Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
35e5298e
Unverified
Commit
35e5298e
authored
Nov 09, 2023
by
Charlie Lin
Committed by
GitHub
Nov 09, 2023
Browse files
Handle all slice input variations (#2394)
parent
200c7038
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
728 additions
and
150 deletions
+728
-150
src/include/migraphx/op/normalize_attribute.hpp
src/include/migraphx/op/normalize_attribute.hpp
+2
-0
src/include/migraphx/op/slice.hpp
src/include/migraphx/op/slice.hpp
+322
-136
src/normalize_attributes.cpp
src/normalize_attributes.cpp
+8
-8
src/onnx/parse_slice.cpp
src/onnx/parse_slice.cpp
+3
-0
test/op_shape_test.cpp
test/op_shape_test.cpp
+230
-5
test/ref/slice.cpp
test/ref/slice.cpp
+163
-1
No files found.
src/include/migraphx/op/normalize_attribute.hpp
View file @
35e5298e
...
...
@@ -40,6 +40,8 @@ namespace op {
* 2. use_rank (default) vs use_len:
* `use_rank` sets the max value/index of the attribute as the rank of lens.
* `use_lens` sets the max value/index as the corresponding value in lens at the axes index.
* Uses the dynamic_dimension.max value for dynamic shapes. Returns the original vector
* (no normalization) if any of dynamic_dimension[axes] are not fixed.
* 3. `clip_min` vs. `not_clip_min` (default):
* Clip values less than the minimum to the minimum or not.
* 4. `include_min` vs. `exclude_min` (default):
...
...
src/include/migraphx/op/slice.hpp
View file @
35e5298e
...
...
@@ -38,6 +38,18 @@ namespace op {
/**
* Slice operator that accepts variable axes, starts and ends.
* All of `starts`, `ends`, and `axes` must be supplied by either
* their attribute or an input (but not both).
*
* Valid calls:
* slice(input); axes, starts, ends set
* slice(input, starts); axes, ends set
* slice(input, ends); starts, axes set
* slice(input, axes); starts, ends set
* slice(input, starts, ends); axes set
* slice(input, starts, axes); ends set
* slice(input, ends, axes); starts set
* slice(input, start, ends, axes); none set
*
* Attributes:
* axes: constant axes to slice over (optional)
...
...
@@ -46,8 +58,8 @@ namespace op {
*
* Parameters:
* data: the input tensor to slice (dynamic or static shape)
* input_starts: starting indic
i
es of slice (optional, static shape)
* input_ends: ending indic
i
es of slice (optional, static shape)
* input_starts: starting indices of slice (optional, static shape)
* input_ends: ending indices of slice (optional, static shape)
* input_axes: axes to slice over (optional, static shape)
*/
struct
slice
...
...
@@ -56,6 +68,18 @@ struct slice
std
::
vector
<
int64_t
>
starts
{};
std
::
vector
<
int64_t
>
ends
{};
/**
* Named arrays for the set attribute possibilities.
*/
static
constexpr
std
::
array
<
bool
,
3
>
all_set
=
{
true
,
true
,
true
};
static
constexpr
std
::
array
<
bool
,
3
>
ends_axes
=
{
false
,
true
,
true
};
static
constexpr
std
::
array
<
bool
,
3
>
starts_axes
=
{
true
,
false
,
true
};
static
constexpr
std
::
array
<
bool
,
3
>
starts_ends
=
{
true
,
true
,
false
};
static
constexpr
std
::
array
<
bool
,
3
>
axes_only
=
{
false
,
false
,
true
};
static
constexpr
std
::
array
<
bool
,
3
>
ends_only
=
{
false
,
true
,
false
};
static
constexpr
std
::
array
<
bool
,
3
>
starts_only
=
{
true
,
false
,
false
};
static
constexpr
std
::
array
<
bool
,
3
>
none_set
=
{
false
,
false
,
false
};
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
...
...
@@ -63,24 +87,26 @@ struct slice
}
/**
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are
* within limits.
* Ensure that attribute axes is within limits.
* Will attempt to normalize starts and ends; but will use the dynamic_dimension.max
* values for dynamic shapes. This makes it so you have to renormalize for
* non-fixed dynamic_dimensions.
*/
value
attributes
()
const
{
value
normalize
=
value
::
object
{};
normalize
[
"axes"
]
=
value
::
array
{
normalize_attribute
::
include_min
};
normalize
[
"starts"
]
=
value
::
array
{
normalize_attribute
::
clip_max
,
normalize_attribute
::
clip_min
,
normalize_attribute
::
include_max
,
normalize_attribute
::
use_len
,
normalize_attribute
::
include_min
};
normalize
[
"ends"
]
=
value
::
array
{
normalize_attribute
::
clip_max
,
normalize_attribute
::
clip_min
,
normalize_attribute
::
include_max
,
normalize_attribute
::
use_len
,
normalize_attribute
::
include_min
};
return
{{
"normalize_axes"
,
normalize
}};
value
normalize
_axes
=
value
::
object
{};
normalize
_axes
[
"axes"
]
=
value
::
array
{
normalize_attribute
::
include_min
};
normalize
_axes
[
"starts"
]
=
value
::
array
{
normalize_attribute
::
clip_max
,
normalize_attribute
::
clip_min
,
normalize_attribute
::
include_max
,
normalize_attribute
::
use_len
,
normalize_attribute
::
include_min
};
normalize
_axes
[
"ends"
]
=
value
::
array
{
normalize_attribute
::
clip_max
,
normalize_attribute
::
clip_min
,
normalize_attribute
::
include_max
,
normalize_attribute
::
use_len
,
normalize_attribute
::
include_min
};
return
{{
"normalize_axes"
,
normalize
_axes
}};
}
std
::
string
name
()
const
{
return
"slice"
;
}
...
...
@@ -88,7 +114,7 @@ struct slice
/**
* Computes the slice output shape dimensions for given starts, ends,and axes.
* Templated to also handle tensor views.
* Possib
i
ly different type between [in_starts, in_ends] and [in_axes] if in_axes is this
* Possibly different type between [in_starts, in_ends] and [in_axes] if in_axes is this
* object's axes attribute. Assumes in_starts and in_ends are normalized; in_axes are valid.
*/
template
<
class
A
,
class
B
>
...
...
@@ -104,62 +130,160 @@ struct slice
return
new_lens
;
}
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
/// Get the attributes that are non-empty
std
::
array
<
bool
,
3
>
get_set_attributes
()
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
,
3
,
4
);
auto
input_shape
=
inputs
[
0
];
if
(
inputs
.
size
()
==
1
)
std
::
array
<
std
::
vector
<
int64_t
>
,
3
>
attrs
=
{
this
->
starts
,
this
->
ends
,
this
->
axes
};
std
::
array
<
bool
,
3
>
bool_vec
;
std
::
transform
(
attrs
.
cbegin
(),
attrs
.
cend
(),
bool_vec
.
begin
(),
[](
auto
a
)
{
return
not
a
.
empty
();
});
return
bool_vec
;
}
/// Helper function for normalize_compute_shape()
shape
compute_two_or_more
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input_shape
=
inputs
[
0
];
auto
set_attributes
=
get_set_attributes
();
// check that inputs [1, end) are all 1D, have the same
// dimension, and are static
check_shapes
{
inputs
.
begin
()
+
1
,
inputs
.
end
(),
std
::
string
(
"SLICE: inputs (starts, ends, and input_axes)"
),
false
}
.
only_dims
(
1
)
.
same_dims
();
auto
dds
=
input_shape
.
to_dynamic
().
dyn_dims
();
if
(
inputs
.
size
()
==
2
)
{
auto
t
=
input_shape
.
type
();
if
(
input_shape
.
dynamic
()
and
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
not
input_shape
.
dyn_dims
()[
axis
].
is_fixed
();
}))
if
(
set_attributes
==
ends_axes
)
{
MIGRAPHX_THROW
(
"SLICE: slicing is not allowed on non-fixed dynamic input axis "
);
// attr ends and axes set; inputs are (data, input_starts)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
axes
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: 2 input and attributes mismatch"
);
}
std
::
for_each
(
axes
.
cbegin
(),
axes
.
cend
(),
[
&
](
const
auto
&
axis
)
{
dds
.
at
(
axis
)
=
{
0
,
dds
.
at
(
axis
).
max
};
});
}
if
(
input_shape
.
dynamic
()
)
else
if
(
set_attributes
==
starts_axes
)
{
return
shape
{
t
,
lens_calc
(
input_shape
.
min_lens
(),
starts
,
ends
,
axes
),
lens_calc
(
input_shape
.
max_lens
(),
starts
,
ends
,
axes
),
{}};
// attr starts and axes set; inputs are (data, input_ends)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
axes
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: 2 input and attributes mismatch"
);
}
std
::
for_each
(
axes
.
cbegin
(),
axes
.
cend
(),
[
&
](
const
auto
&
axis
)
{
dds
.
at
(
axis
)
=
{
0
,
dds
.
at
(
axis
).
max
};
});
}
else
if
(
set_attributes
==
starts_ends
)
{
// attr starts and ends set; inputs are (data, input_axes)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
starts
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: 2 input and attributes mismatch"
);
}
std
::
transform
(
dds
.
begin
(),
dds
.
end
(),
dds
.
begin
(),
[](
auto
dd
)
{
return
shape
::
dynamic_dimension
{
0
,
dd
.
max
};
});
}
else
{
return
shape
{
t
,
lens_calc
(
input_shape
.
lens
(),
starts
,
ends
,
axes
),
input_shape
.
strides
()};
MIGRAPHX_THROW
(
"SLICE: Invalid 2 input and attributes configuration"
);
}
}
else
else
if
(
inputs
.
size
()
==
3
)
{
// check that starts, ends, and optionally input_axes are all 1D, have the same
// dimension, and are static
check_shapes
{
inputs
.
begin
()
+
1
,
inputs
.
end
(),
std
::
string
(
"SLICE: inputs (starts, ends, and input_axes)"
),
false
}
.
only_dims
(
1
)
.
same_dims
();
auto
dds
=
input_shape
.
to_dynamic
().
dyn_dims
();
if
(
inputs
.
size
()
==
3
)
if
(
set_attributes
==
axes_only
)
{
// attr axes set; inputs are (data, input_starts, input_ends)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
axes
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: inputs starts and ends do not have the same dimension "
"as the axes attribute"
);
MIGRAPHX_THROW
(
"SLICE: 3 input and attributes mismatch"
);
}
std
::
for_each
(
axes
.
cbegin
(),
axes
.
cend
(),
[
&
](
const
auto
&
axis
)
{
dds
.
at
(
axis
)
=
{
0
,
dds
.
at
(
axis
).
max
};
});
}
else
else
if
(
set_attributes
==
ends_only
)
{
// attr ends set; inputs are (data, input_starts, input_axes)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
ends
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: 3 input and attributes mismatch"
);
}
std
::
transform
(
dds
.
begin
(),
dds
.
end
(),
dds
.
begin
(),
[](
auto
dd
)
{
return
shape
::
dynamic_dimension
{
0
,
dd
.
max
};
});
}
else
if
(
set_attributes
==
starts_only
)
{
// if axes is an input, then all the output dimensions could be 0 to the max value
// attr starts set; inputs are (data, input_ends, input_axes)
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
starts
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: 3 input and attributes mismatch"
);
}
std
::
transform
(
dds
.
begin
(),
dds
.
end
(),
dds
.
begin
(),
[](
auto
dd
)
{
return
shape
::
dynamic_dimension
{
0
,
dd
.
max
};
});
}
return
shape
{
input_shape
.
type
(),
dds
};
else
{
MIGRAPHX_THROW
(
"Invalid 3 input and attributes configuration"
);
}
}
else
{
// all 4 inputs (data, inputs_starts, input_ends, input_axes)
std
::
transform
(
dds
.
begin
(),
dds
.
end
(),
dds
.
begin
(),
[](
auto
dd
)
{
return
shape
::
dynamic_dimension
{
0
,
dd
.
max
};
});
}
return
shape
{
input_shape
.
type
(),
dds
};
}
// uses the normalize_axes flag to normalize axes, starts, and ends
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
,
2
,
3
,
4
);
if
(
inputs
.
size
()
==
1
)
{
auto
input_shape
=
inputs
[
0
];
auto
set_attributes
=
get_set_attributes
();
if
(
set_attributes
!=
all_set
)
{
MIGRAPHX_THROW
(
"SLICE 1_arg: Invalid 1 input and attributes configuration"
);
}
// NOTE: make sure to update how normalization works here if this type of slicing is
// changed to be allowed
if
(
input_shape
.
dynamic
()
and
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
not
input_shape
.
dyn_dims
()[
axis
].
is_fixed
();
}))
{
MIGRAPHX_THROW
(
"SLICE 1_arg: slicing is not allowed on non-fixed dynamic input axis "
);
}
if
(
input_shape
.
dynamic
())
{
return
shape
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
min_lens
(),
this
->
starts
,
this
->
ends
,
this
->
axes
),
lens_calc
(
input_shape
.
max_lens
(),
this
->
starts
,
this
->
ends
,
this
->
axes
),
{}};
}
else
{
return
shape
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
lens
(),
this
->
starts
,
this
->
ends
,
this
->
axes
),
input_shape
.
strides
()};
}
}
else
{
return
compute_two_or_more
(
inputs
);
}
}
...
...
@@ -194,14 +318,14 @@ struct slice
/**
* Calculates the starting offset for the sliced tensor (for aliasing).
* Used
when the starts and/or the axes are inputs
.
* Used
for 2-4 inputs to `slice
.
*
* \param s static input shape
* \param input_starts starting indices of slice
* \param ax_vec axes to slice on
*/
template
<
class
IndView
,
class
Axes
>
auto
compute_offset
(
const
shape
&
s
,
const
IndView
&
input_starts
,
const
Axes
&
ax_vec
)
const
template
<
class
T
>
auto
compute_offset
(
const
shape
&
s
,
const
T
&
input_starts
,
const
T
&
ax_vec
)
const
{
auto
ret
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
ax_vec
.
size
();
++
i
)
...
...
@@ -212,106 +336,168 @@ struct slice
return
ret
*
s
.
type_size
();
}
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
normalize_inputs
(
const
shape
&
input_shape
,
const
std
::
vector
<
int64_t
>&
input_starts
,
const
std
::
vector
<
int64_t
>&
input_ends
)
const
{
auto
attrs
=
this
->
attributes
().
at
(
"normalize_axes"
);
return
{{
"input_starts"
,
normalize_indices
(
input_starts
,
this
->
axes
,
input_shape
,
attrs
.
at
(
"starts"
),
"Slice variable input_starts"
)},
{
"input_ends"
,
normalize_indices
(
input_ends
,
this
->
axes
,
input_shape
,
attrs
.
at
(
"ends"
),
"Slice variable input_ends"
)}};
}
/**
* Three input version of the normalize_inputs.
* This one also checks that the input_axes are valid.
* If given, normalize the inputs. Otherwise get from operator attributes.
* Return the values in a map.
*
* Parameters
* input_shape: static shape of the input
* input_starts: optional
* input_ends: optional
* input_ends: optional
*/
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
normalize_
input
s
(
shape
input_shape
,
const
std
::
vector
<
int64_t
>&
input_starts
,
const
std
::
vector
<
int64_t
>&
input_ends
,
const
std
::
vector
<
int64_t
>&
input_axes
)
const
normalize_
starts_ends_axe
s
(
shape
input_shape
,
const
optional
<
std
::
vector
<
int64_t
>
>
&
input_starts
,
const
optional
<
std
::
vector
<
int64_t
>
>
&
input_ends
,
const
optional
<
std
::
vector
<
int64_t
>
>
&
input_axes
)
const
{
auto
attrs
=
this
->
attributes
().
at
(
"normalize_axes"
);
auto
norm_axes
=
normalize_axes
(
input_axes
,
input_shape
,
attrs
.
at
(
"axes"
),
"Slice variable input_axes"
);
return
{{
"input_starts"
,
normalize_indices
(
input_starts
,
norm_axes
,
input_shape
,
attrs
.
at
(
"starts"
),
"Slice variable input_starts"
)},
{
"input_ends"
,
normalize_indices
(
input_ends
,
norm_axes
,
input_shape
,
attrs
.
at
(
"ends"
),
"Slice variable input ends"
)},
{
"input_axes"
,
norm_axes
}};
auto
axes_attrs
=
this
->
attributes
().
at
(
"normalize_axes"
);
std
::
vector
<
int64_t
>
norm_starts
;
std
::
vector
<
int64_t
>
norm_ends
;
std
::
vector
<
int64_t
>
norm_axes
;
if
(
input_axes
)
{
norm_axes
=
normalize_axes
(
input_axes
.
value
(),
input_shape
,
axes_attrs
.
at
(
"axes"
),
"Slice variable input_axes"
);
}
else
{
norm_axes
=
this
->
axes
;
}
if
(
input_starts
)
{
norm_starts
=
normalize_indices
(
input_starts
.
value
(),
norm_axes
,
input_shape
,
axes_attrs
.
at
(
"starts"
),
"Slice variable input_starts"
);
}
else
{
norm_starts
=
this
->
starts
;
}
if
(
input_ends
)
{
norm_ends
=
normalize_indices
(
input_ends
.
value
(),
norm_axes
,
input_shape
,
axes_attrs
.
at
(
"ends"
),
"Slice variable input ends"
);
}
else
{
norm_ends
=
this
->
ends
;
}
return
{{
"norm_starts"
,
norm_starts
},
{
"norm_ends"
,
norm_ends
},
{
"norm_axes"
,
norm_axes
}};
}
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
auto
input
=
args
[
0
];
auto
input_shape
=
input
.
get_shape
();
switch
(
args
.
size
())
if
(
args
.
size
()
==
1
)
{
case
1
:
{
std
::
size_t
offset
=
compute_offset
(
input_shape
);
return
{
dyn_out
.
computed_shape
,
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
case
3
:
{
shape
calc_shape
;
std
::
size_t
offset
=
0
;
visit_all
(
args
[
1
],
args
[
2
])([
&
](
auto
input_starts
,
auto
input_ends
)
{
auto
norm_inputs
=
normalize_inputs
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
input_ends
.
template
to_vector
<
int64_t
>());
offset
=
compute_offset
(
input_shape
,
norm_inputs
.
at
(
"input_starts"
),
this
->
axes
);
calc_shape
=
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
lens
(),
norm_inputs
.
at
(
"input_starts"
),
norm_inputs
.
at
(
"input_ends"
),
this
->
axes
),
input_shape
.
strides
()};
});
return
{
calc_shape
,
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
case
4
:
{
shape
calc_shape
;
std
::
size_t
offset
=
0
;
visit_all
(
args
[
1
],
args
[
2
],
args
[
3
])(
[
&
](
auto
input_starts
,
auto
input_ends
,
auto
input_axes
)
{
auto
norm_inputs
=
normalize_inputs
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
input_ends
.
template
to_vector
<
int64_t
>(),
input_axes
.
template
to_vector
<
int64_t
>());
offset
=
compute_offset
(
input_shape
,
norm_inputs
.
at
(
"input_starts"
),
norm_inputs
.
at
(
"input_axes"
));
calc_shape
=
shape
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
lens
(),
norm_inputs
.
at
(
"input_starts"
),
norm_inputs
.
at
(
"input_ends"
),
norm_inputs
.
at
(
"input_axes"
)),
input_shape
.
strides
()};
else
{
// Note that we re-normalize both the attributes and inputs because of the non-fixed
// dynamic input shape case. It's possible to only re-normalize if slicing over
// non-fixed dynamic_dimensions.
auto
set_attributes
=
get_set_attributes
();
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
norm_inputs
;
if
(
set_attributes
==
ends_axes
)
{
// attr ends and axes set; inputs are (data, input_starts)
args
[
1
].
visit
([
&
](
auto
input_starts
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
this
->
ends
,
this
->
axes
);
});
}
else
if
(
set_attributes
==
starts_axes
)
{
// attr starts and axes set; inputs are (data, input_ends)
args
[
1
].
visit
([
&
](
auto
input_ends
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
this
->
starts
,
input_ends
.
template
to_vector
<
int64_t
>(),
this
->
axes
);
});
}
else
if
(
set_attributes
==
starts_ends
)
{
// attr starts and ends set; inputs are (data, input_axes)
args
[
1
].
visit
([
&
](
auto
input_axes
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
this
->
starts
,
this
->
ends
,
input_axes
.
template
to_vector
<
int64_t
>());
});
}
else
if
(
set_attributes
==
axes_only
)
{
// attr axes set; inputs are (data, input_starts, input_ends)
visit_all
(
args
[
1
],
args
[
2
])([
&
](
auto
input_starts
,
auto
input_ends
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
input_ends
.
template
to_vector
<
int64_t
>(),
this
->
axes
);
});
}
else
if
(
set_attributes
==
ends_only
)
{
// attr ends set; inputs are (data, input_starts, input_axes)
visit_all
(
args
[
1
],
args
[
2
])([
&
](
auto
input_starts
,
auto
input_axes
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
this
->
ends
,
input_axes
.
template
to_vector
<
int64_t
>());
});
}
else
if
(
set_attributes
==
starts_only
)
{
// attr starts set; inputs are (data, input_ends, input_axes)
visit_all
(
args
[
1
],
args
[
2
])([
&
](
auto
input_ends
,
auto
input_axes
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
this
->
starts
,
input_ends
.
template
to_vector
<
int64_t
>(),
input_axes
.
template
to_vector
<
int64_t
>());
});
}
else
{
// no attr set, all inputs
visit_all
(
args
[
1
],
args
[
2
],
args
[
3
])(
[
&
](
auto
input_starts
,
auto
input_ends
,
auto
input_axes
)
{
norm_inputs
=
normalize_starts_ends_axes
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
input_ends
.
template
to_vector
<
int64_t
>(),
input_axes
.
template
to_vector
<
int64_t
>());
});
}
auto
offset
=
compute_offset
(
input_shape
,
norm_inputs
.
at
(
"norm_starts"
),
norm_inputs
.
at
(
"norm_axes"
));
shape
calc_shape
=
shape
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
lens
(),
norm_inputs
.
at
(
"norm_starts"
),
norm_inputs
.
at
(
"norm_ends"
),
norm_inputs
.
at
(
"norm_axes"
)),
input_shape
.
strides
()};
return
{
calc_shape
,
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
default:
{
// Should never get here; covering in case some code change occurs
MIGRAPHX_THROW
(
"SLICE: invalid number of inputs"
);
}
}
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
...
...
src/normalize_attributes.cpp
View file @
35e5298e
...
...
@@ -66,15 +66,15 @@ auto tune_attribute(const std::vector<int64_t>& vec,
{
if
(
input_shape
.
dynamic
())
{
// return the unchanged `vec` if the dynamic_dimensions at `axes` are not fixed
if
(
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
ax
)
{
return
not
input_shape
.
dyn_dims
().
at
(
ax
).
is_fixed
();
}))
{
return
vec
;
}
std
::
transform
(
axes
.
begin
(),
axes
.
end
(),
max_vals
.
begin
(),
[
&
](
auto
i
)
{
const
auto
&
dd
=
input_shape
.
dyn_dims
().
at
(
i
);
if
(
not
dd
.
is_fixed
())
{
MIGRAPHX_THROW
(
"NORMALIZE_ATTR: 'use_lens' on a non-fixed dynamic dimension, axis="
+
std
::
to_string
(
i
));
}
return
dd
.
max
;
return
input_shape
.
dyn_dims
().
at
(
i
).
max
;
});
}
else
...
...
src/onnx/parse_slice.cpp
View file @
35e5298e
...
...
@@ -46,6 +46,9 @@ struct parse_slice : op_parser<parse_slice>
void
always_insert
(
instruction_ref
arg
)
{
op_args
.
insert
(
op_args
.
begin
(),
arg
);
}
/**
* Either insert argument into `this->op_args` or return the constant value of the argument
*/
std
::
vector
<
int64_t
>
insert
(
instruction_ref
arg
)
{
std
::
vector
<
int64_t
>
result
;
...
...
test/op_shape_test.cpp
View file @
35e5298e
...
...
@@ -3233,6 +3233,64 @@ TEST_CASE(slice_static_shape)
TEST_CASE
(
slice_var_inputs_static_shape0
)
{
// attr ends and axes set; inputs are (data, input_starts)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
3
,
3
},
{
0
,
4
},
{
0
,
4
}}},
migraphx
::
make_op
(
"slice"
,
{{
"ends"
,
{
2
,
3
}},
{
"axes"
,
{
1
,
2
}}}),
input
,
starts
);
}
TEST_CASE
(
slice_var_inputs_static_mismatch_error0
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"ends"
,
{
2
,
3
,
4
}},
{
"axes"
,
{
0
,
1
,
2
}}}),
input
,
starts
);
}
TEST_CASE
(
slice_var_inputs_static_shape1
)
{
// attr starts and axes set; inputs are (data, input_ends)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
3
,
3
},
{
0
,
4
},
{
0
,
4
}}},
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
1
}},
{
"axes"
,
{
1
,
2
}}}),
input
,
ends
);
}
TEST_CASE
(
slice_var_inputs_static_mismatch_error1
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
1
,
2
}},
{
"axes"
,
{
0
,
1
,
2
}}}),
input
,
ends
);
}
TEST_CASE
(
slice_var_inputs_static_shape2
)
{
// attr starts and ends set; inputs are (data, input_axes)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
0
,
3
},
{
0
,
4
},
{
0
,
4
}}},
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
1
}},
{
"ends"
,
{
1
,
2
}}}),
input
,
axes
);
}
TEST_CASE
(
slice_var_inputs_static_mismatch_error2
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
1
,
2
}},
{
"ends"
,
{
3
,
4
,
4
}}}),
input
,
axes
);
}
TEST_CASE
(
slice_var_inputs_static_shape3
)
{
// attr axes set; inputs are (data, input_starts, input_ends)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
...
...
@@ -3243,7 +3301,57 @@ TEST_CASE(slice_var_inputs_static_shape0)
ends
);
}
TEST_CASE
(
slice_var_inputs_static_shape1
)
TEST_CASE
(
slice_var_inputs_static_mismatch_error3
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"axes"
,
{
0
,
1
,
2
}}}),
input
,
starts
,
ends
);
}
TEST_CASE
(
slice_var_inputs_static_shape4
)
{
// attr ends set; inputs are (data, input_starts, input_axes)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
0
,
3
},
{
0
,
4
},
{
0
,
4
}}},
migraphx
::
make_op
(
"slice"
,
{{
"ends"
,
{
3
,
4
}}}),
input
,
starts
,
axes
);
}
TEST_CASE
(
slice_var_inputs_static_mismatch_error4
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"ends"
,
{
3
,
3
,
3
}}}),
input
,
starts
,
axes
);
}
TEST_CASE
(
slice_var_inputs_static_shape5
)
{
// attr starts set; inputs are (data, input_ends, input_axes)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
0
,
3
},
{
0
,
4
},
{
0
,
4
}}},
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
2
}}}),
input
,
ends
,
axes
);
}
TEST_CASE
(
slice_var_inputs_static_mismatch_error5
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
1
,
2
}}}),
input
,
ends
,
axes
);
}
TEST_CASE
(
slice_var_inputs_static_shape6
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
...
...
@@ -3257,7 +3365,7 @@ TEST_CASE(slice_var_inputs_static_shape1)
axes
);
}
TEST_CASE
(
slice_var_inputs_static_error
0
)
TEST_CASE
(
slice_var_inputs_static_
mismatch_
error
6
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
4
}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
...
...
@@ -3268,17 +3376,125 @@ TEST_CASE(slice_var_inputs_static_error0)
TEST_CASE
(
slice_var_inputs_dyn_shape0
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
2
,
4
,
{
2
,
4
}},
{
2
,
4
,
{
2
,
4
}}}};
// attr ends and axes set; inputs are (data, input_starts)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
0
,
6
},
{
0
,
6
}}},
migraphx
::
make_op
(
"slice"
,
{{
"ends"
,
{
2
,
3
}},
{
"axes"
,
{
1
,
2
}}}),
input
,
starts
);
}
TEST_CASE
(
slice_var_inputs_dyn_mismatch_error0
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"ends"
,
{
2
,
3
,
4
}},
{
"axes"
,
{
0
,
1
,
2
}}}),
input
,
starts
);
}
TEST_CASE
(
slice_var_inputs_dyn_shape1
)
{
// attr starts and axes set; inputs are (data, input_ends)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
0
,
4
},
{
0
,
4
}}},
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
0
,
6
},
{
0
,
6
}}},
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
1
}},
{
"axes"
,
{
1
,
2
}}}),
input
,
ends
);
}
TEST_CASE
(
slice_var_inputs_dyn_mismatch_error1
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
1
,
2
}},
{
"axes"
,
{
0
,
1
,
2
}}}),
input
,
ends
);
}
TEST_CASE
(
slice_var_inputs_dyn_shape2
)
{
// attr starts and ends set; inputs are (data, input_axes)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
0
,
6
},
{
0
,
6
},
{
0
,
6
}}},
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
1
}},
{
"ends"
,
{
8
,
8
}}}),
input
,
axes
);
}
TEST_CASE
(
slice_var_inputs_dyn_mismatch_error2
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
1
,
2
}},
{
"ends"
,
{
3
,
4
,
4
}}}),
input
,
axes
);
}
TEST_CASE
(
slice_var_inputs_dyn_shape3
)
{
// attr axes set; inputs are (data, input_starts, input_ends)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
0
,
6
},
{
0
,
6
}}},
migraphx
::
make_op
(
"slice"
,
{{
"axes"
,
{
1
,
2
}}}),
input
,
starts
,
ends
);
}
TEST_CASE
(
slice_var_inputs_dyn_shape1
)
TEST_CASE
(
slice_var_inputs_dyn_mismatch_error3
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"axes"
,
{
0
,
1
,
2
}}}),
input
,
starts
,
ends
);
}
TEST_CASE
(
slice_var_inputs_dyn_shape4
)
{
// attr ends set; inputs are (data, input_starts, input_axes)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
0
,
6
},
{
0
,
6
},
{
0
,
6
}}},
migraphx
::
make_op
(
"slice"
,
{{
"ends"
,
{
3
,
4
}}}),
input
,
starts
,
axes
);
}
TEST_CASE
(
slice_var_inputs_dyn_mismatch_error4
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"ends"
,
{
3
,
3
,
3
}}}),
input
,
starts
,
axes
);
}
TEST_CASE
(
slice_var_inputs_dyn_shape5
)
{
// attr starts set; inputs are (data, input_ends, input_axes)
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
expect_shape
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{{
0
,
6
},
{
0
,
6
},
{
0
,
6
}}},
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
2
}}}),
input
,
ends
,
axes
);
}
TEST_CASE
(
slice_var_inputs_dyn_mismatch_error5
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
2
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
0
,
1
,
2
}}}),
input
,
ends
,
axes
);
}
TEST_CASE
(
slice_var_inputs_dyn_shape6
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
2
,
4
,
{
2
,
4
}},
{
2
,
4
,
{
2
,
4
}}}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
...
...
@@ -3292,6 +3508,15 @@ TEST_CASE(slice_var_inputs_dyn_shape1)
axes
);
}
TEST_CASE
(
slice_var_inputs_dyn_mismatch_error6
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{{
3
,
6
},
{
4
,
6
},
{
4
,
6
}}};
migraphx
::
shape
starts
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
ends
{
migraphx
::
shape
::
int64_type
,
{
2
}};
migraphx
::
shape
axes
{
migraphx
::
shape
::
int64_type
,
{
3
}};
throws_shape
(
migraphx
::
make_op
(
"slice"
),
input
,
starts
,
ends
,
axes
);
}
TEST_CASE
(
slice_dyn_shape0
)
{
migraphx
::
shape
input
{
migraphx
::
shape
::
int32_type
,
{{
2
,
3
},
{
7
,
7
},
{
2
,
3
}}};
...
...
test/ref/slice.cpp
View file @
35e5298e
...
...
@@ -157,7 +157,169 @@ TEST_CASE(slice_var_inputs_static2)
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
results_vector
,
gold
));
}
TEST_CASE
(
slice_var_inputs_dyn
)
TEST_CASE
(
slice_var_inputs_dyn0
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s0
{
migraphx
::
shape
::
int32_type
,
{{
2
,
4
,
{
2
,
4
}},
{
2
,
4
,
{
2
,
4
}},
{
3
,
8
}}};
auto
input
=
mm
->
add_parameter
(
"input"
,
s0
);
migraphx
::
shape
s1
{
migraphx
::
shape
::
int32_type
,
{
1
}};
auto
starts
=
mm
->
add_parameter
(
"starts"
,
s1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"slice"
,
{{
"axes"
,
{
2
}},
{
"ends"
,
{
10
}}}),
input
,
starts
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
parameter_map
params
;
migraphx
::
shape
s2
{
migraphx
::
shape
::
int32_type
,
{
2
,
2
,
3
}};
std
::
vector
<
int
>
input_data
(
2
*
2
*
3
);
std
::
iota
(
input_data
.
begin
(),
input_data
.
end
(),
0
);
std
::
vector
<
int
>
start_data
=
{
1
};
params
[
"input"
]
=
migraphx
::
argument
(
s2
,
input_data
.
data
());
params
[
"starts"
]
=
migraphx
::
argument
(
s1
,
start_data
.
data
());
auto
result
=
p
.
eval
(
params
).
back
();
std
::
vector
<
int
>
gold
=
{
1
,
2
,
4
,
5
,
7
,
8
,
10
,
11
};
std
::
vector
<
int
>
results_vector
(
2
*
2
*
2
);
result
.
visit
([
&
](
auto
output
)
{
results_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
results_vector
,
gold
));
}
TEST_CASE
(
slice_var_inputs_dyn1
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s0
{
migraphx
::
shape
::
int32_type
,
{{
2
,
4
,
{
2
,
4
}},
{
2
,
4
,
{
2
,
4
}},
{
3
,
8
}}};
auto
input
=
mm
->
add_parameter
(
"input"
,
s0
);
migraphx
::
shape
s1
{
migraphx
::
shape
::
int32_type
,
{
1
}};
auto
ends
=
mm
->
add_parameter
(
"ends"
,
s1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"slice"
,
{{
"axes"
,
{
2
}},
{
"starts"
,
{
-
5
}}}),
input
,
ends
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
parameter_map
params
;
migraphx
::
shape
s2
{
migraphx
::
shape
::
int32_type
,
{
2
,
2
,
3
}};
std
::
vector
<
int
>
input_data
(
2
*
2
*
3
);
std
::
iota
(
input_data
.
begin
(),
input_data
.
end
(),
0
);
std
::
vector
<
int
>
ends_data
=
{
3
};
params
[
"input"
]
=
migraphx
::
argument
(
s2
,
input_data
.
data
());
params
[
"ends"
]
=
migraphx
::
argument
(
s1
,
ends_data
.
data
());
auto
result
=
p
.
eval
(
params
).
back
();
std
::
vector
<
int
>
gold
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
};
std
::
vector
<
int
>
results_vector
(
2
*
2
*
3
);
result
.
visit
([
&
](
auto
output
)
{
results_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
results_vector
,
gold
));
}
TEST_CASE
(
slice_var_inputs_dyn2
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s0
{
migraphx
::
shape
::
int32_type
,
{{
2
,
4
,
{
2
,
4
}},
{
2
,
4
,
{
2
,
4
}},
{
3
,
8
}}};
auto
input
=
mm
->
add_parameter
(
"input"
,
s0
);
migraphx
::
shape
s1
{
migraphx
::
shape
::
int32_type
,
{
1
}};
auto
axes
=
mm
->
add_parameter
(
"axes"
,
s1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
1
}},
{
"ends"
,
{
-
1
}}}),
input
,
axes
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
parameter_map
params
;
migraphx
::
shape
s2
{
migraphx
::
shape
::
int32_type
,
{
2
,
2
,
3
}};
std
::
vector
<
int
>
input_data
(
2
*
2
*
3
);
std
::
iota
(
input_data
.
begin
(),
input_data
.
end
(),
0
);
std
::
vector
<
int
>
axes_data
=
{
2
};
params
[
"input"
]
=
migraphx
::
argument
(
s2
,
input_data
.
data
());
params
[
"axes"
]
=
migraphx
::
argument
(
s1
,
axes_data
.
data
());
auto
result
=
p
.
eval
(
params
).
back
();
std
::
vector
<
int
>
gold
=
{
1
,
4
,
7
,
10
};
std
::
vector
<
int
>
results_vector
(
2
*
2
*
1
);
result
.
visit
([
&
](
auto
output
)
{
results_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
results_vector
,
gold
));
}
TEST_CASE
(
slice_var_inputs_dyn3
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s0
{
migraphx
::
shape
::
int32_type
,
{{
2
,
4
,
{
2
,
4
}},
{
2
,
4
,
{
2
,
4
}},
{
3
,
8
}}};
auto
input
=
mm
->
add_parameter
(
"input"
,
s0
);
migraphx
::
shape
s1
{
migraphx
::
shape
::
int32_type
,
{
1
}};
auto
starts
=
mm
->
add_parameter
(
"starts"
,
s1
);
auto
ends
=
mm
->
add_parameter
(
"ends"
,
s1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"slice"
,
{{
"axes"
,
{
2
}}}),
input
,
starts
,
ends
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
parameter_map
params
;
migraphx
::
shape
s2
{
migraphx
::
shape
::
int32_type
,
{
2
,
2
,
3
}};
std
::
vector
<
int
>
input_data
(
2
*
2
*
3
);
std
::
iota
(
input_data
.
begin
(),
input_data
.
end
(),
0
);
std
::
vector
<
int
>
starts_data
=
{
1
};
std
::
vector
<
int
>
ends_data
=
{
std
::
numeric_limits
<
int
>::
max
()};
params
[
"input"
]
=
migraphx
::
argument
(
s2
,
input_data
.
data
());
params
[
"starts"
]
=
migraphx
::
argument
(
s1
,
starts_data
.
data
());
params
[
"ends"
]
=
migraphx
::
argument
(
s1
,
ends_data
.
data
());
auto
result
=
p
.
eval
(
params
).
back
();
std
::
vector
<
int
>
gold
=
{
1
,
2
,
4
,
5
,
7
,
8
,
10
,
11
};
std
::
vector
<
int
>
results_vector
(
2
*
2
*
2
);
result
.
visit
([
&
](
auto
output
)
{
results_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
results_vector
,
gold
));
}
TEST_CASE
(
slice_var_inputs_dyn4
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s0
{
migraphx
::
shape
::
int32_type
,
{{
2
,
4
,
{
2
,
4
}},
{
2
,
4
,
{
2
,
4
}},
{
3
,
8
}}};
auto
input
=
mm
->
add_parameter
(
"input"
,
s0
);
migraphx
::
shape
s1
{
migraphx
::
shape
::
int32_type
,
{
1
}};
auto
starts
=
mm
->
add_parameter
(
"starts"
,
s1
);
auto
axes
=
mm
->
add_parameter
(
"axes"
,
s1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"slice"
,
{{
"ends"
,
{
std
::
numeric_limits
<
int
>::
max
()}}}),
input
,
starts
,
axes
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
parameter_map
params
;
migraphx
::
shape
s2
{
migraphx
::
shape
::
int32_type
,
{
2
,
2
,
3
}};
std
::
vector
<
int
>
input_data
(
2
*
2
*
3
);
std
::
iota
(
input_data
.
begin
(),
input_data
.
end
(),
0
);
std
::
vector
<
int
>
starts_data
=
{
1
};
std
::
vector
<
int
>
axes_data
=
{
2
};
params
[
"input"
]
=
migraphx
::
argument
(
s2
,
input_data
.
data
());
params
[
"starts"
]
=
migraphx
::
argument
(
s1
,
starts_data
.
data
());
params
[
"axes"
]
=
migraphx
::
argument
(
s1
,
axes_data
.
data
());
auto
result
=
p
.
eval
(
params
).
back
();
std
::
vector
<
int
>
gold
=
{
1
,
2
,
4
,
5
,
7
,
8
,
10
,
11
};
std
::
vector
<
int
>
results_vector
(
2
*
2
*
2
);
result
.
visit
([
&
](
auto
output
)
{
results_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
results_vector
,
gold
));
}
TEST_CASE
(
slice_var_inputs_dyn5
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s0
{
migraphx
::
shape
::
int32_type
,
{{
2
,
4
,
{
2
,
4
}},
{
2
,
4
,
{
2
,
4
}},
{
3
,
8
}}};
auto
input
=
mm
->
add_parameter
(
"input"
,
s0
);
migraphx
::
shape
s1
{
migraphx
::
shape
::
int32_type
,
{
1
}};
auto
ends
=
mm
->
add_parameter
(
"ends"
,
s1
);
auto
axes
=
mm
->
add_parameter
(
"axes"
,
s1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"slice"
,
{{
"starts"
,
{
-
4
}}}),
input
,
ends
,
axes
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
parameter_map
params
;
migraphx
::
shape
s2
{
migraphx
::
shape
::
int32_type
,
{
2
,
2
,
3
}};
std
::
vector
<
int
>
input_data
(
2
*
2
*
3
);
std
::
iota
(
input_data
.
begin
(),
input_data
.
end
(),
0
);
std
::
vector
<
int
>
ends_data
=
{
2
};
std
::
vector
<
int
>
axes_data
=
{
2
};
params
[
"input"
]
=
migraphx
::
argument
(
s2
,
input_data
.
data
());
params
[
"ends"
]
=
migraphx
::
argument
(
s1
,
ends_data
.
data
());
params
[
"axes"
]
=
migraphx
::
argument
(
s1
,
axes_data
.
data
());
auto
result
=
p
.
eval
(
params
).
back
();
std
::
vector
<
int
>
gold
=
{
0
,
1
,
3
,
4
,
6
,
7
,
9
,
10
};
std
::
vector
<
int
>
results_vector
(
2
*
2
*
2
);
result
.
visit
([
&
](
auto
output
)
{
results_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
results_vector
,
gold
));
}
TEST_CASE
(
slice_var_inputs_dyn6
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment