enclose_name(op.name());
}
os << ")";
}
......@@ -905,7 +912,7 @@ module& module::sort()
this->move_instruction(ins, this->begin());
for(auto child : ins->inputs())
{
if(!contains(this->impl->instructions, child))
if(not contains(this->impl->instructions, child))
{
continue;
}
......
......@@ -79,14 +79,14 @@ auto tune_attribute(const std::vector<int64_t>& vec,
{
if(contains(vec_attrs, op::normalize_attribute::include_max))
{
if(!std::equal(result.begin(), result.end(), max_vals.begin(), std::less_equal<>{}))
if(not std::equal(result.begin(), result.end(), max_vals.begin(), std::less_equal<>{}))
{
MIGRAPHX_THROW("TUNE_VECTOR: value out of range!");
}
}
else
{
if(!std::equal(result.begin(), result.end(), max_vals.begin(), std::less<>{}))
if(not std::equal(result.begin(), result.end(), max_vals.begin(), std::less<>{}))
{
MIGRAPHX_THROW("TUNE_VECTOR: value out of range!");
}
......@@ -118,14 +118,15 @@ auto tune_attribute(const std::vector<int64_t>& vec,
{
if(contains(vec_attrs, op::normalize_attribute::include_min))
{
if(!std::equal(min_vals.begin(), min_vals.end(), result.begin(), std::less_equal<>{}))
if(not std::equal(
min_vals.begin(), min_vals.end(), result.begin(), std::less_equal<>{}))
{
MIGRAPHX_THROW("TUNE_VECTOR: attribute out of range!");
}
}
else
{
if(!std::equal(result.begin(), result.end(), min_vals.begin(), std::less<>{}))
if(not std::equal(result.begin(), result.end(), min_vals.begin(), std::less<>{}))
{
MIGRAPHX_THROW("TUNE_VECTOR: attribute out of range!");
}
......@@ -174,7 +175,7 @@ bool normalize_attributes(operation& op, const std::vector<std::size_t>& lens)
tuned = true;
}
}
if(!attrs.contains("normalize_axes"))
if(not attrs.contains("normalize_axes"))
{
return tuned;
}
......
......@@ -97,6 +97,7 @@ struct onnx_parser
shape::dynamic_dimension default_dyn_dim_value = {1, 1, 0};
std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
std::unordered_map<std::string, std::vector<shape::dynamic_dimension>> map_dyn_input_dims;
bool use_dyn_output = false;
bool skip_unknown_operators = false;
int64_t max_loop_iterations = 10;
int64_t opset_version = 13;
......
......@@ -60,8 +60,14 @@ program parse_onnx_from(const onnx_options& options, Ts&&... xs)
{
parser.default_dyn_dim_value = options.default_dyn_dim_value;
}
if(not options.map_input_dims.empty() and not options.map_dyn_input_dims.empty())
{
MIGRAPHX_THROW("PARSE_ONNX_FROM: both map_input_dims and map_dyn_input_dims non-empty, only"
"one should be used");
}
parser.skip_unknown_operators = options.skip_unknown_operators;
parser.max_loop_iterations = options.max_loop_iterations;
parser.use_dyn_output = options.use_dyn_output;
if(options.print_program_on_error)
{
......@@ -80,6 +86,7 @@ program parse_onnx_from(const onnx_options& options, Ts&&... xs)
{
parser.parse_from(std::forward<Ts>(xs)...);
}
return std::move(parser.prog);
}
......
......@@ -187,7 +187,7 @@ operation onnx_parser::load(const std::string& name, const node_info& info) cons
void onnx_parser::parse_undefined(module* mod, const std::string& name)
{
if(!contains(instructions, name))
if(not contains(instructions, name))
{
auto ins = mod->add_instruction(make_op("undefined"));
instructions[name] = ins;
......@@ -256,11 +256,6 @@ int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
{
if(not map_input_dims.empty() and not map_dyn_input_dims.empty())
{
MIGRAPHX_THROW("PARSE_GRAPH: both map_input_dims and map_dyn_input_dims non-empty, only"
"one should be used");
}
std::unordered_map<std::string, instruction_ref> mod_insts;
for(auto&& f : graph.initializer())
{
......@@ -272,7 +267,7 @@ void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
{
const std::string& name = input.name();
// input not in initializer_data, so it is a real input
if(!contains(mod_insts, name))
if(not contains(mod_insts, name))
{
// ONNX specification does not specify how to deal with the
// scenario that a nested subgraph contains a parameter with the
......@@ -359,7 +354,7 @@ void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
all_output_names.begin(),
all_output_names.end(),
std::back_inserter(prog_output_names),
[&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });
[&](const auto& name) { return not(name.empty() or instructions.count(name) == 0); });
std::vector<instruction_ref> output_ins;
std::transform(prog_output_names.begin(),
......@@ -449,7 +444,7 @@ shape onnx_parser::parse_type(const onnx::TypeProto& t,
const std::vector<std::size_t>& input_dims) const
{
shape::type_t shape_type = get_type(t.tensor_type().elem_type());
if(!input_dims.empty())
if(not input_dims.empty())
{
return {shape_type, input_dims};
}
......@@ -516,7 +511,7 @@ shape::type_t get_type(int dtype)
bool is_type_float(shape::type_t dtype)
{
bool r = false;
if(dtype == shape::float_type || dtype == shape::double_type || dtype == shape::half_type)
if(dtype == shape::float_type or dtype == shape::double_type or dtype == shape::half_type)
{
r = true;
}
......
......@@ -42,7 +42,7 @@ void cal_auto_padding_size(onnx_parser::node_info info,
size_t kdims = in_lens.size() - 2;
assert(k_lens.size() == kdims and dilation.size() == kdims);
if(!contains(info.attributes, "auto_pad"))
if(not contains(info.attributes, "auto_pad"))
{
return;
}
......@@ -124,7 +124,7 @@ void tune_padding_size(const value& v,
}
// if padding is symmetric, return directly
if(!is_asym_padding(padding))
if(not is_asym_padding(padding))
{
return;
}
......
......@@ -24,7 +24,7 @@
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -36,28 +36,63 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& parser,
onnx_parser::node_info info,
const std::vector<instruction_ref>& args) const
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
float epsilon = 1e-5f;
float momentum = 0.9f;
op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
float epsilon = 1e-5f;
if(contains(info.attributes, "epsilon"))
{
epsilon = parser.parse_value(info.attributes.at("epsilon")).at<float>();
}
if(contains(info.attributes, "momentum"))
auto x_lens = args[0]->get_shape().lens();
auto x_type = args[0]->get_shape().type();
if(std::any_of(args.cbegin() + 1, args.cend(), [](auto a) {
return a->get_shape().lens().size() != 1;
}))
{
MIGRAPHX_THROW("PARSE_BATCHNORM: argument scale, bias, mean, or var rank != 1");
}
if(x_lens.size() == 1)
{
auto rt = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {0.5}});
auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {epsilon}});
auto n0 = info.add_broadcastable_binary_op("sub", args[0], args[3]);
auto d0 = info.add_broadcastable_binary_op("add", args[4], eps);
auto d1 = info.add_broadcastable_binary_op("pow", d0, rt);
auto div0 = info.add_broadcastable_binary_op("div", n0, d1);
auto r0 = info.add_broadcastable_binary_op("mul", div0, args[1]);
return info.add_broadcastable_binary_op("add", r0, args[2]);
}
else if(x_lens.size() > 2)
{
momentum = parser.parse_value(info.attributes.at("momentum")).at<float>();
// unsqueeze tensors of shape (C) to broadcast correctly
std::vector<int64_t> unsqueeze_axes(x_lens.size() - 2);
std::iota(unsqueeze_axes.begin(), unsqueeze_axes.end(), 1);
auto rt = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {0.5}});
auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {epsilon}});
auto scale_unsqueeze = info.add_instruction(
migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[1]);
auto bias_unsqueeze = info.add_instruction(
migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[2]);
auto mean_unsqueeze = info.add_instruction(
migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[3]);
auto var_unsqueeze = info.add_instruction(
migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[4]);
auto numer = info.add_broadcastable_binary_op("sub", args[0], mean_unsqueeze);
auto var_eps = info.add_broadcastable_binary_op("add", var_unsqueeze, eps);
auto denom = info.add_broadcastable_binary_op("pow", var_eps, rt);
auto div0 = info.add_broadcastable_binary_op("div", numer, denom);
auto r0 = info.add_broadcastable_binary_op("mul", div0, scale_unsqueeze);
return info.add_broadcastable_binary_op("add", r0, bias_unsqueeze);
}
if(contains(info.attributes, "spatial"))
else
{
bn_mode = (parser.parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
? op::batch_norm_inference::spatial
: op::batch_norm_inference::per_activation;
// num dims either 0 or 2
MIGRAPHX_THROW("PARSE_BATCHNORM: rank " + std::to_string(x_lens.size()) +
" input tensor, unhandled data format");
}
op::batch_norm_inference op{epsilon, momentum, bn_mode};
return info.add_instruction(op, args);
}
};
......
......@@ -38,7 +38,7 @@ struct parse_cast : op_parser<parse_cast>
onnx_parser::node_info info,
const std::vector<instruction_ref>& args) const
{
if(!contains(info.attributes, "to"))
if(not contains(info.attributes, "to"))
{
MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
}
......
......@@ -93,7 +93,7 @@ struct parse_constant_fill : op_parser<parse_constant_fill>
}
else if(input_as_shape == 0)
{
if(!contains(info.attributes, "shape"))
if(not contains(info.attributes, "shape"))
{
MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
}
......
......@@ -94,7 +94,7 @@ struct parse_gemm : op_parser<parse_gemm>
out_lens.back() = l2->get_shape().lens().back();
auto l3 = args[2];
auto l3_lens = l3->get_shape().lens();
if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
if(not std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
{
l3 = info.add_instruction(make_op("multibroadcast", {{"out_lens", out_lens}}),
args[2]);
......
......@@ -58,7 +58,6 @@ struct parse_generic_op : op_parser<parse_generic_op>
{"Log", "log"},
{"LRN", "lrn"},
{"Neg", "neg"},
{"NonMaxSuppression", "nonmaxsuppression"},
{"Reciprocal", "recip"},
{"Relu", "relu"},
{"Round", "round"},
......@@ -75,7 +74,7 @@ struct parse_generic_op : op_parser<parse_generic_op>
bool needs_contiguous(const std::string& op_name) const
{
return contains({"flatten", "gather", "nonmaxsuppression", "scatter"}, op_name);
return contains({"flatten", "gather", "scatter"}, op_name);
}
instruction_ref parse(const op_desc& opd,
......
......@@ -31,7 +31,7 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
//! Parser for LpNormalization ONNX operator.
// Parser for LpNormalization ONNX operator.
/*!
Normalizes a tensor by the L1 or L2 norms along a given axis.
Norms that evaluate to 0 are changed to 1 to prevent division by zero.
......
......@@ -67,7 +67,8 @@ struct parse_matmul : op_parser<parse_matmul>
instruction_ref bl0 = l0;
instruction_ref bl1 = l1;
if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
if(not std::equal(
l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
{
auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
......
......@@ -40,9 +40,9 @@ struct parse_mod : op_parser<parse_mod>
std::vector<instruction_ref> args) const
{
std::string mod = "mod";
if(is_type_float(args[0]->get_shape().type()) || is_type_float(args[1]->get_shape().type()))
if(is_type_float(args[0]->get_shape().type()) or is_type_float(args[1]->get_shape().type()))
{
if(!contains(info.attributes, "fmod"))
if(not contains(info.attributes, "fmod"))
{
MIGRAPHX_THROW("Mod operator with float args and fmod=0 invalid");
}
......
......@@ -21,22 +21,29 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_ACOS_HPP
#define MIGRAPHX_GUARD_RTGLIB_ACOS_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/acos.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace onnx {
struct hip_acos : unary_device<hip_acos, device::acos>
struct parse_nonmaxsuppression : op_parser<parse_nonmaxsuppression>
{
std::vector<op_desc> operators() const { return {{"NonMaxSuppression", "nonmaxsuppression"}}; }
instruction_ref parse(const op_desc& opd,
const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
auto op = parser.load(opd.op_name, info);
op.from_value({{"use_dyn_output", parser.use_dyn_output}});
return info.add_instruction(op, args);
}
};
} // namespace gpu
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -37,7 +37,7 @@ static std::vector<std::size_t> nonzero_indices(const std::vector<T>& data)
std::vector<std::size_t> indices;
for(std::size_t i = 0; i < data.size(); ++i)
{
if(!float_equal(data[i], 0))
if(not float_equal(data[i], 0))
indices.push_back(i);
}
......
......@@ -160,7 +160,7 @@ struct parse_pad : op_parser<parse_pad>
if(args.size() == 3)
{
auto val_ins = args.at(2);
if(!val_ins->can_eval())
if(not val_ins->can_eval())
{
MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
}
......
......@@ -157,7 +157,7 @@ struct parse_pooling : op_parser<parse_pooling>
std::vector<int64_t> slice_end;
tune_padding_size(values, paddings, count_include_pad, slice_start);
if(!slice_start.empty())
if(not slice_start.empty())
{
// calculate expected output shape
orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
......@@ -180,7 +180,7 @@ struct parse_pooling : op_parser<parse_pooling>
op.from_value(values);
auto l1 = info.add_instruction(op, l0);
if(!slice_start.empty())
if(not slice_start.empty())
{
std::vector<int64_t> axes(kdims);
std::iota(axes.begin(), axes.end(), 2);
......
......@@ -46,7 +46,7 @@ auto compute_type(shape::type_t t1, shape::type_t t2)
int it1 = t1;
int it2 = t2;
if(!contains(op_order, it1) or !contains(op_order, it2))
if(not contains(op_order, it1) or not contains(op_order, it2))
{
MIGRAPHX_THROW("PARSE_POW: Input data type not supported!");
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment